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Abstract: In this paper, we propose a cooperative linear discriminant analysis (LDA)-based motion
classification algorithm for distributed micro-Doppler (MD) radars which are connected to a data
fusion center through the limited backhaul. Due to the limited backhaul, each radar cannot report
the high-dimensional data of a multi-aspect angle MD signature to the fusion center. Instead, at
each radar, the dimensionality of the MD signature is reduced by using the LDA algorithm and the
dimensionally-reduced MD signature can be collected at the data fusion center. To further reduce
the burden of backhaul, we also propose the softmax processing method in which the distances
of the sensed MD signatures from the centers of clusters for all motion candidates are computed
at each radar. The output of the softmax process at each radar is quantized through the pyramid
vector quantization with a finite number of bits and is reported to the data fusion center. To
improve the classification performance at the fusion center, the channel resources of the backhaul are
adaptively allocated based on the classification separability at each radar. The proposed classification
performance was assessed with synthetic simulation data as well as experimental data measured
through the USRP-based MD radar.

Keywords: linear discriminant analysis; micro-Doppler radar; pyramid vector quantization

1. Introduction

Recently, micro-Doppler (MD) radars have been deployed to detect or recognize tar-
get motion due to their low implementation cost and robustness to harsh environmental
conditions [1–4]. Specifically, the target motions such as rotations and vibrations cause
small-scale frequency shifts of a radar echo signal, which represent spectrograms that
generally differ according to different target motions, also known as MD signatures. Fur-
thermore, MD signatures caused by target motion can be captured through the MD radar
whose operation is not affected by the surrounding conditions (e.g., bad weather or light
intensity). Accordingly, MD radar-based motion detection and recognition are applied
to UAV identification systems [5], human activity classification and smart homes [1–3].
However, the MD signature is generated based on the radar echo signal from unstable
scattering points of the target and heavily dependent on the aspect angle of the target
relative to the radar’s line of sight [6].

To overcome it, MD signatures for multiple perspectives are collected by using multi-
ple radar nodes or a single monostatic radar that traverses the target [7]. In Özcan et al. [8],
it is verified that the distributed radar configuration outperforms the colocated MIMO radar
configuration because the former obtains multi-aspect MD signature data. However, in
open literature addressing the distributed radar configuration for motion recognition [9,10],
the backhaul link for distributed radar nodes to share their sensing data (i.e., radar echo
signals) is assumed to be wired and have an ideal unlimited capacity, which hinders flexible
deployment of the distributed radar system.
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In this paper, to get multi-aspect MD signature data, a distributed MD radar system
with limited backhaul link is considered, where the distributed radars cannot report the
high-dimensional data of MD signature to the fusion center due to the limited backhaul
link. Note that the dimension of the MD signature depends on the size of short-time Fourier
transform (STFT) and the observation time duration (for example, in our experiment, 64
point STFT was exploited and 2534 time samples were observed for one MD signature;
then, the dimensions of the MD signature were 1.62× 105, which could cause the significant
overhead to the typical limited backhaul link). Accordingly, for the distributed radar, the
dimensions of the MD signature were reduced by exploiting the generalized singular value
decomposition (GSVD)-based linear discriminant analysis (LDA) algorithm, which has
been successfully exploited in the dimension reduction related applications [11–14]. Then,
we developed the motion classification algorithm by exploiting the dimensionally-reduced
MD signature for multiple perspectives collected at the data fusion center. Even though the
dimensions of the MD signature data were reduced, a naive element-wise quantization of
the dimensionally-reduced MD signature data incurred significant distortion. Accordingly,
rather than transmitting the dimensionally-reduced MD signature data, we propose the
softmax processing method in which the distances of sensed MD signature from the centers
of clusters for all motion candidates are computed at each radar, and the distance can be
expressed as a probability through the softmax function. Then, the output of the softmax
process at each radar is quantized through the pyramid vector quantization (PVQ) with
a finite number of bits and is reported to the data fusion center. We note that PVQ was
developed for the data compression and quantization of Laplacian-like data with arbitrary
vector dimensions [15,16]. In addition, PVQ is an efficient quantization method when the
sum of vector components is fixed as a constant, where the codebook of PVQ consists
of cubic lattice points on the L-dimensional pyramid. Accordingly, by exploiting the
normalizing the constant, we exploit the PVQ to quantize the output of the softmax process.
To improve the classification performance at the fusion center, the channel resources of the
backhaul link are adaptively allocated based on the classification separability at each radar.
Specifically, by allocating more bits (i.e., more resources of backhaul link) to the distributed
radar with larger separability, the motion classification performance at the data fusion
center can be further improved. The proposed classification performance was assessed
with synthetic simulation data (MNIST hand writing data [17]) as well as experimental
data measured through multiple MD radars that we implement by exploiting the USRP
N210 devices with CBX daughterboards [18].

The rest of this paper is organized as follows. In Section 2, we introduce the system
model for a distributed MD radar system and the associated signal model. In Section 3,
MD signature-based motion classification using GSVD/LDA is developed for a single radar.
In Section 4, we discuss the motion classification at the data fusion center by exploiting
the dimensionally-reduced data reported from the distributed radars. In addition, we also
propose the softmax processing method to further reduce the burden of backhaul linking and
discuss the application of PVQ to the output of the softmax process at each radar. In Section 5,
we provide several simulation results and experimental results. In Section 6, we give our
conclusions.

2. System Model

Figure 1 shows the distributed MD radar system with limited backhaul link, where L
distributed radars transmit continuous waveforms with different center frequencies. Since
the radars are spatially distributed, for the same target motion, each radar may receive the
echo signal conveying different MD signature.
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Figure 1. Model of a distributed micro-Doppler radar system.

When considering D target motions to be classified, the discrete received signal of the
lth radar for the ith motion (i = 1, . . . , D) can then be expressed as follows:

y(l)i [n] = α
(l)
i exp (j2π( f (l)c + ∆ f (l)i (nTs))(nTs − τ

(l)
i )) + νl [n] (1)

for n = 1, . . . , N, where Ts is a sampling time and ν(l)[n] is the zero-mean additive white
Gaussian noise having a variance σ2

n . Here, α
(l)
i represents the aggregated channel gain,

including path-loss and antenna gain, and τ(l) is the time delay associated with the range
between the target and the lth radar. In (1), ∆ f (l)i is the micro-Doppler shift character-
ized by the ith motion. In general, this MD signature is a function of time and can be
clearly observed in time-frequency domain using short-time Fourier transform (STFT) [4].
Accordingly, the STFT of y(l)i [n], n = 0, . . . , N − 1 can be given as

Y(l)
i [n, k] = STFT(y(l)i [n], n = 0, . . . , N − 1)

= α
(l)
i STFT( f (l)i [n], n = 0, . . . , N − 1) + STFT(ν(l)[n], n = 0, . . . , N − 1)

= α
(l)
i F(l)

i [n, k] + N(l)[n, k], (2)

for k = 0, . . . , M− 1, where f (l)i [n] = exp (j2π( f (l)c + ∆ f (l)i (nTs))(nTs − τ
(l)
i )), and STFT

can be given as

S[n, k] = STFT(s[n], n = 0, ..., N − 1) =
M−1

∑
m=0

s(n + m)w(m)e−j2π mk
M , (3)

where w(m) is the window function with a length of M. In (1), F(l)
i [n, k] is the MD signature

observed at the lth radar for the ith motion excluding the channel gain, and N(l)[n, k] is
the STFT of the additive white Gaussian noise. To analyze MD signature Y(l)

i [n, k] for

n = 0, . . . , N − 1 and k = 0, . . . , M− 1, Y(l)
i [n, k] is vectorized as

Y(l)
i =




Y(l)
i [0, 0]

Y(l)
i [0, 1]

...
Y(l)

i [N − 1, M− 1]



∈ CMN×1 (4)
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From (2), F(l)
ij and N(l)

ij can be vectorized in a similar way as (4), and we can have

Y(l)
i = α

(l)
i F(l)

ij + N(l)
ij . (5)

Throughout the paper, it is considered that the received radar signal at the lth distributed
radar can be preprocessed and reported to the data fusion center through the limited backhaul
link with the capacity of Nl bits per channel use. That is, Nl bits can be transmitted error-freely
for one channel use of the lth distributed radar. In addition, it is assumed that

∑
l=1,...,L

Nl ≤ Ntotal . (6)

3. MD Signature-Based Motion Recognition Using GSVD/LDA in a Single Radar

LDA has been used for the signal identification/classification dealing with high-
dimensional data efficiently [11–13], in which a linear transformation matrix G ∈ CMN×Md

is computed based on given sample dataset to reduce the dimension of the high-dimensional
dataset and simultaneously maximize the separability along different classes, where
D− 1 ≤ Md � MN.

For the motion recognition in the lth radar, the MD datasets are collected for each
motion. Specifically, by referring to (4), let us denote Y(l)

ij ∈ CMN×1 as the jth sample for
the ith motion’s MD signature data. Then, the collected datasets can be formulated as

A(l) = [A(l)
1 , A(l)

2 , . . . , A(l)
D ] ∈ RMN×DNs , (7)

where A(l)
i = [Y(l)

i1 , Y(l)
i2 , . . . , Y(l)

iNs
] and Ns is the number of samples per cluster (i.e., one

target motion). In addition, by using the collected datasets, three scatter matrices are
computed as

S(l)
w =

D

∑
i=1

Ns

∑
j=1

(Y(l)
ij −m(l)

i )(Y(l)
ij −m(l)

i )
H

(8)

S(l)
b =

D

∑
i=1

Ns(m
(l)
i −m(l)

total)(m
(l)
i −m(l)

total)
H

(9)

S(l)
total =

D

∑
i=1

Ns

∑
j=1

(Y(l)
ij −m(l)

total)(Y
(l)
ij −m(l)

total)
H

, (10)

which are respectively called within-cluster, between-cluster, and total scatter matrices [11].
Here, m(l)

i is the average of the samples in the ith cluster, given as m(l)
i = 1

Ns
∑Ns

j=1 Y(l)
ij ,

and m(l)
total is the average of total samples in the collected datasets, given as m(l)

total =
1

DNs
∑D

i=1 ∑Ns
j=1 Y(l)

ij = 1
D ∑D

i=1 m(l)
i . Note that the trace of Sw implies the variance of sample

data within the same cluster, while the trace of Sb is the variance of the cluster mean vectors
(i.e., m(l)

i , i = 1, . . . , D) with respect to m(l)
total , providing a measure of the distance between

clusters. We note that, at the lth radar, by evaluating the Euclidean distance of the received
data vector from the representative vectors m(l)

i , the motion can be identified thusly:

î = arg min
i
‖Y(l)

test −m(l)
i ‖2

2. (11)
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However, the process dealing with high dimensional data vectors requires high
computational complexity.

For the dimensionally-reduced sample data Ỹ(l)
ij = GHY(l)

ij ∈ CMd×1, the scatter
matrices can be given as

S̃(l)
w =

D

∑
i=1

Ns

∑
j=1

(GHY(l)
ij −GHm(l)

i )(GHY(l)
ij −GHm(l)

i )
H
= GHS(l)

w G (12)

S̃(l)
b =

D

∑
i=1

Ns(GHm(l)
i −GHm(l)

total)(G
Hm(l)

i −GHm(l)
total)

H
= GHS(l)

b G (13)

S̃(l)
total =

D

∑
i=1

Ns

∑
j=1

(GHY(l)
ij −GHm(l)

total)(G
HY(l)

ij −GHm(l)
total)

H
= GHS(l)

totalG. (14)

Note that it is desirable to maximize the trace of S̃(l)
b and simultaneously minimize

the trace of S̃(l)
w for the motion recognition in the reduced dimensional space. Accordingly,

the optimal linear transformation matrix G at the lth radar can be found thusly:

Ĝ(l) = arg max
G

J(l)(G), J(l)(G) ,
trace(GHS(l)

b G)

trace(GHS(l)
w G)

. (15)

From (5), the scatter matrix in (8) can be rewritten as

Sw
(l) = ∑

i=1

D ∑
j=1

Ns(αi
(l)Fij

(l) + Nij
(l) −mi

(l))(αi
(l)Fij

(l) + Nij
(l) −mi

(l))
H

= |αi
(l)|2S′w

(l)
+ σn

2IMN , (16)

where S′w
(l) is the within-cluster scatter matrix excluding the channel gain and the noise.

We can also derive Sb
(l) = |α(l)i |

2
S′b

(l). Accordingly, (15) can be given as

Ĝ(l) = arg max
G

trace(GHS′b
(l)G)

trace(GH(S′w
(l) + σ2

n/|α(l)i |
2
IMN)G)

. (17)

We note that the optimal transformation Ĝ(l) in (17) can be obtained by the general-
ized eigenvectors associated with the Md largest generalized eigenvalues of the matrix

pair (S′b
(l), S′w

(l) + σ2
n/|α(l)i |

2
IMN). Furthermore, it can be efficiently computed through

the GSVD algorithm [11,13,14], which is modified to our motion recognition scenario in
Algorithm 1.
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Algorithm 1 LDA/GSVD algorithm for motion recognition:

1. From (7)–(9), set Hb and Hw as:

Hb =
√

Ns

[
m(l)

1 −m(l)
total , m(l)

2 −m(l)
total , . . . , m(l)

D −m(l)
total

]
(18)

Hw =
[
A(l)

1 −m(l)
1 1T

Ns
, A(l)

2 −m(l)
2 1T

Ns
, . . . , A(l)

D −m(l)
D 1T

Ns

]
. (19)

2. Compute the SVD of Z =

[
HH

b
HH

w

]
∈ CD(Ns+1)×MN . That is,

Z = P
[

Λ 0
0 0

]
UH , (20)

where P ∈ CD(Ns+1)×D(Ns+1) and U ∈ CMN×MN are orthogonal and Λ is an s× s
diagonal matrix. Here, s is an effective rank of Z.

3. Partition the matrix P as

P =

[
P11 P12
P21 P22

]
, (21)

where P11 ∈ CD×s, P12 ∈ CD×(D(Ns+1)−s), P21 ∈ CDNs×s, and P22 ∈
CDNs×(D(Ns+1)−s) are submatrices of P; and compute the orthogonal matrix V from
the SVD of P11 (= WΣVH).

4. Compute X as

X = U
[

Λ−1V 0
0 I

]
. (22)

Then, set the transformation matrix Ḡ(l) as

Ḡ(l) =
[
[X]1, [X]2, . . . , [X]Md

]
∈ CMN×Md , (23)

where [A]i denotes the ith column of a matrix A.

Once Ḡ(l) is obtained in (23), we can transform the MD signature data in (4) into a
lower dimensional space. Accordingly, the motion can be identified via

î = arg min
i

z(l)i , (24)

where z(l)i is denoted as the distance of each piece of MD signature data from the center of
a cluster, given by

z(l)i = ‖Ḡ(l)HY(l)
test − m̃(l)

i ‖2
2. (25)

Here, m̃(l)
i is the representative vector for the ith motion in the reduced dimensional

space, given as m̃(l)
i = Ḡ(l)Hm(l)

i .

Remark 1. Note that, in (18) and (19), S(l)
b = HbHH

b and S(l)
w = HwHH

w . In addition, from (20)
and (21),

[
HH

b
HH

w

]
U=

[
P11Λ 0
P21Λ 0

]
(26)
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Then, from the SVD of P11 and [11,19], we can have

WHHH
b X = (Σ, 0), W̄HHH

w X = (Σ̄, 0), (27)

where P21 = W̄Σ̄VH . Equivalently,

XHHbHH
b X =

[
ΣHΣ 0

0 0

]
,

XHHwHH
w X =

[
Σ̄HΣ̄ 0

0 0

]
. (28)

Therefore, the columns of X are the generalized eigenvalues of the matrix pair (S′b
(l), S′w

(l) +

σ2
n/|α(l)i |2IMN). �

Remark 2. The cost function J(l)(Ĝ(l)) in (15) is denoted as the separability. That is, when
J(l)(Ĝ(l)) is larger, the dimensionally-reduced sample data vectors are well clustered and the
motion recognition performance is more improved. Furthermore, from (17), the separability is

proportional to the value of |α
(l)
i |2
σ2

n
, which implies that the received SNR at each radar affects the

motion recognition. �

4. Motion Classification at the Data Fusion Center

As the MD signature generated from the radar echo signal is heavily dependent on the
aspect angle of the target relative to the radar’s line of sight, the multi-aspect MD signature
data can be exploited for the motion classification. However, when the dimensionailty of
the MD signature data is large, the burden on the backhaul link increases. Accordingly, in
this section, we describe how the dimensionally-reduced data is reported to the data fusion
center effectively and how the reported data can be processed for the motion classification
at the data fusion center.

4.1. Strategy 1: Motion Classification at the Data Fusion Center with the
Dimensionally-Reduced Data

In Section 3, we can effectively reduce the dimension of the MD signature data while
maintaining the separability by using the GSVD/LDA algorithm. Accordingly, the lth
radar can transmit Ḡ(l)HY(l) to the data fusion center, rather than transmitting the MD
signature Y(l).

Specifically, by exploiting the collected datasets in (7), the aggregated datasets can be
formulated as

A =




G(1)H
A1

(1) . . . G(1)H
AD

(1)

G(2)H
A1

(2) . . . G(2)H
AD

(2)

...
. . .

...

G(L)H
A1

(L) . . . G(L)H
AD

(L)



=
[
A1 . . . AD

]
∈ CLMd×DNs . (29)

Again, the average of the samples in the ith cluster, mi, can be computed at the data
fusion center as mi =

1
Ns

∑Ns
j=1[Ai]j, and it can be denoted as the representative vector for

the ith motion at the data fusion center. Therefore, when Ḡ(l)HY(l)
test is received from the lth

radar for a certain motion, Ytest is formulated as

Ytest =




Ḡ(1)HY(1)
test

Ḡ(2)HY(2)
test

...
Ḡ(L)HY(L)

test




, (30)
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and the motion can be identified such as

î = arg min
i
‖Ytest −mi‖2

2. (31)

We note that the dimension of Ytest can be further reduced through the linear transfor-
mation matrix G ∈ CLMd×Md , which can be found by applying the GSVD/LDA algorithm
to (29).

4.2. Strategy 2: Motion Classification at the Data Fusion Center with Softmax-Processed Data

Even though the dimensions of the MD signature data are reduced via strategy 1,
the elements of G(l)HA(l)

d have continuous complex values, which should be properly
quantized when the backhaul link has a limited capacity. From (6), Nl bits can be trans-
mitted error-freely for single-channel use. A naive element-wise quantization incurs a
significant distortion on the dimensionally-reduced MD signature data. Note that from (24),
the cluster index of the data is determined to have the shortest distance from the center
(i.e., m̃(l)

i ) of each cluster. Accordingly, rather than transmitting the dimensionally-reduced

MD signature data, by reporting the distances from the centers of clusters (i.e., z(l)i in (25)),
each radar can deliver useful information for cluster selection with limited resources.

To transmit z(l)i to the data center for the motion classification, we use the softmax
process, which is widely applied to various multiclass classification problems, such as
multinomial logistic regression and multiclass linear discriminant analysis [20]. The output
of the softmax process at the lth radar is then given by

P(l)
i =

exp ‖z(l)i ‖
exp ‖z(l)1 ‖+ exp ‖z(l)2 ‖+ · · ·+ exp ‖z(l)D ‖

, (32)

for i = 1, . . . , D. At the fusion center, the motion can be identified such as

î = arg max
i

L

∑
l=1

P(l)
i . (33)

To improve the classification performance, because the cost function J(l)(G) indicates
separability at the lth radar from Remark 2, the motion can be identified by maximizing
the separability-weighted output of the softmax process:

î = arg max
i

L

∑
l=1

wl P
(l)
i , (34)

where wl =
J(l)(Ĝ(l))

∑L
l=1 J(l)(Ĝ(l))

.

4.3. Pyramid Vector Quantization and Bit Allocation for a Limited Backhaul Link
4.3.1. Pyramid Vector Quantization for Limited Backhaul Link

Since ∑D
i P(l)

i = 1 from (32), PVQ can be applied to transmit

P(l) = [P(l)
1 , . . . , P(l)

D ]T , (35)

through the limited backhaul link with Nl bit per channel use. We note that PVQ is an
efficient quantization method when the sum of vector components is fixed as a constant,
where the codebook of PVQ consists of cubic lattice points on the L-dimensional pyra-
mid [15]. That is, the components of L-dimensional vector on pyramid are integer-valued
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and the sum of total components is fixed as an integer, K. Accordingly, by denoting N(L, K)
as the set of codewords in the PVQ codebook, it is given as

N(L, K) =

{
cp , (xp

1 , . . . , xp
L) |

L

∑
i=1

xp
i = K, xp

i ∈ Z+ ∪ {0}
}

. (36)

Throughout the paper, considering quantization of the softmax output in (32), we
assume that xi are non-negative integers in (36). Then, the number of codewords in N(L, K),
P(L, K), can be computed as Cadel and Parladori [16]

P(L, K) =
(

L + K− 1
K

)
, (37)

or
P(L, K) = P(L− 1, K) + P(L, K− 1), (38)

where (a
b) is the binomial coefficient given as = a!

b!(a−b)! . Then, the number of required
bits to transmit the codewords in N(L, K) is given as dlog2 P(L, K)e, where d·e is the
ceiling operation. For example, the codebook of N(3, 4) is shown in Figure 2, where
the codewords are in the three dimensional space and the total number of codewords is
given as P(3, 4) = 15. Accordingly, four bits are required to transmit the codeword per
channel use.
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Figure 2. Codebook of Pyramid Vector Quantization, L = 3, K = 4.
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(

L + K− 1
K

)
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or
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b!(a−b)! . Then, the number of required156
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ceiling operation. For example, the codebook of N(3, 4) is shown in Fig. 2, where the158

codewords are in the three dimensional space and the total number of codewords is159

given as P(3, 4) = 15. Accordingly, four bits are required to transmit the codeword per160

channel use.161

To exploit the PVQ to quantize P(l) in (35), the normalized PVQ codebook is defined
as

N̄(L, K) =
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Fig. 3 shows an example of the normalized codebook (3, 4).162

When the output of the soft-max process at the lth radar is given as P(l) and the Nl
bits can be transmitted per channel use of the backhaul link. Then, from (37), we can
design N̄(D, Kl), where Kl is determined as the maximum K that satisfies the condition
of P(D, K) ≤ 2Nl . Then, P(l) can be quantized as

ˆ̄c(l) = arg min
c̄p∈N̄(D,Kl)

‖P(l) − c̄p‖2 (40)

which can be forwarded to the data fusion center. Then, at the data fusion center, the
motion can be identified by maximizing the separability-weighted output of the soft-max
process such as

î = arg max
i

L

∑
l=1

wl [ ˆ̄c
(l)]i, (41)

which is analogous to (34).163

Figure 2. Codebook of pyramid vector quantization, L = 3, K = 4.

To exploit the PVQ to quantize P(l) in (35), the normalized PVQ codebook is defined as

N̄(L, K) =

{
c̄p ,

(
xp

1
K

, ...,
xp

L
K

) ∣∣∣∣∣
L

∑
i=1

xp
i

K
= 1, xp

i ∈ Z+ ∪ {0}
}

. (39)

Figure 3 shows an example of the normalized codebook (3, 4).
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Figure 3. Normalized codebook of Pyramid Vector Quantization, L = 3, K = 4.
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When the output of the softmax process at the lth radar is given as P(l) and the Nl bits
can be transmitted per channel use of the backhaul link, from (37), we can design N̄(D, Kl),
where Kl is determined as the maximum K that satisfies the condition of P(D, K) ≤ 2Nl .
Then, P(l) can be quantized as

ˆ̄c(l) = arg min
c̄p∈N̄(D,Kl)

‖P(l) − c̄p‖2 (40)

which can be forwarded to the data fusion center. Then, at the data fusion center, the motion
can be identified by maximizing the separability-weighted output of the softmax process:

î = arg max
i

L

∑
l=1

wl [ ˆ̄c
(l)]i, (41)

which is analogous to (34).

4.3.2. Bit allocation for Limited Backhaul Link

From (37) and (39), it can be found that, as the number of bits increases, the associated
K can be increased. That is, the Euclidean distance between the codewords is reduced,
resulting in the reduction of quantization errors. Accordingly, by allocating more bits (i.e.,
more resources of backhaul link) to the distributed radar with larger separability, the motion
recognition performance at the data fusion center can be further improved. Specifically,
from (6), the number of bits per channel use for the lth radar, Nl , is determined as

Nl = dwl Ntotalc, (42)

where wl is defined in (34) and d·c is the rounding operation. By allocating more resources
of backhaul link to the radar with a larger separability value, the data from that radar can
be exploited at the data fusion center with smaller quantization error.

Interestingly, from Remark 2 and (17), when the separability excluding the channel

gain and the noise (i.e., the ratio of the traces of two matrices, S
′(l)
b and S

′(l)
w ) are the same

for all the radars, the radar with higher received SNR can be allocated more backhaul
link resources.

5. Simulation and Experiment Results
5.1. Simulation with MNIST Hand-Writing Data

Before implementing the motion classification using distributed MD radars with
limited backhaul, we first verified the classification performance of the GSVD/LDA-based
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dimension reduction in a distributed system by applying it to the image classification
problem with MNIST hand-writing data [17]. We note that the MNIST dataset consists of
hand-written numbers from 0 to 9; it is widely used as pilot data for image classification,
including the deep learning system [21]. Specifically, in this subsection, the classification
of the number set {1, 2, 3} from the hand-written images with 784 pixels is considered.
Accordingly, the hand-written images with 784 pixels were exploited instead of the MD
signature F(l)

ij in (5).
Throughout the simulation, the number of nodes was set to L = 3, and at each

node, G(l) was computed by exploiting 1000 MNIST training data for each number. In
Figure 4, the average classification rates are provided for strategy 1 in Section 4.1 and
strategy 2 with (33) and (34) in Section 4.2 when (a) [α(1), α(2), α(3)] = [0.14, 1, 1.4] and (b)
[α(1), α(2), α(3)] = [1, 1, 1]. For comparison purposes, we also evaluate the averages of the
classification rates at distributed nodes without sharing their sensing data to the fusion
center. The quantization of the sharing data from each node to the fusion center through
the backhaul link was not considered.

As shown in Figure 4a, it is obvious that the classification rates at the fusion center are
better than those of each node without sharing the sensing data. Interestingly, strategy 2
with (34) (i.e., using the separability-weighted output of the softmax process) outperformed
other schemes, because the path-loss (or SNR) affects the separability at each node, as
discussed in Remark 2, and the classification quality at each node can be reflected on the
final classification decision when strategy 2 with (34) is exploited. In Figure 4b with the
same path loss, the performances of strategy 2 with (33) and (34) are almost the same.

To validate the proposed PVQ with the bit allocation for limited backhaul link, we
evaluate the classification rates for Ntotal = {9, 12, ∞} and [α(1), α(2), α(3)] = [0.14, 1, 1.4] in
Figure 5.

The case of Ntotal = ∞ implies that the backhaul link does not have any resource
limitation and the sharing data from each node are unquantized and reported to the fusion
center through the backhaul link without any distortion. From the figure, it can be found that,
as Ntotal increases, the classification performance improves. In addition, when the resources
are allocated proportionally to the separability, as in (42), the classification performance can be
further improved compared to that with equal resource allocation over the distributed nodes.

5.2. A Test with MD Signatures Measured through USRP-Implemented Radars

To verify the performance of the proposed LDA-based motion classification using the
distributed MD radars, we have implemented the distributed MD radars by exploiting the
USRP N210 devices with CBX daughterboards and log periodic PCB directional antennas [18],
as in Figure 6, and the associated GNU-radio flowgraph is shown in Figure 7. Here, the
carrier frequencies for three MD radars were set as [ f (1)c , f (2)c , f (3)c ] = [4.1, 4.3, 4.5] GHz,
and the sampling rate was set as 200 kHz. Note that we exploited the multi-frequencies
with a large difference (i.e., 200 MHz) to avoid inter-radar interference without increasing
the implementation complexity, but the frequency difference can be further reduced if the
proper resource scheduling method is exploited. In addition, the center carrier frequency of
4.3 GHz was exploited as used in Liu and Chen [22] for the hand motion-aware radar, but the
proposed scheme can be extended to other frequency bands without difficulty. Throughout
the experiment, the number of time samples and the window size for the STFT were set as
N = 2533 and M = 63.

For three different hand gestures—hand flip-flop, clapping, and fist-clap—the MD signa-
tures were collected by exploiting the distributed MD radars, and the associated snapshots
are provided in Figure 8. We note that the aspect angles of the same gesture were different for
distributed radars, and accordingly, the MD signatures appeared differently at distributed
radars, even for the same gesture.
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Figure 4. Average recognition rates for (a) [α(1), α(2), α(3)] = [0.14, 1, 1.4] and (b) [α(1), α(2), α(3)] = [1, 1, 1].
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Figure 6. Experiment setting for three distributed radars.

Figure 7. GNU-radio flowgraph for distributed MD radars.

In Table 1, the motion classification rates are listed for the experimental settings in
Figure 6. Here, 120 MD signature samples per motion were collected in each radar, and half
of these were randomly chosen and exploited to compute G(l)(l = 1, 2, 3), and the other 60
samples were used to test the classification performance. In Table 1, motions 1, 2, and 3
correspond to hand flip-flop, clapping, and fist-clap, respectively. As for the experimental
results without the proposed strategies, we evaluated the classification performance at
a single radar without data sharing to the fusion center. In addition, we evaluated the
performance for the scenario in which the backhaul link between the distributed radar and
fusion center was wired, implying that Ntotal = ∞, denoting strategy 1 with Ntotal = ∞.
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Figure 8. MD signatures of three different hand gestures at distributed radars.

We note that the separabilities of the distributed radars are given as [0.0874 0.0633 0.1183],
which implies that the MD signatures from the third radar are more beneficial for the clas-
sification. From the Table 1, it can be found that combining multi-aspect angles from
distributed radars at the fusion center outperforms the classification at a single radar
without data sharing to the fusion center. In addition, as the number of bits per channel
use (i.e., the resource of the backhaul link) increases, the classification rate also increases.
Importantly, when the resources are allocated proportionally to the separability, as in (42),
the classification rate can be further improved compared to that with equal bit allocation
over the distributed nodes, which coincides with the observation in the simulation with
MNIST hand-writing data.

Table 1. Classification rates for the experiment settings in Figure 6.

Motion 1 Motion 2 Motion 3 Total Mean

Average of distributed Radars
without data sharing to fusion center

0.7222 0.9278 0.8944 0.8481

Strategy 1
with Ntotal = ∞ 1.0000 0.9500 0.7167 0.8889

Strategy 2 with Ntotal = 9
Equal bit allocation

1.0000 0.9333 0.7500 0.8944

Strategy 2 with Ntotal = 9
Separability-weighted bit allocation

1.0000 0.9167 0.8833 0.9333

Strategy 2 with Ntotal = 12
Equal bit allocation

1.0000 0.9167 0.7833 0.9

Strategy 2 with Ntotal = 12
Separability-weighted bit allocation

1.0000 0.9333 0.9833 0.9722
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To see the effect of the diversity of the multi-aspect angles on the recognition per-
formance, we performed an additional motion classification experiment when the dis-
tributed radars were placed close together, as in Figure 9. Table 2 shows the classification
rates for the experiment from Figure 9. The separabilities of distributed radars were
[0.0426 0.1212 0.1272]. We can find a similar trend in Table 1, where combining multi-aspect
angles at the fusion center outperformed the classification at a single radar, and when the
resources were allocated proportionally to the separability, the classification rate could be
further improved. Interestingly, the overall classification rates in Table 2 are worse than
those in Table 1, because the diversity of the multi-aspect MD signature data is reduced
when the distributed radars are placed close together. Specifically, when the distributed
radars are placed close together, as in Figure 9, the radar signal received by each radar has a
similar incoming angle from the target. In contrast, in Figure 6, the third radar can observe
the target motion with a relatively different aspect angle compared to other distributed
radars. Accordingly, the diversity of the multi-aspect MD signature data is decreased when
the distributed radars are placed close together as in Figure 9; compare to Figure 6. This
resulted in the degradation of the overall classification rates in Table 2 compared to those
in Table 1. When the radars were co-located, the recognition rate of the proposed strategies
was low, especially for motion 3, because motion 3 (fist-clap) had a similar MD signature to
other actions. Note that this performance degradation can be overcome by increasing the
diversity of multi-aspect angle as in Figure 6

Figure 9. Experimental settings for the distributed radars which were placed close together.

Table 2. Classification rates for the experiment in Figure 9.

Motion 1 Motion 2 Motion 3 Total Mean

Average of distributed Radars
without sharing to Fusion center

0.7722 0.7677 0.8000 0.7800

Strategy 1
with Ntotal = ∞ 1.0000 0.9667 0.8167 0.9278

Strategy 2 with Ntotal = 9
Equal bit allocation

0.9667 0.9000 0.7333 0.8667

Strategy 2 with Ntotal = 9
Separability-weighted bit allocation

1.0000 0.9000 0.7167 0.8722

Strategy 2 with Ntotal = 12
Equal bit allocation

0.9833 0.9167 0.7000 0.8667

Strategy 2 with Ntotal = 12
Separability-weighted bit allocation

0.9667 0.9167 0.8333 0.9056
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6. Conclusions

In this paper, we proposed an LDA-based motion classification algorithm using the
MD signatures obtained from distributed MD radars, in which the the distributed radars
are connected to the data fusion center through the limited backhaul link. Due to the limited
backhaul link, at each radar, the dimensions of MD signature are reduced by using the LDA
algorithm, and the dimensionally-reduced MD signatures from multiple perspectives can
be collected at the data fusion center. To further reduce the burden of the backhaul link, we
also propose the softmax processing method and that the output of the softmax process at
each radar should be quantized through the PVQ with a finite number of bits and is reported
to the data fusion center. To improve the classification performance, the channel resources
of the backhaul link are adaptively allocated based on the classification separability at
each radar. Through computer simulations and an experiment, we demonstrated that
the proposed algorithm (i.e., LDA-based motion classification with softmax processing,
PVQ, and the separability-weighted bit allocation) exhibits a considerable performance
improvement in the limited backhaul link, which is comparable to that without any resource
limitation in the backhaul link.
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