
sensors

Article

Detection and Classification of Malicious Flows in
Software-Defined Networks Using Data Mining Techniques

Marek Amanowicz 1,* and Damian Jankowski 2

����������
�������

Citation: Amanowicz, M.;

Jankowski, D. Detection and

Classification of Malicious Flows in

Software-Defined Networks Using

Data Mining Techniques. Sensors 2021,

21, 2972. https://doi.org/10.3390/

s21092972

Academic Editor: Joanna Kolodziej

Received: 27 February 2021

Accepted: 21 April 2021

Published: 23 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 NASK National Research Institute, 01-045 Warsaw, Poland
2 Ministry of National Defense, 01-045 Warsaw, Poland; damian.jankowski@wat.edu.pl
* Correspondence: marek.amanowicz@nask.pl; Tel.: +48-53-215-6796

Abstract: The increasing availability of mobile devices and applications, the progress in virtualisa-
tion technologies, and advances in the development of cloud-based distributed data centres have
significantly stimulated the growing interest in the use of software-defined networks (SDNs) for
both wired and wireless applications. Standards-based software abstraction between the network
control plane and the underlying data forwarding plane, including both physical and virtual devices,
provides an opportunity to significantly increase network security. In this paper, to secure SDNs
against intruders’ actions, we propose a comprehensive system that exploits the advantages of SDNs’
native features and implements data mining to detect and classify malicious flows in the SDN data
plane. The architecture of the system and its mechanisms are described, with an emphasis on flow
rule generation and flow classification. The concept was verified in the SDN testbed environment
that reflects typical SDN flows. The experiments confirmed that the system can be successfully imple-
mented in SDNs to mitigate threats caused by different malicious activities of intruders. The results
show that our combination of data mining techniques provides better detection and classification of
malicious flows than other solutions.

Keywords: software-defined network; flow features; data mining; flow classification; Mininet; Open-
Daylight

1. Introduction

A traditional communication network comprises interconnected and individually
configured devices for forwarding data packets. This has a few limitations related to
the flexibility of packet forwarding and network management, as well as inhibiting the
introduction of new, more effective mechanisms. The increasing availability of mobile
devices and applications, the progress in virtualisation techniques, and advances in the
development of cloud-based distributed data centres has significantly stimulated the
growing interest in the use of software-defined networks. An SDN decouples the control
plane from the data plane, improving the flexibility and automation of network functions;
creates favourable conditions for introducing innovations; and leads to a reduction in the
SDN’s operating costs.

Although the implementation of software-based technology in wired networks is
relatively easy and frequent, it also has benefits in the wireless domain [1]. For example,
it enables better collaboration between access points in order to reduce radio-specific
problems and enhance wireless network security.

The SDN architecture can also be successfully used in other areas. For example, the
recent work on many-core systems-on-a-chip (MCSoCs) considered adopting the SDN
concept to design low-cost, high-performance architecture for aperiodic and low-duty-cycle
traffic between cores [2]. An MCSoC in smartphones or IoT devices has a huge number of
processing cores and many memories connected to one another by an on-chip network;
therefore, the introduction of the SDN architecture may significantly improve network
management performance.

Sensors 2021, 21, 2972. https://doi.org/10.3390/s21092972 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21092972
https://doi.org/10.3390/s21092972
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21092972
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21092972?type=check_update&version=2


Sensors 2021, 21, 2972 2 of 24

However, SDN technology has many vulnerabilities that can be exploited by an at-
tacker to breach network security, as discussed by Kumar and Gupta [3]. Figure 1 shows the
possible attacks and threat vectors targeting different components of the SDN architecture.

Figure 1. Possible attacks and threat vectors targeting SDN components.

Cyber-attacks can exploit, for example:

• An incorrect configuration;
• The operating system’s kernel errors of SDN controller;
• Incorrect permissions;
• The insufficient validation of input data;
• Software coding mistakes, e.g., a buffer overflow.

A basic threat is taking over control of the SDN driver, which may compromise the
entire SDN. The attacker has unauthorised control over the network devices. The level of
vulnerability to such attacks is mostly conditioned by the implementation of an SDN driver.

There are some solutions to detect and neutralise such threats, e.g., an intrusion
detection system (IDS), an intrusion prevention system (IPS), or SDN controller replication
mechanisms, as proposed by Gonzales et al. [4]. Lee et al. [5] discussed SDN security
issues resulting from attacks on the northern interface, involving taking control of network
applications or introducing malicious software. Such attacks cause illegal actions, e.g., the
manipulation of flow rules, redirecting packets to an unauthorised recipient, or blocking
selected traffic flows. An attack can also be targeted at the southbound interface by
exploiting vulnerabilities of the protocols used, which enables the attacker to monitor or
interfere in the exchange of messages between the controller and network devices. The
SDN controller can be treated as a single point of failure, and therefore, it is a particularly
attractive target for denial-of-service (DoS) attacks from both northbound and southbound
interfaces. An attack from the northbound interface on one application can negatively
affect another application that is not being directly attacked and, consequently, may, for
example, introduce many conflicting flow rules for many applications. In the case of
reactive flow entries, where each packet that does not match the existing entries in the flow



Sensors 2021, 21, 2972 3 of 24

table is forwarded to the controller, the generation of a huge number of malicious flows
can overload the SDN controller and, consequently, disable network control.

Several practical solutions have been proposed to secure SDNs. For example, Scott-
Hayward et al. [6] discussed the challenges in securing an SDN from a persistent attacker
and proposed a holistic approach to the development of the SDN security architecture.
They also identified research directions essential for providing network security. A state-
of-the-art solution proposed to secure SDNs was discussed in [7]. The authors classified
security solutions in terms of SDN layers/interfaces, security measures, simulation envi-
ronments, and security objectives, as well as providing their own view on potential security
requirements and key enablers for securing SDNs.

However, standards-based software abstraction between the network control plane
and the underlying data forwarding plane, including both physical and virtual devices,
provides an opportunity to significantly increase network security by using native SDN
features, as discussed by Shin et al. [8] and Yoon et al. [9].

We propose to take advantage of such features, mainly related to the aggregation
of various statistics from network devices, the openness for the implementation of new
applications enabling the proper processing of traffic data, and their integration with
network control mechanisms. We also recommend using the data mining technique
(DMT) to detect and classify malicious flows in the SDN data plane. The use of DMTs is
more common in detecting unauthorised activities in complex, multi-service information
systems. DMTs also allow improving the efficiency and flexibility of intrusion detection,
detecting new types of threats, highlighting symptoms of a specific attack, and precisely
distinguishing between malicious and legal activities.

Therefore, this study’s aims were twofold:

1. To present a comprehensive solution that can be successfully used in the SDN envi-
ronment to mitigate threats caused by different malicious activities of intruders;

2. To demonstrate that our combination of data mining techniques provides better
detection and classification of malicious flows compared with other solutions.

This study continues our preliminary works on assessing the rationality of using
transformation techniques such as ICA and PCA to reduce the features space and processing
time [10] and exploring methods of generating both normal and malicious flows that can
be used to evaluate various SDN-based intrusion detection systems [11].

Briefly, the main contributions of this paper are as follows:

• The elaboration of a flow rule generation mechanism that allows for the online ad-
justment of the granularity of rules to the current traffic volume and obtains a good
balance between the number of captured features to precisely identify network traffic
and the controller protection against flooding;

• The extension of flow classifier functions to enable the examination of different classi-
fication methods by the appropriate selection of parameters for the technique used
and their values, as well as the attributes of the learning phase;

• The presentation of the Monitoring and Detection of Malicious Activities in SDN
(MADMAS) system deployment in a virtual environment that allows for its examina-
tion in conditions similar to the real ones;

• The demonstration of the performance of MADMAS system alternatives and their
effectiveness in malicious flow detection and classification compared with other
solutions described in the literature.

The rest of the paper is structured as follows. Section 2 presents a brief overview of an
available solution that enables the detection of malicious activities in SDNs, with particular
emphasis on the data mining techniques used. Section 3 provides an overview of the system
architecture, also showing the techniques used at individual stages of flow detection and
classification and the mechanisms of flow rule generation and flow classification. Section 4
describes experiments that confirmed the MADMAS system’s effectiveness in the detection



Sensors 2021, 21, 2972 4 of 24

and classification of malicious flows under conditions that reflect typical SDN activities.
The paper concludes with some remarks and proposals for the future.

2. Related Work

Different types of intrusion detection systems (IDSs), commonly used to monitor
networks or systems for malicious activities, have been discussed previously [12]. Such
systems can be placed at strategic points within a network to monitor traffic flows on
the network (so-called network IDS (NIDS)) or at individual hosts or devices to monitor
inbound and outbound packets from a device (so-called host IDS (HIDS)). The most
well-known IDSs are signature-based systems that recognise incorrect traffic patterns and
anomaly-based systems, detecting deviations from a model of expected normal traffic,
which often apply machine learning techniques.

Signature-based intrusion detection systems define a set of attack patterns (signatures)
and establish a threshold of similarity to the predefined pattern, enabling the triggering
of an alarm. Signature-based systems are often used because they are efficient at sniffing
known attacks; however, they may be ineffective in cases of completely new attacks for
which no pattern has been defined.

Anomaly-based intrusion detection systems measure the present state of network
traffic in order to detect patterns that deviate from normal activity. Malicious activity
detection is based on features extracted from traffic flows, both at the data layer, as shown
by Umer et al. [13], and at the application layer, as shown by Kozik et al. [14]. Such systems
are appropriate for detecting new attacks or attacks that have been deliberately assembled
to avoid detection; however, they may generate larger numbers of false positives compared
with signature-based systems. Bhuyan et al. reviewed a large number of network anomaly
detection methods and systems, in terms of the computation techniques used [15], and
Boriah et al. discussed proximity measures that can be used for pattern recognition [16].

Anomalies in traffic flows can be detected in several ways, most often with machine
learning and data mining. Machine learning is more common in systems for supporting
computer emergency response teams during threat detection [17,18]. Data mining, as
presented by Buczak and Guven [19] or Dua and Du [20], creates new possibilities for
detecting new types of threats and contributes to improving the efficiency and flexibility
of anomaly-based IDSs. The application of a DMT for flow processing highlights specific
symptoms of an attack, while its use for classification clearly distinguishes an attack from
legal activity [21].

The deep packet inspection (DPI) technique, implemented in specialised network
components, is often used to extract diagnostic features from traffic flows [22]. This
technique enables the collection of detailed data on traffic flows; however, processing
all packets usually requires significant computing resources. Another approach is to
sample only selected flow parameters (so-called flow-based IDS), e.g., the number of bytes
transferred or a flow duration or L3 and L4 protocols. The extracted parameters do not
allow for describing network activity exactly like DPI, but the computing resources might
be significantly reduced.

Predefined sets of test data, such as KDD99 Cup DARPA [23] or NSL-KDD [24], are
often used to assess the efficiency of feature detection and processing algorithms. These
sets contain data vectors representing network activities with their diagnostic features
that are labelled as either normal or malicious with exactly the specific attack type, i.e.,
denial of service (DoS), scanning, unauthorised access to a local machine (R2U), or illegally
obtaining the root’s privileges (R2L).

A number of studies have elaborated security solutions enabling the effective detection
of anomalies in a software-defined environment. Some examples of the proposed methods
and systems are discussed below.

Mehdi et al. [25] propose a mechanism based on evaluation of the first packet sent to
the controller for the identification of abnormal behaviours at the underlaying network
layer. They used the threshold random walk with credit-based rate-limiting (TRW-CB),



Sensors 2021, 21, 2972 5 of 24

maximum entropy detector, rate-limiting, and network anomaly detection (NETAD) algo-
rithms, all implemented in the SDN controller. The type of read parameters and matched
fields of the flow depend on the type of anomaly detection algorithm used. This approach
assumes that it is possible to detect selected attacks without the need to analyse all packets
of the flow. The method focuses on detecting port scanning and L3/4 DoS attacks. The
disadvantage of the method is the inability to detect application layer attacks. Normal
traffic was collected during the operation of an actual SDN, while unauthorised traffic was
generated in the laboratory environment. Both classes of traffic are combined into one
dataset; however, the authors do not depict the procedure of test dataset generation.

A mechanism for information security management in SDNs, as proposed by Dot-
cenko et al. [26], combines algorithms of statistics collection, data processing, and decision
making implemented in the SDN controller, and it uses a fuzzy logic technique for infer-
ence. The TRW-CB and rate-limiting algorithms are used to collect diagnostic features
of the network traffic. If suspicious traffic is identified, the threat level is expressed on a
three-level scale: low, medium, or high. The limited scope of attack detection and the lack
of advanced methods for verification of the effectiveness of the proposed solution are the
basic limitations. In addition, the description of the statistics collection module is generic.
The authors do not depict a measurement procedure of the network traffic parameters, but
only specify the potential functions of the module.

An example of the use of data aggregation and traffic profile collection in the SDN
controller is presented in [27]. The authors use OpenFlow and sFlow protocols to collect
network traffic parameters. Aggregation of network traffic parameters involves periodically
sending requests from the SDN driver to network devices and receiving network statistics,
which is closely related to packet forwarding.

Another interesting approach [28] involves the use of the sFlow protocol to sample
network traffic parameters, which allows the separation of sampling from packet forward-
ing. This, in turn, enables extracting network traffic parameters without burdening the
SDN driver’s resources, but it requires the implementation of an additional protocol. The
proposed method allows the detection of DDoS L3–L4 attacks, worm propagation, and
port scanning. To detect unauthorised activities, the system measures the entropy changes
of four network traffic characteristics for a given network device: source and target IP
addresses, and source and target TCP/UDP ports. Based on the changes in the entropy
level of these characteristics, it is possible to identify symptoms corresponding to specific
classes of the unauthorised activities. A significant decrease in the entropy of destination
IP addresses and destination TCP/UDP ports is considered a symptom of a DDoS attack.
The presence of worm propagation is evidenced by a significant decrease in the entropy of
source IP addresses and destination TCP/UDP ports. Scanning specific host ports reduces
the entropy of destination and source IP addresses and increases the entropy of source
TCP/UDP ports. The system was tested with real traffic and optimised to handle high bit
rates, which, however, limited the level of detail of the analysis of unauthorised activities.
Thus, the system enables the detection of unauthorised activities with regard to the entire
flow table but without indicating the specific attack class associated with a given flow.

Braga et al. [29] proposed a self-organising map (SOM) as a mechanism for detecting
unauthorised activities. The system consists of three main components: a flow collector,
a feature extractor, and a classifier. These three components periodically sample the
parameters of entries in flow tables, convert flow parameters into diagnostic features,
and detect attacks, respectively. SOM-based analysis, which is performed using data on
five traffic flow parameters (i.e., average number of packets, average duration of flow,
percentage of pairs of flows, increase in the number of individual flows, and increase in
the number of flows with different ports), enables a high rate of detecting DDoS L3/4
attacks from botnets and a low rate of false alarms. Unfortunately, diagnostic features are
determined for the entire flow table of the network device, so it is not possible to detect
single malicious flows; however, it is possible to indicate a network device through which
such traffic is forwarded.



Sensors 2021, 21, 2972 6 of 24

The system presented in [30] enables detecting DoS, probe, R2L, and U2R attacks in
an OpenFlow-based SDN with the use of the J48 decision tree (the implementation of a
C4.5 tree) based on the information gain measurement [31]. The traffic parameters are
determined in accordance with the diagnostic features of the NSL-KDD set. The binary
bat algorithm (BBA) [32], which performs feature selection, is an example of a swarm
intelligence (SI) algorithm, which refers to the behaviour of bats [33]. The authors do
not specify a mechanism for obtaining diagnostic features for classification; therefore, the
system was tested using the ready-made NSL-KDD dataset.

Le et al. [34] present a system for detecting malicious activities in an OpenFlow-based
SDN using port mirroring, where packets are additionally copied to the interface of a switch
connected to the intrusion detection system (IDS). In packet inspection, 25 diagnostic
features are determined and divided into two groups: basic features, represented by
network connection parameters, and derived features, called network traffic characteristics,
determined within a specific time window, reflecting the degree of similarity of different
TCP connections. Vectors of features are used for the C4.5 classification algorithm, which is
a variant of the decision tree [35]. Classification results, providing information about the
detection of unauthorised activities, are sent to the SDN driver, which introduces a flow
rule that blocks the traffic identified as illegal. The system was tested using the KDD99CUP
dataset, as well as in the real environment. Three types of DoS attacks and eight types
of probe attacks were used in experiments conducted in the real network; however, their
generation was not described. This approach can be considered a hybrid one in which
the SDN’s capabilities are used only for forwarding packets to the appropriate IDS and
then introducing new flow rules in response to identified threats. Although the system
architecture would allow the collection of data on the application layer and packet payload,
such a mechanism was not implemented.

Tang et al. [36] propose a mechanism applying deep learning for detecting malicious
flows in an OpenFlow-based SDN. Selected parameters of network flows are collected from
OpenFlow switches and then transferred to the component located in the SDN controller
responsible for flow-based anomaly detection. The deep neural network (DNN) model was
learned with the NSL-KDD dataset. The mechanism was tested in terms of the detection
of DoS, RL2, U2R, and probe attacks, as well as its comparison with other classification
techniques such as J48, naive Bayes (NB), tree and random forest, NBTree, multi-layer
perceptron (MLP), and support vector machine (SVM). The obtained results indicate a
relatively low efficiency of the DNN-based mechanism, as well as other machine learning
methods, which may indicate a too-narrow scope of the experiments and non-optimal
selection of the parameters of the classification.

The above solutions focus on a comparison and evaluation of the machine learning
techniques for anomaly detection. By contrast, Querioz et al. [37] proposed the practical
implementation of traffic measurement in OpenDaylight-based software-defined networks.
The authors focused on online fine-grained measurements of throughput at flow, port,
link, path, and switch levels. They applied big data streaming tools to monitor the SDN
bandwidth use, which supports traffic engineering activities and also enables the detection
of DoS flows.

The approach proposed by Tuan et al. [38] focused on using machine learning to
mitigate DDoS attacks, especially TCP-SYN and ICMP flood attacks, in SDN-based internet
service provider (ISP) networks. A lightweight and fast machine learning algorithm based
on a k-NN that facilitated real-time operations was used to detect and mitigate attack traffic
by tracing back the IP sources of attack, achieving a trade-off between accuracy and system
capacity. The authors also proposed a method of optimising the monitoring window time
for improvement in the mitigation algorithm efficiency.

An interesting approach to solving challenging problems in using legacy datasets,
such as the KDD’99, for anomaly detection in the SDN environment is shown in [39].
The authors proposed a method of generating an attack-specific SDN dataset that can
be publicly available. The new InSDN dataset included various attack categories that



Sensors 2021, 21, 2972 7 of 24

can occur in different elements of the SDN platform, such as DoS, DDoS, Botnet, web
attacks, brute force attacks, malware, probes, or exploitation. In addition, some of them
concern the SDN control plane. The authors also demonstrated the use of the InSDN
dataset for evaluating some popular machine learning techniques for the detection of
malicious activities.

Gomez-Rodriges et al. [40] present a wide overview of the literature on software-
defined network-on-chip (SDNoC) use in MCSoC applications. They point out some
security-oriented approaches supporting the SDNoC architecture that apply a security
protocol for network configuration, as proposed by Ruaro et al. [41], or define security
zones and apply an admission mechanism to accept new applications in a security zone,
as presented by Ruaro et al. [42]. Security vulnerabilities, especially in the IoT context,
arise due to exposure of the MCSoC infrastructure to DoS attacks by malicious users. An
example of a low-cost mechanism for detecting the location of the attacker in the MCSoC
and direction of the collision is presented by Chaves et al. [43].

In summary, a comparison of the basic features of the above-mentioned concepts of
malicious flow detection in an SDN is presented in Table 1.

Table 1. Comparison of selected concepts of malicious flow detection.

Concept Diagnostic Features Detection Technique Detected Attacks

Revisiting traffic anomaly detection
using software-defined

networking [25]

Maximum entropy detector,
TRW-CB, rate-limiting,

NETAD

Predefined detection
threshold DoS L3–L4, probe

A fuzzy logic-based information
security management for

software-defined networks [26]
TRW-CB, rate-limiting Fuzzy logic DoS L3–L4

InMon corporation’s sFlow: a method
of monitoring traffic in switched and

routed networks [28]
TRW-CB, entropy level Predefined detection

threshold
DDoS, probe, malware

propagation

Lightweight DDoS flooding attack
detection using NOX/OpenFlow [29]

Flow’s parameters and its
additional features Self-organising map DDoS L3–L4

Efficient anomaly detection and
mitigation in a software-defined

networking environment [30]

Flow’s parameters and its
additional features Decision tree J48 DoS, probe, U2R, U2L

Flexible network-based intrusion
detection and prevention system on

software-defined networks [34]

Parameters determined on the
basis of captured packets Decision tree C4.5 DoS, probe

Deep learning approach for network
intrusion detection in

software-defined networking [36]
Flow’s parameters Deep learning neural

network DoS, probe, U2R, U2L

An approach for SDN traffic
monitoring based on big data

techniques [37]
Flow’s parameters

Not used; the approach
focuses on real-time data

collection
DoS

A DDoS attack mitigation scheme in
ISP networks using machine learning

based on SDNs [38]
Flow’s parameters K-nearest neighbours DDoS

InSDN: a novel SDN intrusion
dataset [39] Flow’s features Not applied

DoS, DDoS, botnet, web
attacks, brute force attacks,

malware, probe,
exploitation

The functional architecture of the solutions presented above is similar, although they
differ in the implementation of specific functions. In all solutions, traffic flow parameters
obtained from network devices are collected in a dedicated component located in the SDN



Sensors 2021, 21, 2972 8 of 24

controller. Further processing of the collected features and detection of malicious actions
take place in the components communicating with the SDN controller or placed directly
in it. They enable detecting selected types of unauthorised activities, such as DoS, DDoS,
port scanning, or attempts to propagate malware. Only those presented in [30] and [36]
enable the detection of U2R and U2L attacks; however, they do not apply to mechanisms
enabling the acquisition of information from the application layer. The solution presented
in [34] uses the deep packet inspection (DPI) technique, implemented by forwarding the
packet stream to the IDS, which is a form of the middle box between the data plane and
the SDN driver, but the range of detected attacks includes only DoS and probing. None of
the solutions presented allows the detection of DoS L7 attacks. In the case of such attacks,
it is desirable to obtain flow parameters from the application layer and to distinguish them
at the transport layer connections, although OpenFlow implementations have a limited
ability to inspect package contents. Only the system described in [30] applies the feature
selection mechanism, and the feature transformation technique is not used in any solution.

3. MADMAS Architecture
3.1. Architecture Overview

In a MADMAS system, the SDN controller acts as an intermediary platform for
the centralised retrieval of traffic flow parameters from the switches. We assumed that
measurements of traffic flow parameters, their processing, and flow feature selection should
be performed in such a way and at such a level of detail that we can identify malicious
hosts. Furthermore, the traffic measurement and feature processing mechanisms should
use the native functions and protocols of the SDN, and the use of other mechanisms and
protocols that are not part of the SDN environment should be limited.

The MADMAS system architecture, presented in Figure 2, consists of seven main
components: a flow rules generator (FRG), flow reader (FR), basic features repository (BFR),
additional features generator and flows repository (AFG), features pre-processing (FPP),
flow classifier (FC), and control component (CC). The system operates in the network
environment, cooperating directly with the SDN controller.

Figure 2. MADMAS architecture. The symbols used: FR—flow rule; FFP—first packet in a flow;
CFP—features of FFP; FS—flow statistics; CP—basic flow features; X, XP—input vectors before and
after pre-processing, respectively; CR

L3, CR
L4—attributes of flow granularity.



Sensors 2021, 21, 2972 9 of 24

The FRG generates flow rules to ensure packet transfer over the network between
source and destination nodes. The flow rules granularity technique allows us to distinguish
sessions and connections. Incorporating a mechanism that allows for dynamic adjustment
of the granularity of the flow rules to the current traffic volume enables a good balance
between the number of captured features to correctly identify the network traffic and the
controller protection against flooding. The FRG is also responsible for collecting application
layer data from the first packets of flow and provides information about the reduction in
flow granulation. A detailed description of this component is given in Section 3.2.

The FR performs tasks related to the sequential reading of the contents of flow tables
and extraction of data from flow rules (flow input port, source and destination addresses,
layer 4 protocols, and source and destination TCP/UDP ports) and from flow statistics
(maximum flow duration, number of bytes sent/transferred in the source/destination di-
rection with or without the TCP PSH flag, number of packets sent in the source/destination
direction with a TPC PSH flag set). For each composition of such data, the set of basic flow
features CP is defined and stored in the BFR for further analysis. The FR is also responsible
for the generation of application layer features. The UDP flows are taken directly from
the payload of the first packet. For TPC flows, the application layer data are passed after
the three-way handshake process. Therefore, the FR uses the PSH flag to distinguish
such flows.

The additional features generator and repository is responsible for additional feature
specification based on the basic features and content of flow tables. A set of additional
features contains complementary data that reflect the interrelation of flows, changes in
the value of some of their attributes, as well as data enabling the differentiation of traffic
classes. This helps to increase the effectiveness of malicious activity detection, such as the
maximum value of the flow coefficient with different or the same ports, the maximum
value of the flow factor for a given target host, the maximum value of the single flow
coefficient, the maximum value of the flow repetition coefficient, and maximum values of
the layer 3 and layer 4 flow reduction coefficient. Both additional and application layer
features are stored in the repository for further use in flow classification. The features
pre-processing component carries out the initial phase of data mining. Based on the set of
vectors X, which represent application layer data gained from the AFG, this component
creates a set of vectors XP containing selected features enabling effective flow classification.
It comprises four 4 modules responsible for:

• The processing of application layer data with a text mining technique that includes
input data tokenisation, n-gram analysis of tokens, features pruning, and features
transformation using independent component analysis (ICA);

• The normalisation of the features for the unification of the numerical ranges of their values;
• The linear transformation of features with principal component analysis (PCA) in

order to highlight specific aspects of the data;
• Feature selection for flow classification.

The transformation of the string of ASCII characters representing the application
layer data into a set of tokens creates input data for n-gram analysis, which allows for the
creation of a feature space for a string by counting occurrences of substrings consisting of n
tokens. The result of n-gram analysis is a vector that defines the frequency distribution of
the substrings for each string representing application layer data. The token occurrence
frequency is determined by the TF-IDF method [44]. The result is a vector containing the
weight of words occurring within the application layer data. The set of vectors can contain
a large number of features, and therefore, additional processes are implemented to reduce
their elements. The first reduction process removes tokens for which the TF-IDF value is
outside the given frequency range of occurrence. Thus, the limited set of vectors is again
reduced with ICA transformation [45].

The normalisation of features aims at achieving a coherent dataset and leads to
unification of the numerical ranges and values of the data. The normalised vectors of the
features are further subject to PCA transformation for feature space reduction. During



Sensors 2021, 21, 2972 10 of 24

the selection, a set of the most significant features contained in the vectors of reduced
dimensionality is created, which is then used for flow classification.

The flow classifier carries out tasks related to malicious flow detection and assigns
each malicious flow an appropriate label, representing a class of specific illegal activity. The
outcomes of classification can trigger reaction procedures, including the introduction of new
flow rules to eliminate identified threats. In the present version, the FC can be configured
directly for flow classification with a predefined technique or for the examination of
different classification methods by appropriate selection of the parameters of the technique
used and their values, as well as training attributes. A detailed description of the FC is
given in Section 3.3.

The control component enables the system’s operator to introduce modifications/changes to
a technique used for flow classification in order to obtain an accepted level of system effectiveness.

3.2. Flow Rules Generator

The flow rules generator, whose internal structure is shown in Figure 3, consists of
three modules: incoming packets handler (IPH), application layer data recorder (ALDR),
and a flow rules generator (FRG).

Figure 3. Structure of a flow rules generator. The symbols used: FR—flow rule; FFP—first packet in a
flow; C7—application layer data of FFP; ID—identifier for joining FR and CFP; CPH—features from
packet header; and CR

L3, CR
L4—attributes of flow granularity reduction.

The IPH module receives the first packets FFP sent by the controller from flows for
which no match rules FR are found, and it retrieves the information necessary to create flow
rules as well as to obtain application layer data. A copy of the unprocessed application
layer data CL7, together with the generated identifier ID used to associate data with the
flow, is sent to the ALDR module for further feature selection. The application layer data
of the UDP flow are already contained in the payload of the first packet transferred to the
IPH module. However, for the TCP flow, application layer data are transferred only after
establishing a connection (three-way handshake) between source and destination nodes, so
the first TCP packet cannot be used for such identification. To resolve this issue, additional
differentiation of flows is introduced by using the TCP push flag that enables forwarding
the TCP packet to the controller, together with application layer data.

The FRG module creates flow rules FR based on CPH data obtained from the packet
header and the flow ID. A flow rule contains the identifier of the flow (ID), rules of the flow
processing (An) determining the PFD output port at which packets are forwarded, and the
set of flow matching attributes:

FR = {ID, Pin, IPsrc, IPdst, psrc, pdst, PL4, psh, An} (1)



Sensors 2021, 21, 2972 11 of 24

where Pin is the PFD input port, IPsrc is the source IP address, IPdst is the destination IP
address, psrc is the L4 input port, pdst is the L4 output port, PL4 is the L4 protocol, and psh is
the status of the PSH flag.

The flow rule is removed if no new packet corresponding to it is received within the
time frame tidle > 0. There are a number of benefits of reactive flow rule removal, including
the ability to determine the flow duration, a reduction in the size of flow tables, and an
increase in the level of flow granularity.

Flow rules have a specific level of granularity that allows us to identify the type of
network traffic and distinguish sessions and connections. Increasing flow granularity
allows more detail in capturing traffic features. In contrast, a reduction in flow granularity
allows us to reduce the number of packets sent to the controller; however, this leads
to a decrease in the level of details in measuring traffic characteristics. Increasing the
granularity of flows results in passing more packets to the controller, which must be
processed to implement flow rules. This can result in increased consumption of controller
resources, which, in turn, can increase the delay in packet processing. A situation in which
packets are sent to the controller in a number significantly exceeding the normal level of
network traffic is interpreted as controller flooding. To avoid such adverse events, the
regulation mechanism of flow granularity was introduced, as shown in Algorithm 1, which
generates the values of granularity reduction attributes that are submitted to the basic
feature repository.

Algorithm 1 Reduction in flow granularity.

Input arguments:
σL4: L4 reduction threshold;
σL3: L3 reduction thresholdTIP: set of IP addresses of packets sent to the controller
TP; set of ports in the packet forwarding device (PFD)
Loop
for each IPi in TIP
determine∆PL4

i for IPi
if ∆PL4

i from IPsrc > σL4
read RL4

C for IPi
determine tL4

hard based on ∆PL4
i , RL4

C
determine ID, An
determine FL4

R based on ID, tL4
hard, An

introduce FL4
R to PFD

determine PL4
C for IPi

determine CL4
R based on ∆PL4

i , RL4
C , PL4

C
introduce

{
ID, CL4

R
}

to BFR
update PL4

C for IPi
end
for each Pi in TP
determine ∆PL3

i for Pi
if ∆PL3

i from Pin > σL3
read RL3

C for Pi
determine tL3

hard based on ∆PL3
i , RL3

C
determine ID, An
determine FL3

R based on ID, tL3
hard, An

introduce FL3
R to PFD

determine PL3
C for Pi

determine CL3
R based on ∆PL3

i , RL3
C , PL3

C
introduce

{
ID, CL3

R
}

to BFR
update PL3

C for Pi
end
endloop
Output arguments:
FL4

R , FL3
R , tL4

hard, tL3
hard, CL4

R , CL3
R



Sensors 2021, 21, 2972 12 of 24

The attributes are determined by the values of the packet parameters of the incoming
flows in relation to:

• IP source address (IPsr): reduction at the L4 level;
• PFD input port (Pin): reduction at the L3 level.

The flow rules take the following forms:
FL4

R = {ID, Pin, psrc, pdst, An}: in the case of granularity reduction at the L4 level;
FL3

R = {ID, Pin, pdst, An}: in the case of granularity reduction at the L3 level.
The attributes of the flow granularity reduction at the L4 level are determined accord-

ing to the following formula:

CL4
R =

1

1 + e−α(∆PL4 +PL4
C +RL4

C )
(2)

where α is the shape factor, ∆PL4 is the number of packets sent from the given IPsr address
within t = 1 s, PC

L4 is the total number of packets sent since the start until the end of
reduction, and RC

L4 is the number of previous reductions for the given IPsr address,
CR

L4 ∈ (0,1).
The attributes of the flow granularity reduction at the L3 level are determined accord-

ing to the following formula:

CL3
R =

1

1 + e−α(∆PL3 +PL3
C +RL3

C )
(3)

where α is the shape factor, ∆PL3 is the number of packets sent from the given port Pin within
t = 1 s, PC

L3 is the total number of packets sent since the start until the end of the reduction,
and RC

L3 is the number of previous reductions for the given port Pin, CR
L3 ∈ (0,1).

For a given flow rule, the additional parameter thard is also determined, according to
Equations (4) and (5), which defines the time for which the reduced flow rule is introduced:

tL4
hard =

tL4

1 + e−α(∆PL4 +RL4
C )

(4)

tL3
hard =

tL3

1 + e−α(∆PL3 +RL3
C )

(5)

where tL3 and tL4 are the maximum values of thard
L3 and thard

L4, respectively.
After time thard, the reduced granularity flow is removed from the table, regardless

of whether packets are being forwarded within this flow. This enables us to continue
introducing flows of high granularity according to Equation (1).

3.3. Flow Classifier

The flow classifier (FC) performs tasks related to the detection of malicious flows
in the SDN data plane using selected classification techniques. It is composed of three
modules: switching, learning, and classification and visualisation (Figure 4). The switching
module divides the set of features after pre-processing XP into the subsets XPU and XPK.
XPU contains the vectors of input data for the learning phase of the selected algorithm,
which is performed in the first stage of malicious flow detection. XPK contains the vectors of
input data used for flow classification. The division of XP into XPU and XPK is determined
by values of the PD parameters.



Sensors 2021, 21, 2972 13 of 24

Figure 4. Structure of the flow classifier. The symbols used: XP—input vectors after features
processing; XPU—input vectors for learning; XPK—input vectors for classification; PM—learned
model parameters for classification and visualisation; and PD—hyperparameters for classification
and visualisation.

The learning module carries out the process of choosing the parameter values of the
selected classification method using the XPU learning subset. Based on this, the PM model
is built, which is used to predict a class of flows for a new pattern whose input arguments
are not included in the learning dataset.

Proper malicious flow detection using the XPU subset of input data is performed by
the classification and visualisation module, which executes two processes:

• The detection of unauthorised activity and assigning to it an appropriate label of
malicious action;

• The visualisation of classification results.

The presented solution assumes that the following classification techniques can be
used to detect undesirable flows:

• Multilayer perceptron (MLP) and radial basis function (RBF);
• Multipass self-organising map (MSOM);
• Learning vector quantisation (LVQ) and hierarchical LVQ (HLVQ);
• Support vector machine (SVM);
• k-Nearest neighbour (k-NN).

To ensure the effectiveness of unauthorised flow detection, the MADMAS system
allows us to modify the values of PD parameters of the applied classification technique,
the list of which is given in Table 2. The type of parameter and its value depend on the
technique used, as well as on the value of the following attributes:

• psplit ∈ (0,1): learning/detection split ratio;
• n: number of learning cycles if cross-validation is applied;
• PM: parameters of a detection model.



Sensors 2021, 21, 2972 14 of 24

Table 2. Modifiable parameters of malicious flow detection techniques.

Detection Technique Parameter

MLP

Phidden: number of hidden layers
Players: number of neurons in layers
m: momentum coefficient
η: learning coefficient
Plearning: number of learning cycles

RBF PC: number of clusters
PStdDev: minimum standard deviation of clusters

MSOM

Phigh: height of the neuron map
Pwidth: width of the neuron map
k: neighbourhood radius
η: learning coefficient
Plearning: number of learning cycles

LVQ, HLVQ
PCV : number of codebook vectors
η: learning coefficient
Plearning: number of learning cycles

SVM

C: penalty factor
γ: kernel function coefficient
ξ: tolerance factor
Pkernel : type of kernel function:

• radial
• sigmoid
• polynomial

k-NN k: number of nearest neighbours
Pdistance: distance metric

The PD parameter values are defined by the MADMAS user, depending on the actual
needs, and entered via the control module.

4. MADMAS Examination
4.1. Experimental Setup

The aim of the study was to examine the effectiveness of MADMAS in the detection
and classification of malicious flows under typical SDN traffic conditions. For this purpose,
an experimental tested environment was developed containing an SDN emulator, an
OpenDaylight (ODL) controller containing MADMAS components, and data centre servers,
all implemented on a single server hosting some virtual machines, as shown in Figure 5.

The flow rules generator was implemented as the OSGi network application in the
ODL based on the OpenDaylight L2 switch project modification. The FR read the flow
rules using ODL API REST messages. The NoSQL Cassandra database (column family
database) was used to store datasets of basic and additional flow features. The specialised
tools MATLAB, WEKA, and RapidMiner were used for the implementation of classification
techniques. The control component contained a set of dedicated tools and scripts for the
automatic change of parameters of individual methods. The Mininet platform was used
as the SDN emulator. The data centre side was emulated by Metasploi Table 2 virtual
machines. Traffic generators of normal as well as malicious traffic were implemented on
separate virtual machines.



Sensors 2021, 21, 2972 15 of 24

Figure 5. MADMAS testbed environment.

To reflect typical SDN traffic conditions, five classes of flows were generated that
represent both normal and malicious network activities:

• Normal (N): correct flows between clients and servers;
• Denial of service (DoS): actions aimed at making network resources unavailable

to users;
• Probe (P): actions aimed at ports, vulnerabilities or version scans;
• Access by exploit (AE): actions enabling remote access to machines by exploiting vulnerabilities;
• Access by password guess (APG): actions enabling access to remote machines through

attempts of unauthorised login.

The list of applications used for traffic generation is presented in Table 3.

Table 3. Traffic application tools.

Traffic Class Applications

N FTP, SSH, SMB, Apache, Web, Tomcat, RMI Ruby, Java RMI, Postgres, Telnet

DoS Metasploit, Hping3, Nping

P Metasploit, Nping

AE Metasploit

APG Metasploit, Hydra

It was assumed that the generated traffic would be complex, preventing the direct
detection of malicious flows. However, due to the complexity of real traffic, it was necessary
to adopt some assumptions and simplifications that do not affect the credibility of the
outcomes of system examination:

• Services indicated in Table 3 are running on the servers;
• Data are exchanged between servers and hosts;
• Hosts initiate normal and malicious traffic;
• Hosts do not cooperate with one another;
• Unauthorised and normal traffic is generated simultaneously on separate virtual

machines, with the parameters presented in Table 4.



Sensors 2021, 21, 2972 16 of 24

Table 4. Generated traffic parameters.

Traffic Class Distribution Parameters Subclass Count
Statistics of the Basic Features

µ (Mean); σ (Deviation)

Packet Count Byte Count Flow Duration (s)

Normal
k = 1

20
µ = 74.16 µ = 128.046 µ = 6.50

λ = 3 σ = 1025.32 σ = 2150.267 σ = 28.81

Probe
µ = 4000

7
µ = 0.07 µ = 6.06 µ = 2.30

σ = 200 σ = 0.50 σ = 61.55 σ = 1.60

APG
µ = 600

6
µ = 6.56 µ = 603.80 µ = 7.12

σ = 200 σ = 5.09 σ = 702.72 σ = 3.82

DoS
µ = 1200

6
µ = 18.34 µ = 21.127 µ = 4.29

σ= 200 σ = 89.85 σ = 171.170 σ = 3.21

AE
µ = 120

10
µ = 4.80 µ = 262.40 µ = 1.65

σ = 40 σ = 15.538 σ = 651.04 σ = 0.50

Normal traffic is generated using client applications according to the Poisson distribu-
tion, while malicious traffic is generated according to the normal distribution. Each class of
unauthorised action has subclasses, which define the detailed course of action and type of
tools or exploits applied for attacks targeted at a server or network resources. For example,
Nping is used to generate a flooding attack that affects both the performance of the SDN
controller and the available data plane resources and can cause delays in flow matching.

4.2. Testing Conditions

It was assumed that malicious flow detection was performed in off-line passive mode,
i.e., the core detection process occurs after the completion of flow feature measurements
on a data mining platform. Test data for individual methods were stored in the repository
and read for experimentation. This approach allowed for a comprehensive study and
comparison of the effectiveness of selected classification techniques, as well as indicating
the most effective one, tailored to the specificity of traffic flows in the SDN.

The detection and classification of malicious flows by MADMAS requires the intro-
duction of a set of input vectors X to the FPP and FC. The MADMAS system was examined
using repetitions of the learning processes, the so-called k-cross-validation, with different
learning datasets. The input dataset was divided into k = 10 parts, of which k− 1 were used
for learning. The procedure was repeated k times, changing the testing subset each time.

The following metrics were used to evaluate flow classification performance:

• Recall rate:

TPR =
TP

TP + FN
(6)

where TP is a true positive and FN is a false negative;

• Precision rate:

PPV =
TP

TP + FP
(7)

where FP is a false positive;

• F-measure (F1 score):

F1 = 2
PPV∆TPR

PPV + TPR
(8)

In addition, the following time measures were used for system evaluation:

• Average execution time:



Sensors 2021, 21, 2972 17 of 24

AET =
tx

n f
(9)

where tx is the cross-validation time and nf is the number of datasets used for cross-validation;

• Flow transfer delay (round-trip time):

FRTT = tr − ts (10)

where ts is the time of sending the first packet and tr is the time of receiving the response.
The experiments presented below aimed at:

• Assessing the mechanism of granularity reduction;
• Identifying the most suitable technique for detection and classification of malicious

flows in the SDN environment.

4.3. Flow Granularity Reduction

The study of the flow granularity reduction mechanism was performed in two modes
of the MADMAS system, i.e., with the mechanism on and off. In both cases, a source
host generated ICMP packets with the given intensity IF for a set of receiving hosts. It
was assumed that no flow rule existed for any generated packet, which forced it to be
transferred to the SDN controller. After confirmation of each ICMP packet receipt, the FRTT
was calculated and averaged at the end of the session.

The impact of a number of generated packets NP on the metric FRTT with the flow
granularity reduction mechanism on and off is presented in Figure 6.

Figure 6. Effect of using flow granularity reduction for IF = 30,000 (packets/s) and NP < 3100.

The flow granularity reduction mechanism does not affect the FRTT value if the number
of generated packets is relatively small (NP < 900). However, if the mechanism is off, along
with an increase in the number of packets loading the controller, FRTT increases rapidly.
The mechanism contributes to a significant reduction in flow transfer delay, which also
translates into a reduced controller load.

Without the flow granularity reduction mechanism, a further increase in the number
of packets transferred to the controller (Figure 7) leads to overloading, which blocks the
introduction of new flow rules.



Sensors 2021, 21, 2972 18 of 24

Figure 7. Effect of using flow granularity reduction for IF = 30,000 (packets/s) and NP > 6000.

If the flow granularity reduction mechanism is on, traffic flooding is significantly lim-
ited. FRTT remains low (FRTT ∼= 176.92 ms) regardless of the number of incoming packets.
This confirms the purposefulness of using the mechanism when flows are introduced in
reactive mode. This mechanism protects the SDN controller from flooding traffic that might
be a form of DoS attack. The in granularity was introduced only for a specific period, and
this information was saved to the repository, which enabled us to constantly monitor the
activity in the SDN.

4.4. MADMAS Evaluation

The effectiveness of MADMAS in malicious flow detection was examined in the
testbed environment (see Figure 5) following the procedure shown in Figure 8.

Figure 8. Test procedure.

The procedure started with the generation of both normal and malicious traffic. The
user hosts generated requests to servers while malicious hosts launched attacks using the
tools specified in Table 3.

The MADMAS components acquired and processed the information sent to the con-
troller from the data layer and created a set of input vectors X that were stored in the



Sensors 2021, 21, 2972 19 of 24

repository for further processing. Labels that defined the traffic class were assigned to the
saved vectors for system validation. The traffic class was determined during its generation
based on features that were not used in detection, e.g., a time stamp of traffic genera-
tion, IP address, etc. Then, pre-processing of features was performed, the classification
technique under investigation was selected, and the values of its configuration parame-
ters (see Table 2) were determined. Furthermore, tenfold cross-validation was performed,
followed by evaluation of the obtained results. The procedure supports changing of the
configuration parameters values to obtain the best flow classification results. The MAD-
MAS components, used at specific stages of the procedure, are also shown in the right part
of Figure 8.

The initial phase of the experiment focused on the selection of techniques with the
best ability to detect SDN flows. The obtained results, presented in Table 4, confirmed the
usefulness of using SVM, k-NN and HLVQ classifiers in the MADMAS system. For better
clarity, fields with the best TPR, PPV, and AET values are marked in colour in Table 5. The
advantage of these techniques over others is that all types of flows generated by hostile
hosts are detected, especially DoS, P, and APG attacks.

Table 5. Efficiency of selected techniques in SDN flow detection.

Classification Technique
TPR PPV AET

DoS Probe AE APG DoS Probe AE APG (s)

MSOM 0.48 0.96 0.05 0.78 0.61 0.95 0.66 0.83 45
LVQ1 0.80 0.96 0.08 0.83 0.68 0.96 0.37 0.89 6.3
MLP 0.99 0.97 0.04 0.85 0.83 0.96 0.04 0.91 302
RBF 0.99 0.97 0.08 0.83 0.99 0.96 0.08 0.82 218

k-NN 0.99 0.99 0.69 0.98 0.99 0.99 0.76 0.96 74
HLVQ1 0.99 0.98 0.48 0.95 0.98 0.98 0.67 0.95 3.1

SVM 0.99 0.99 0.65 0.98 0.99 0.99 0.83 0.97 46,6
k-NN with PCA 0.99 0.99 0.68 0.98 0.99 0.97 0.77 0.96 36.3

HLVQ1with PCA 0.96 0.98 0.50 0.95 0.92 0.98 0.72 0.96 1.7
SVM with PCA 0.99 0.99 0.62 0.99 0.99 0.99 0.83 0.97 35.8

However, the use of data mining in a real SDN environment requires its quick reaction
to undesirable flows. The lowest values of the AET metric were achieved for LVQ1 and
HLVQ1 classifiers, while the other classifiers had large AET values which, taking into
account small TPR and PPV values, indicates their low usefulness in the considered
application. By reducing the number of features by using principal component analysis
(PCA) transformation [46] in the FPP, a significant reduction in AET was achieved for
K-NN, HLVQ, and SVM classifiers, i.e., 2.0-, 1.8-, and 1.3-fold, respectively. The use of
PCA transformation resulted in only a slight increase in the TPR and PPV values (Table 4),
which confirms the low sensitivity of these techniques to reduce the number of features
used. Therefore, we decided to use k-NN, HLVQ, and SVM techniques for further tests of
the MADMAS system.

During the main phase of the experiment, the efficiency of the MADMAS system in the
detection and classification of malicious flows was compared against selected alternative
mechanisms (see Table 6) depicted in [29,31,36].

For such a comparison to be credible, the alternative solutions should use the data
collected by MADMAS from SDN flows, which are then processed and classified according
to a specific concept, as shown in Figure 9. However, in our study, we used ready-made
comprehensive solutions. Neither of these uses application layer features for classifica-
tion purposes.



Sensors 2021, 21, 2972 20 of 24

Table 6. Compared systems.

System Classification Technique Feature Vector Configuration

System 1 [29] SOM neural network Appropriate for each concept:

• Basic features;
• Additional features.

System 2 [31] J48 decision tree

System 3 [36] Deep learning ANN

MADMAS_1 k-NN • Basic features;
• Additional features;
• Application layer feature transformation based

on independent component analysis.

MADMAS _2 HLVQ

MAMDAS_3 SVM

Figure 9. Implementation of alternative solutions.

As shown in Table 7, in all the cases considered, the MADMAS system was better
able to detect malicious flows compared to other solutions. The best metric values for each
attack class are shown in colour for better visibility.

Table 7. Summary of the results.

System Metric DoS Probe AE APG

System 1

TPR 0.34 0.46 0.26 0.78

PPV 0.52 0.64 0.51 0.77

F1 0.41 0.54 0.35 0.78

AET 980 ms

System 2

TPR 0.84 0.75 0.59 0.88

PPV 0.82 0.78 0.72 0.86

F1 0.83 0.77 0.65 0.87

AET 8030 ms

System 3

TPR 0.73 0.67 0.50 0.89

PPV 0.81 0.80 0.65 0.90

F1 0.59 0.64 0.49 0.85

AET 9100 ms
TPR 0.91 0.92 0.86 0.97
PPV 0.97 0.83 0.97 0.99
F1 0.94 0.87 0.91 0.98MADMAS_1

AET 2690 ms

MADMAS_2

TPR 0.87 0.78 0.76 0.96

PPV 0.95 0.80 0.88 0.97

F1 0.91 0.79 0.82 0.96
AET 440 ms
TPR 0.97 0.78 0.86 0.98
PPV 0.99 0.96 0.99 0.99
F1 0.98 0.86 0.92 0.99MADMAS_3

AET 5550 ms



Sensors 2021, 21, 2972 21 of 24

The better efficiency of the MADMAS system is particularly evident in the case of
the access-by-exploit attack class, for which the following increments of classification
performance metrics were obtained compared to other methods:

• For TPR by 31.4%;
• For PPV by 27.3%;
• For F1 by 29.3%.

This confirms the purposefulness of data acquisition from the application layer and
the use of those data for flow classification.

The best results of malicious flow classification were obtained for the MADMAS
system based on the SVM, especially in the case of DoS and APG attacks. The MADMAS
system is less effective in detecting probe attacks but is still significantly better compared
to other solutions. This is because of the similarity of probe attacks to normal traffic, which
uses low-intensity port scanning and covert scanning.

To demonstrate the impact of using application layer features on the effectiveness
of flow classification, an additional experiment was performed based on the solution
proposed by [31]. System 2 was modified to enable the use of ICA-based application
layer features stored in the MADMAS repository. The results obtained with and without
application layer features are presented in Table 8.

Table 8. Impact of the ICA-based application layer features on the effectiveness of System 2.

System Metric DoS Probe AE APG

System 2 without
ICA-based application

layer features

TPR 0.84 0.75 0.59 0.88

PPV 0.82 0.78 0.72 0.86

F1 0.83 0.77 0.65 0.87

AET 8030 ms

System 2 with
ICA-based application

layer features

TPR 0.86 0.79 0.63 0.89

PPV 0.83 0.78 0.76 0.87

F1 0.84 0.77 0.68 0.88

AET 9080 ms

The inclusion of the data obtained from the application layer in the solution proposed
by Bhargava et al. [31] results in a slight improvement in the efficiency of the flow classifi-
cation, with a simultaneous slight increase in execution time. We would like to emphasise
that more in-depth experiments should be performed for the complete assessment of
such impact. In particular, the relationship between the transformation of the ICA-based
application layer features and the machine learning technique used should be identified.

The ROC curves, shown in Figure 10, confirm a much better classification performance
of the MADMAS system than the solution described in [29] for all the considered threats.
The biggest difference was for probe and access-by-exploit attacks (Figure 10b,c), while the
best curve shape was obtained for DoS and APG attacks.

Although an SVM allows the MADMAS system to obtain high classification perfor-
mance, its time efficiency, expressed by AET, is much lower compared to the system based
on HLVQ. This indicates the advisability of using an HLVQ-based system in SDNs with
limited hardware resources (e.g., RAM, processor performance).



Sensors 2021, 21, 2972 22 of 24

Figure 10. ROC curves.

5. Conclusions

In this paper, we described the promising concept of using data mining techniques for
the detection and classification of malicious flows in the SDN data plane, with a focus on the
presentation of flow rule generation and flow classification mechanisms. The MADMAS
system was implemented in a testbed environment, and its performance metrics were
evaluated and compared with some alternative solutions.

The use of a virtual test environment with the SDN emulator and the existing SDN
controller allowed testing the system in conditions similar to real ones. The experiments
confirmed that the MADMAS system provides good flow detection performance for all
types of malicious activities, in particular, probe and access-by-exploit attacks. The im-
plementation flow granularity reduction prevents flooding traffic being passed to the
SDN controller.

We also examined some classification techniques and assessed their applicability for
malicious flow detection in the SDN data plane. The obtained results indicate that the use
of the SVM for flow classification in the MADMAS system gives the best results in terms of
classification performance. However, due to its low time efficiency, HLVQ seems to be a
more appropriate solution for an SDN with limited hardware resources.

All MADMAS components are software-based; therefore, the system can easily be
extended with additional procedures for flow generation and/or classification. The system
architecture enables the identification and mitigation of threats caused by malicious actions
in both fixed and wireless networks. However, a full assessment of the system effective-
ness in detecting malicious flows requires further studies, especially in a real SDN. The
OpenFlow-based SDN environment, depicted in [47] and which was developed with a
specific focus on validation of SDN security mechanisms, could be successfully used for
the MADMAS examination.

Author Contributions: Conceptualisation, M.A.; methodology, D.J. and M.A.; software, D.J.; investi-
gation, D.J. and M.A.; formal analysis, D.J. and M.A.; validation, D.J.; visualisation, D.J.; writing—
original draft, D.J.; writing—review and editing, M.A.; supervision, M.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partially funded by the National Centre for Research and Development,
grant number CYBERSECIDENT/369195/I/NCBR/2017. The APC was funded by NASK—National
research Institute.



Sensors 2021, 21, 2972 23 of 24

Acknowledgments: This work was partially performed within the CYBERSECIDENT/369195/I/NCBR/
2017 project supported by the National Centre of Research and Development in the frame of the
CyberSecIdent Programme.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chaudet, C.; Haddad, Y. Wireless Software Defined Networks: Challenges and opportunities. In Proceedings of the 2013 IEEE

International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013), Tel Aviv, Israel,
21–23 October 2013; IEEE: Piscataway Township, NJ, USA, 2013; pp. 1–5.

2. Berestizshevsky, K.; Even, G.; Fais, Y.; Ostrometzky, J. SDNoC: Software defined network on a chip. Microprocess. Microsyst. 2017,
50, 138–153. [CrossRef]

3. Kumar, H.; Gupta, P. SDN Security Issue and Resolution. Indian J. Appl. Res. 2017, 7, 654–656. [CrossRef]
4. Gonzalez, A.J.; Nencioni, G.; Helvik, B.E.; Kamisinski, A. A Fault-Tolerant and Consistent SDN Controller. In Proceedings of the

2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC USA, 4–8 December 2016; pp. 1–6.
5. Lee, S.; Yoon, C.; Shin, S. The Smaller, the Shrewder. In Proceedings of the 2016 ACM International Workshop on Security in Software

Defined Networks & Network Function Virtualization; ACM: New York, NY, USA, 2016; pp. 23–28.
6. Scott-Hayward, S.; Natarajan, S.; Sezer, S. A Survey of Security in Software Defined Networks. IEEE Commun. Surv. Tutorials

2016, 18, 623–654. [CrossRef]
7. Akhunzada, A.; Ahmed, E.; Gani, A.; Khan, M.K.; Imran, M.; Guizani, S. Securing software defined networks: Taxonomy,

requirements, and open issues. IEEE Commun. Mag. 2015, 53, 36–44. [CrossRef]
8. Shin, S.; Xu, L.; Hong, S.; Gu, G. Enhancing Network Security through Software Defined Networking (SDN). In Proceedings of

the 2016 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HI, USA, 1–4 August
2016.

9. Yoon, C.; Park, T.; Lee, S.; Kang, H.; Shin, S.; Zhang, Z. Enabling security functions with SDN: A feasibility study. Comput.
Networks 2015, 85, 19–35. [CrossRef]

10. Jankowski, D.; Amanowicz, M. A study on flow features selection for malicious activities detection in software defined networks.
In Proceedings of the 2018 International Conference on Military Communications and Information Systems (ICMCIS), Warsaw,
Poland, 22–23 May 2018; pp. 1–9.

11. Jankowski, D.; Amanowicz, M. A method of network workload generation for evaluation of intrusion detection systems in
SDN environment. In Proceedings of the 2016 International Conference on Military Communications and Information Systems
(ICMCIS), Brussels, Belgium, 23–24 May 2016.

12. Liao, H.-J.; Richard Lin, C.-H.; Lin, Y.-C.; Tung, K.-Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl.
2013, 36, 16–24. [CrossRef]

13. Umer, M.F.; Sher, M.; Bi, Y. Flow-based intrusion detection: Techniques and challenges. Comput. Secur. 2017, 70, 238–254.
[CrossRef]

14. Kozik, R.; Choraś, M.; Hołubowicz, W. Evolutionary-based packets classification for anomaly detection in web layer. Secur.
Commun. Networks 2016, 9, 2901–2910. [CrossRef]

15. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Network Anomaly Detection: Methods, Systems and Tools. IEEE Commun. Surv.
Tutorials 2014, 16, 303–336. [CrossRef]

16. Boriah, S.; Chandola, V.; Kumar, V. Similarity Measures for Categorical Data: A Comparative Evaluation. In Proceedings of the
2008 SIAM International Conference on Data Mining, Philadelphia, PA, USA, 24–26 October 2008.

17. Kruczkowski, M.; Niewiadomska-Szynkiewicz, E.; Kozakiewicz, A. FP-tree and SVM for Malicious Web Campaign Detection. In
Intelligent Information and Database Systems. ACIIDS 2015; Nguyen, N., Trawiński, B., Kosala, R., Eds.; Lecture Notes in Computer
Science; Springer: Cham, Switherland, 2015; Volume 9012, pp. 193–201.

18. Kruczkowski, M.; Niewiadomska-Szynkiewicz, E. Comparative study of supervised learning methods for malware analysis. J.
Telecommun. Inf. Technol. 2014, 4, 24–33.

19. Buczak, A.L.; Guven, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE
Commun. Surv. Tutorials 2016, 18, 1153–1176. [CrossRef]

20. Dua, S.; Du, X. Data Mining and Machine Learning in Cybersecurity; Auerbach Publications: New York, NY, USA, 2016; ISBN
9780429063756.

21. Denatious, D.K.; John, A. Survey on data mining techniques to enhance intrusion detection. In Proceedings of the International
Conference on Computer Communication and Informatics, Coimbatore, India, 10–12 January 2012; pp. 1–5.

22. AbuHmed, T.; Mohaisen, A.; Nyang, D. A Survey on Deep Packet Inspection for Intrusion Detection Systems. Mag. Korea
Telecommun. Soc. 2008, 24, 25–36.

23. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009.

24. Dhanabal, L.; Shantharajah, S.P. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms.
Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, 446–452.

http://doi.org/10.1016/j.micpro.2017.03.005
http://doi.org/10.36106/ijar
http://doi.org/10.1109/COMST.2015.2453114
http://doi.org/10.1109/MCOM.2015.7081073
http://doi.org/10.1016/j.comnet.2015.05.005
http://doi.org/10.1016/j.jnca.2012.09.004
http://doi.org/10.1016/j.cose.2017.05.009
http://doi.org/10.1002/sec.1549
http://doi.org/10.1109/SURV.2013.052213.00046
http://doi.org/10.1109/COMST.2015.2494502


Sensors 2021, 21, 2972 24 of 24

25. Mehdi, S.A.; Khalid, J.; Khayam, S.A. Revisiting Traffic Anomaly Detection Using Software Defined Networking. In Recent
Advances in Intrusion Detection. RAID 2011. Lecture Notes in Computer Science; Sommer, R., Balzarotti, D., Maier, G., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 161–180.

26. Dotcenko, S.; Vladyko, A.; Letenko, I. A fuzzy logic-based information security management for software-defined networks. In
Proceedings of the 16th International Conference on Advanced Communication Technology, Pyeongchang, Korea, 16–19 February
2014; pp. 167–171.

27. Giotis, K.; Argyropoulos, C.; Androulidakis, G.; Kalogeras, D.; Maglaris, V. Combining OpenFlow and sFlow for an effective and
scalable anomaly detection and mitigation mechanism on SDN environments. Comput. Netw. 2014, 62, 122–136. [CrossRef]

28. Phaal, P.; Panchen, S.; McKee, N. InMon Corporation’s Sflow: A Method for Monitoring Traffic in Switched and Routed Networks.
Available online: https://tools.ietf.org/pdf/rfc3176.pdf (accessed on 20 February 2021).

29. Braga, R.; Mota, E.; Passito, A. Lightweight DDoS flooding attack detection using NOX/OpenFlow. In Proceedings of the IEEE
Local Computer Network Conference, Denver, CO, USA, 10–14 October 2010.

30. Sathya, R.; Thangarajan, R. Efficient anomaly detection and mitigation in software defined networking environment. In
Proceedings of the 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27
February 2015.

31. Bhargava, N.; Sharma, G.; Bhargava, R.; Mathuria, M. Decision tree analysis on J48 algorithm for data mining. Int. J. Adv. Res.
Comput. Sci. Softw. Eng. 2013, 3, 1114–1119.

32. Nakamura, R.Y.M.; Pereira, L.A.M.; Costa, K.A.; Rodrigues, D.; Papa, J.P.; Yang, X.-S. BBA: A Binary Bat Algorithm for Feature
Selection. In Proceedings of the 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, Spain, 22–25
August 2012.

33. Mirjalili, S.; Mirjalili, S.M.; Yang, X.-S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [CrossRef]
34. Le, A.; Dinh, P.; Le, H.; Tran, N.C. Flexible Network-Based Intrusion Detection and Prevention System on Software-Defined

Networks. In Proceedings of the 2015 International Conference on Advanced Computing and Applications (ACOMP), Ho Chi
Minh City, Vietnam, 23–25 November 2015.

35. Ruggieri, S. Efficient C4.5 [classification algorithm]. IEEE Trans. Knowl. Data Eng. 2002, 14, 438–444. [CrossRef]
36. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.; Ghogho, M. Deep learning approach for Network Intrusion Detection in Software

Defined Networking. In Proceedings of the 2016 International Conference on Wireless Networks and Mobile Communications
(WINCOM), Fez, Morocco, 26–29 October 2016.

37. Queiroz, W.; Capretz, M.A.M.; Dantas, M. An approach for SDN traffic monitoring based on big data techniques. J. Netw. Comput.
Appl. 2019, 131, 28–39. [CrossRef]

38. Tuan, N.N.; Hung, P.H.; Nghia, N.D.; Van Tho, N.; Van Phan, T.; Thanh, N.H. A DDoS Attack Mitigation Scheme in ISP Networks
Using Machine Learning Based on SDN. Electronics 2020, 9, 413. [CrossRef]

39. Elsayed, M.S.; Le-Khac, N.-A.; Jurcut, A.D. InSDN: A Novel SDN Intrusion Dataset. IEEE Access 2020, 8, 165263–165284.
[CrossRef]

40. Gomez-Rodriguez, J.R.; Sandoval-Arechiga, R.; Ibarra-Delgado, S.; Rodriguez-Abdala, V.I.; Vazquez-Avila, J.L.; Parra-Michel,
R. A Survey of Software-Defined Networks-on-Chip: Motivations, Challenges and Opportunities. Micromachines 2021, 12, 183.
[CrossRef] [PubMed]

41. Ruaro, M.; Caimi, L.L.; Moraes, F.G. A Systemic and Secure SDN Framework for NoC-Based Many-Cores. IEEE Access 2020, 8,
105997–106008. [CrossRef]

42. Ruaro, M.; Caimi, L.L.; Moraes, F.G. SDN-Based Secure Application Admission and Execution for Many-Cores. IEEE Access 2020,
8, 177296–177306. [CrossRef]

43. Chaves, C.; Azad, S.; Hollstein, T.; Sepúlveda, J. DoS Attack Detection and Path Collision Localization in NoC-Based MPSoC
Architectures. J. Low Power Electron. Appl. 2019, 9, 7. [CrossRef]

44. Wu, H.C.; Luk, R.W.P.; Wong, K.F.; Kwok, K.L. Interpreting TF-IDF term weights as making relevance decisions. ACM Trans. Inf.
Syst. 2008, 26, 1–37. [CrossRef]

45. Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; Adaptive and Learning Systems for Signal Processing,
Communications, and Control; John Wiley & Sons, Inc.: New York, NY, USA, 2001; ISBN 047140540X.

46. Cao, L.J.; Chua, K.S.; Chong, W.K.; Lee, H.P.; Gu, Q.M. A comparison of PCA, KPCA and ICA for dimensionality reduction in
support vector machine. Neurocomputing 2003, 55, 321–336. [CrossRef]

47. Wrona, K.; Amanowicz, M.; Szwaczyk, S.; Gierlowski, K. SDN testbed for validation of cross-layer data-centric security policies.
In Proceedings of the 2017 International Conference on Military Communications and Information Systems (ICMCIS), Oulu,
Finland, 15–16 May 2017.

http://doi.org/10.1016/j.bjp.2013.10.014
https://tools.ietf.org/pdf/rfc3176.pdf
http://doi.org/10.1007/s00521-013-1525-5
http://doi.org/10.1109/69.991727
http://doi.org/10.1016/j.jnca.2019.01.016
http://doi.org/10.3390/electronics9030413
http://doi.org/10.1109/ACCESS.2020.3022633
http://doi.org/10.3390/mi12020183
http://www.ncbi.nlm.nih.gov/pubmed/33673049
http://doi.org/10.1109/ACCESS.2020.3000457
http://doi.org/10.1109/ACCESS.2020.3025206
http://doi.org/10.3390/jlpea9010007
http://doi.org/10.1145/1361684.1361686
http://doi.org/10.1016/S0925-2312(03)00433-8

	Introduction 
	Related Work 
	MADMAS Architecture 
	Architecture Overview 
	Flow Rules Generator 
	Flow Classifier 

	MADMAS Examination 
	Experimental Setup 
	Testing Conditions 
	Flow Granularity Reduction 
	MADMAS Evaluation 

	Conclusions 
	References

