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Abstract: Unmanned aerial vehicle (UAV) path planning is crucial in UAV mission fulfillment, with
the aim of finding a satisfactory path within affordable time and moderate computation resources.
The problem is challenging due to the complexity of the flight environment, especially in three-
dimensional scenarios with obstacles. To solve the problem, a hybrid differential symbiotic organisms
search (HDSOS) algorithm is proposed by combining the mutation strategy of differential evolution
(DE) with the modified strategies of symbiotic organism search (SOS). The proposed algorithm
preserves the local search capability of SOS, and at the same time has impressive global search
ability. The concept of traction function is put forward and used to improve the efficiency. Moreover,
a perturbation strategy is adopted to further enhance the robustness of the algorithm. Extensive
simulation experiments and comparative study in two-dimensional and three-dimensional scenarios
show the superiority of the proposed algorithm compared with particle swarm optimization (PSO),
DE, and SOS algorithm.

Keywords: unmanned aerial vehicle; path planning; differential evolution; symbiotic organism
search; particle swarm optimization; evolutionary algorithm

1. Introduction

The unmanned aerial vehicles (UAV), as aircraft controlled by airborne computers or
remote command centers, have been playing more and more important roles in modern
society applications. With no need for pilots on the vehicle, UAVs can perform dangerous
and complicated tasks under tough environments without being restrained by the physical
and psychological conditions of pilots. Applications of UAVs can be seen in scenarios
including flood relief, search and relief after earthquakes, geographic information collection,
surveillance and reconnaissance, and many more scenarios to come. In recent years,
studies on UAVs have greatly improved the effectiveness of UAVs in practical applications,
especially in battlefield scenarios. UAV path planning, as one of the most important
techniques in UAV autonomous formation and application in engineering, has also drawn
much attention in the trend [1].

UAV path planning is primarily to find a feasible path for UAV under different en-
vironments with the aim of minimizing the cost and satisfying all the constraints. The
problem can usually be defined as a large-scale optimization problem with many con-
straints [2], which could be challenging for traditional techniques to get the exact solution.
Previous studies aiming at solving this problem may include graph-based methods [3],
vision-based methods [4], mixed integer linear programming (MILP) methods [5], and
evolution-algorithm-based methods [6]. Artificial neural network (ANN) methods some-
times are also applied in solving trajectory optimization problems for robots and UAVs [7,8].
Mini-batch gradient descent (MBGD) or stochastic gradient descent (SGD), for example, are
two optimization algorithms usually used in machine learning. However, since the UAV
path planning problems are often modeled as highly non-convex optimization problems
with discontinuous domain of definition and multiple constraints, ANNs have usually
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been hybridized with other algorithms such as potential field method and heuristic algo-
rithms [9].

Path planning has been proven to be the NP-hard problem, and the complexity in-
creases rapidly as the size of the optimization problem grows [10]. To reduce the complexity,
many kinds of metaheuristic algorithms have been applied to obtain satisfying solutions
for UAV path planning problem [11–14]. Compared with non-heuristic methods, heuristic
methods have strong ability to obtain high-quality solutions in path planning and are easier
to implement [9]. Some well-known heuristic optimization algorithms often applied here
include genetic algorithm (GA)[15], particle swarm optimization (PSO) [16], differential
evolution (DE) [10], artificial bee colony (ABC) [17], ant colony optimization (ACO) [18],
bat algorithm (BA) [19], and grey wolf optimizer (GWO) [20]. These algorithms have also
been successfully applied to practical engineering optimization problems.

Evolutionary algorithms (EAs) have been demonstrated effective to solve path plan-
ning problems with an affordable time and moderate computation resources during recent
years [21]. Among which DE and its variants have been widely used and modified to pro-
duce satisfying solutions for path planning problems. Compared with other evolutionary
algorithms, DE has been frequently chosen to solve the large-scale optimization problems
because it is straightforward and simple to implement, with just a few parameters and
only taking a few lines to code the core part of the strategies while having an outstanding
performance on unimodal, multimodal and other complex problems due to its powerful
global search ability [22]. Zhang et al. proposed an improved differential evolution al-
gorithm for 3D UAV online path planning, and compared the proposed algorithm with
algorithms including classical DE, genetic algorithm (GA) and PSO, and demonstrated
the competitiveness of the new algorithm [23]. A modified multi-population differential
evolution algorithm (MMPDE) was proposed by Li et al. to solve the path planning of
UAV, in which a multi-population framework and two new operators were adopted, and
simulation experiments showed the good performance of this algorithm [24]. An improved
constrained DE algorithm was proposed in the literature [10] for UAV global route planning,
the algorithm combined the standard DE with a level comparison method, which enabled
it to control the satisfactory level and deal with constraints. Similar algorithms derived
from standard DE and used for UAV route planning can be seen in the literature [25,26].

Symbiotic organisms search (SOS) is a recently introduced swarm-intelligence-based
algorithm inspired by symbiotic interaction between organisms in an ecosystem. The algo-
rithm was initially developed to solve an optimization problem over a continuous search
space [27]. Main processes of SOS include mutualism phase, which mimics mutualistic
relationships where two organisms can benefit from each other through interactions, com-
mensalism phase in which one organism benefits from another one through interactions
while the other one receives nearly no benefit, and parasitism phase, in which one organism
picks another one as a host and try to kill and assume its position after certain interac-
tions. The SOS has been proven to be competitive in convergence speed and robustness in
comparison with traditional metaheuristic algorithms such as GA, PSO, DE, and ABC [28].
Applications of SOS to UAV path planning problem can be seen in the literature [29], in
which a modified symbiotic organism search algorithm based on the simplex method was
proposed to solve the route planning problem and was demonstrated to be a strong and
robust algorithm compared with other main swarm-intelligence algorithms.

The literature mentioned above provide some useful algorithms and inspirations
for UAV path planning problems. However, it is still a long way from finding a perfect
and universal path planning algorithm for different practical environments. Given the
high dimension and complex constraints of the problem in most cases, especially under
three-dimensional environment, where the cost functions and constraints could be too
complex and require huge computational resources, hybridization of effective algorithms
has become a trend [30]. The technique of hybridization is to combine multiple metaheuris-
tic algorithms for taking advantage of the best features of algorithms while avoiding the
shortcomings. The hybridization usually has better performance than their parent algo-
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rithms [31–34], which showed great potential of hybridization with different metaheuristic
algorithms in practical optimization problems.

In this paper, a hybrid differential symbiotic organism search algorithm (HDSOS) is
proposed based on the hybridization of DE and SOS. The UAV path planning environments
are analyzed and modeled to formulate the cost function, where practical elements are
taken into consideration and different parts of costs are included. Based on the analysis, the
proposed algorithm is developed by combining one of the mutation strategies of DE with
particular phases of SOS, and the concept of traction function is introduced. Moreover, a
perturbation strategy is used to enhance the robustness of the algorithm. B-Spline curve is
illustrated and used to smooth the original path derived from control points. Furthermore,
simulation experiments are conducted among four algorithms including HDSOS, PSO, DE,
and SOS under four two-dimensional and four three-dimensional scenarios, respectively,
and the results and convergence curves are visualized for intuitive comparisons. Statistics
from extensive repetitive experiments show the superiority of the proposed algorithm
compared with other algorithms.

The remains of this paper are organized as follows: Section 2 gives a literature review
of recent methods that have been applied in UAV path planning. Section 3 provides the
environmental analysis and mathematical model of the path planning problem. Preliminary
knowledge of DE and SOS are introduced and illustrated in Section 4. Then, the proposed
algorithm HDSOS is detailed in Section 5. Subsequently, the application of B-Spline curves
in smoothing the original path is given in Section 6. The simulation experiments and
comparative analyses under different scenarios are conducted in Section 7. Section 8
concludes the paper.

2. Literature Review

Broadly implemented UAV path planning strategies can be classified into heuristic
and non-heuristic methods. Non-heuristic methods mainly include dynamic programming,
geometric algorithms, potential field, MILP, etc., whereas heuristic methods mainly include
evolutionary algorithms, swarm-intelligence algorithms, and nature-inspired algorithms.
With the tremendous increase in computing power, the latter kind of methods has seen a
great period of development in recent three years.

As an example, a GWO-based algorithm was proposed by Radmanesh et al. in 2018 to
find the optimal UAV trajectory in the presence of moving obstacles [35]. The assumption
is that the UAV is equipped with the automatic dependent surveillance-broadcast and is
provided with the position of intruder aircraft. The proposed approach used the formula-
tion of dynamic Bayesian, distance-based value function, and GWO to solve the problem
of path planning and collision avoidance for UAVs in the presence of fixed and moving
obstacles in an uncertain environment. The experimental results obtained from several
scenarios showed the effectiveness of the proposed approach. However, the approach
was mainly analyzed and applied in two-dimensional scenarios. Another GWO-based ap-
proach was proposed by Qu et al. in [31], in which they proposed a novel hybrid algorithm
called HSGWO-MSOS, which combined simplified GWO and modified SOS. Simulation
experiments showed that the proposed algorithm can acquire feasible and effective routes
successfully. Nevertheless, the design of the proposed algorithm lacked consideration of
the intrinsic characteristics of the problem.

An improved PSO algorithm named GBPSO was proposed by Huang et al. to enhance
the performance of three-dimensional path planning for UAV with fixed wings [36]. A
competition strategy was introduced into the standard PSO to improve the convergence
speed and the search ability of the particles. GBPSO was compared with some existing
methods in two simulation scenarios and the results verified the effectiveness. Shao et al.
also proposed an effective method based on PSO in the literature [37], where a chaos-based
Logistic map was first adopted to improve the particle initial distribution. The constant
acceleration coefficients and maximum velocity were designed to adjust to the optimization
process and improve solution optimality. A Monte-Carlo simulation for UAV formation
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was conducted and the results proved the effectiveness of the method. However, the
simulation environment was mainly terrain without many obstacles.

Another newly proposed method for UAV path planning is θ-MAFOA [38], which
is an improved version of fruit fly optimization algorithm (FOA). The authors adopted a
mutation adaptation mechanism to enhance the balance of FOA in terms of the exploitation
and exploration ability. The proposed algorithm was used to find the optimal flyable path
in three-dimensional terrain environments with ground defense weapons. B-spline curve
was employed to obtain a smooth path. Liu et al. also proposed an evolution-algorithm-
based approach for UAV path planning in terrain environments [39]. The algorithm was
based on improved t-distribution and could effectively deal with the high computational
complexity and low search efficiency problems. These approaches mainly focused on
environments with unknown geographic information.

DE was adopted as the fundamental algorithm for UAV path planning in the litera-
ture [40]. In this algorithm, individuals were selected depending on their fitness values and
constraint violations. The selected individuals were then used to make mutation, and the
proposed algorithm searched around the best individual among the selected individuals.
The designed mechanism improved the exploitation while maintained the exploration.
Pan et al. proposed a hybrid differential evolution algorithm combining two modified
variants of DE together called CIJADE [41]. Moreover, the parameters were updated ac-
cording to a modified parameter adaptation strategy in each generation to improve the
performance. However, these methods mainly focused on the improvement of algorithms
without considering the practical characteristics of UAV path planning.

The literature above show that there are many techniques proposed so far for UAV path
planning problems, many of them inspired by metaheuristic algorithms. To the best of our
knowledge, however, there is no metaheuristic-based technique in the literature combining
the strategy of DE with strategies of SOS in an innovative way for both two-dimensional
and three-dimensional UAV path planning with multiple obstacles. Considering the
excellent performance of SOS in exploitation stage and the strong ability of DE in exploring
the solution space, we attempt to combine the advantages of these two algorithms together.
Moreover, the practical characteristics of flyable path are also taken into consideration to
improve the efficiency.

3. Problem Formulation

The problem to be solved in this paper is to quickly generate a flyable path for the
UAV in a two-dimensional or three-dimensional environment full of fixed obstacles. The
flyable path should not have any overlapped parts with obstacles, at the mean time the
total distance should be as short as possible. Given the energy consuming nature of UAVs,
there should not be too many unnecessary turns and swerves in the flyable path, i.e., the
curvature cost should be as small as possible. To efficiently plan the paths for UAVs, the
environment must be investigated and analyzed as comprehensive as possible. In this
paper, we are about to deal with the environment as follows: in two-dimensional cases,
the obstacles are simplified into polygons and circles, in some cases mixed; whereas in
three-dimensional environments, the obstacles are simplified into prisms and cylinders, in
some cases mixed. The problem modeling and the calculation of cost function are described
in more details below.

3.1. General Model of UAV Path Planning

Path planning for UAVs consists of the following basic elements: the UAVs, the envi-
ronments, the cost considerations, and the goals. Figure 1a shows a general model for a
two-dimensional UAV path planning. Please note that the flying space is divided into a
2-D mesh.

Suppose that the UAV is about to fly from node S(0,0) to node T(1000,1000), O1 and
O2 are obstacles in the mission space. Red and blue diamonds represent the path points
which also known as control points. Blue lines connecting these points make up a possible
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solution for the UAV to fly. Since the scenario is constrained in a two-dimensional space,
the blue diamond which falls into the obstacle is called invalid path point, correspondingly,
the lines which overlap with the obstacles, i.e., O1 and O2, are called invalid path segments.
All other red diamonds are valid path points and lines which do not overlap with obstacles
are valid path segments. It is worth mentioning that in the real mission scenarios for UAVs,
the flying paths are smooth curves other than polylines. Still, we usually need to confirm
the path points which the UAV is about to pass through and connect them before we can
smooth the whole path. θ is the turning angle for two adjacent path segments.

Invalid Path 

Segment

Invalid Path Point

Valid Path 

Segment

Invalid Path 

Segment

Turning Angleq

Valid Path Point

Obstacles

S

T

O1

O2

(a) A general model for 2-D UAV path planning.

T

O1

O2

S

Flyable Path

(b) Flyable path developed from the control points.

Figure 1. General model and flyable path for two-dimensional UAV path planning.

3.2. Cost Function and Analysis

Considering the actual flying scenario for UAVs, we assume that they need to travel
from the starting point to the target point as fast as possible and at a minimal cost, which
means no damage caused by the obstacles to the UAV bodies is preferable, and the total
flight length should be as short as possible. Meanwhile, turning angle is supposed to be as
small as possible, and there are yawing angle and pitch angle constraints, generally these
angles are not supposed to be larger than certain constants [31].

It is obvious that the polyline ST shown in Figure 1a is not the actual flyable path for
UAVs. There are many ways to obtain the flyable path from the control points, and the
green curve S̃T shown in Figure 1b provides an example of the flyable path derived from
control points in Figure 1a.

The performance evaluation indicator of a flyable path is primarily composed of two
parts: the threat cost Cthreat and the fuel cost C f uel, while the fuel cost can be further divided
into flying distance cost Cdist and other operations cost, which is generally proportional to the
curvature of the flyable path. Thus, we can represent the total cost of a possible path as follows:

Call = Cthreat + C f uel

= Cthreat + Cdist + Ccurv

= α ·
∫ length

0
Jthreatdl + β ·

∫ length

0
Jdistdl + γ ·

∫ length

0
Jcurvdl,

(1)

where Call is the total cost of the flyable path, Ccurv is the curvature cost of the flyable path.
Jthreat, Jdist and Jcurv represent the threat cost, distance cost and curvature cost on each
segment of the flyable path, respectively, whereas α, β and γ are weighting parameters
used to adjust the magnitude of each part of the cost.
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Suppose that there are N segments L1, L2,. . . Li . . . , LN in a polyline path before
we turn it into a flyable path, and there are M obstacles O1, O2, . . . Oj. . . , OM in the
environment. We use Li ∩ Oj to denote the length of overlapped part between path
segment Li and obstacle Oj, then the threat cost of each path segment Jthreat,i can be
calculated as follows:

Jthreat,i =
M

∑
j=1

Li ∩Oj. (2)

To calculate the distance cost of each flyable path segment, we can uniformly extract Nd
points on each segment Li, denoted as (xi,1, yi,1), (xi,2, yi,2), . . .

(
xi,p, yi,p

)
. . . ,

(
xi,Nd , yi,Nd

)
,

where (xi,1, yi,1) is the starting point of the segment and (xi,Nd , yi,Nd) is the ending point
of the segment, then the distance cost of a flyable path segment can be calculated as in
Equation (3). Please note that the three-dimensional distant cost can be calculated similarly,
except that there are extra z-components.

Jdist,i =
Nd−1

∑
p=1

√(
yp+1 − yp

)2
+
(
xp+1 − xp

)2. (3)

To calculate the curvature cost of a flyable path segment, we need to transform the
original polyline path ST into a flyable path S̃T , and then uniformly extract Ni points on
each flyable path segment Li, denoted as (xi,1, yi,1), (xi,2, yi,2), . . . (xi,k, yi,k) . . . ,

(
xi,Ni , yi,Ni

)
,

then the curvature cost of a path segment can be represented as:

Jcurv,i =
Ni

∑
k=1

|y′′i,k|(
1 + y′2i,k

)3/2 , (4)

where y′i,k is the first derivative of yi,k with respect to xi,k at the point (xi,k, yi,k) of the flyable
path, whereas y′′i,k is the second derivative of yi,k with respect to xi,k at the point (xi,k, yi,k)
of the flyable path.

4. Preliminary Knowledge and Algorithms
4.1. Differential Evolution

DE [42] is an evolutionary algorithm proposed to solve global optimization problems
over continuous spaces, and is arguably one of the best stochastic real-parameter opti-
mization algorithms in current use [22]. By adding the difference of randomly chosen
individuals in the population to current one, DE shows powerful performance in exploring
the continuous solution space. DE and its major variants have been applied to multiobjec-
tive, large-scale, and constrained optimization problems. Main procedures of DE include
initialization of the population, mutation with difference of individuals, crossover and
selection. Among which the mutation stage is the essential operation. In this paper, one of
the mutation strategies of DE variants, called target-to-best, is referenced and used in the
design of the proposed algorithm. The strategy can be represented as follows:

“DE/target− to− best/1′′ : ~Vi,G = ~Xi,G + F ·
(
~Xbest,G − ~Xi,G

)
+ F ·

(
~Xri

1,G − ~Xri
2,G

)
, (5)

where ~Xi,G is the ith individual in generation G and ~Xbest,G is the best individual, indices
ri

1, ri
2 are mutually exclusive integers stochastically chosen from the current population

range [1, NP]. F is the positive scaling factor used to scale the difference of individuals,
and belongs to the open interval (0,1). Thus, we can obtain the new donor individual ~Vi,G,
which then exchanges its components with the target individual ~Xi,G to generate a trial
individual. Based on the principle of greed, individuals with better fitness values will be
selected to form a new generation.
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4.2. Symbiotic Organisms Search

SOS is a recently designed robust and powerful metaheuristic algorithm for numerical
optimization and engineering design problems [27]. Inspired by the biological interac-
tions between organisms in an ecosystem, SOS elaborately imitates the natural process of
mutualism, comensalism, and parasitism.

In the mutualism phase, the ith organism of the ecosystem Xi is interacted with
another randomly chosen organism Xj. New organisms generated from Xi and Xj can be
calculated through following equations:

Xinew = Xi + rand(0, 1) ∗ (Xbest −Mutual_Vector ∗ BF1), (6)

Xjnew = Xj + rand(0, 1) ∗ (Xbest −Mutual_Vector ∗ BF2), (7)

Mutual_Vector =
Xi + Xj

2
, (8)

where BF1 and BF2 are benefit factors randomly determined as either 1 or 2, and Xbest is
the best organism in the current ecosystem. The organisms are then updated if only the
new ones fit better than the old ones.

The second phase is commensalism, in which organism Xi attempts to benefit from
another organism Xj while Xj neither benefits nor suffers from organism Xi. Organism Xi
is then updated only if its new fitness value surpasses its previous one. This process can be
denoted as follows:

Xinew = Xi + rand(−1, 1) ∗
(
Xbest − Xj

)
. (9)

In the parasitism phase of SOS, individual organism Xi is duplicated, and then ran-
domly modified in selected dimensions. The new generated organism is then compared
with another randomly chosen organism in the ecosystem to see whether the chosen host
can be replaced or killed, if the new one performs better, then the host will no longer exist
in the ecosystem.

5. Proposed Hybrid Differential Symbiotic Organisms Search Algorithm (HDSOS)

DE is arguably one of the most competitive evolutionary algorithms with respect
to global exploration ability. However, its performance at exploitation stage is usually
flawed. In comparison with DE, SOS has excellent performance at exploitation stage,
but relatively poor at the exploration stage for more possible solutions [2]. Therefore, in
this paper, a new algorithm HDSOS is proposed by combining the mutation strategy of
DE with several phases of SOS algorithm, thus to solve the two-dimensional and three-
dimensional UAV path planning problems. The mutualism phase and commensalism
phases of SOS are retained and modified for efficiency consideration while the parasitism
phase is discarded. Taking the practical environment attributes into consideration, we
define the traction function, which is used to pull the organisms toward a more promising
direction in the evolutionary process. Traction function is combined with the target-to-best
mutation strategy in DE to better explore the solution space. Furthermore, a perturbation
strategy is used according to the fitness level of all the organisms in the ecosystem to
provide more possibilities when the evolutionary process seems to stagnate.

5.1. Mainframe of HDSOS

To get the fittest individual in the population or ecosystem as fast as possible, the
random search operation without a purpose during the evolutionary process should be
reduced correspondingly. By analyzing and dividing the objective function, we can get
a better understanding of the optimization objective, thus reduce the aimlessly search
operations. Therefore, we can define the traction function Ft here as any part of the
objective function in Equation (1). Although the cost function has a linear relationship with
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its subitems, simulations show that the best individual usually at the same time has one of
the best subitem values. Thus, we can define the traction function here as:

Ft =
∫ length

0
Jcurvdl =

NS

∑
i=1

Ni

∑
k=1

∣∣∣y′′i,k∣∣∣(
1 + y′2i,k

)3/2 , (10)

where NS is the number of all path segments and Jcurv is the curvature cost of each
path segment.

The mutualism phase in SOS is retained here in HDSOS because of its great potential
in generating better new organisms, yet simplified for efficiency purpose. In this phase,
individual Xi and randomly chosen individual Xj interact with each other to produce
a mutual vector, then the mutual vector is used for the purpose of generating a better
offspring Xij_new, which can be modeled in the following equations.

Xij_new = Xi + rand(0, 1) ∗ (Xbest −Mutual_Vector ∗ BF), (11)

Mutual_Vector =
Xi + Xj

2
, (12)

where Xbest is the current global best individual with respect to objective function, and
BF is the benefit factor, which is randomly determined as 1 or 2, imitating the natural
phenomenon in which some organisms benefit better from the mutualism process than
others. In contrast to the original SOS algorithm, which preserves both Xi and Xj to do
comparison with the new organisms after interaction, HDSOS only preserves Xi, and
the newly generated organism is regarded as an offspring of both Xi and Xj. Thus, the
calculation and comparison operations are largely reduced in this phase. The new offspring
Xij_new is then compared with Xi by calculating the objective function, and Xi will be
replaced only if fitness value of the offspring outperforms Xi.

The second phase of HDSOS is commensalism phase, which is to benefit Xi with the
randomly chosen individual organism Xj. In the HDSOS, the commensalism phase is
modified to better improve the fitness of Xi. The traction function value of each organism
is evaluated, and the corresponding best organisms are chosen to pull Xi to a promisingly
better direction. In addition, the mutation strategy of DE is combined with the commen-
salism operation to explore the solution space more thoroughly. This operation can be
denoted by the following equation.

Xinew = Xi + rand(0, 1) ∗ (XFt_best,k − Xi) + F ∗
(
Xi − Xj

)
, ∀k ∈ {1, 2, . . . , Nb}, (13)

where XFt_best,k is the kth best organism with respect to traction function Ft, and is chosen
randomly from the first Nb best organisms here. F is the positive control parameter for
scaling the difference of Xi and Xj in the mutation operation and usually belongs to (0, 1).
Similarly, the obtained new organism will then be compared with Xi with respect to the
objective function, and Xi will be replaced only when the fitness value of Xinew surpasses
that of Xi.

Another strategy used in HDSOS is the perturbation. This operation will only be
applied when the evolutionary process seems to stagnate for certain generations. In
this case, all organisms in the ecosystem will be evaluated and sorted according to their
objective function values. Afterwards, a certain number of the worst organisms will be
permanently vanished from the ecosystem, at the same time, equal number of organisms
will be randomly generated and added into the ecosystem as part of the new generation.
Suppose that after certain generations of stagnation, the perturbation operation is triggered.
Assume that the upper and lower bounds for each organism are Ui and Li, respectively,
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then for each organism Xiw from the Nw worst organisms in the ecosystem, it will be
replaced using the following formula:

Xiw = rand(0, 1) ∗ (Ui − Li) + Li. (14)

Based on the aforementioned procedures and analyses, the mainframe of HDSOS can
be further described in Algorithm 1 and Figure 2.

Algorithm 1: The main procedure of Hybrid Differential Symbiotic Organisms
Search (HDSOS)

Input: Initial population P; number of organisms NP; dimension of individual D;
scaling factor F; generation G.

Output: Xbest–The best organism with respect to objective function.
1 for i = 1 : NP do
2 f (Xi)← calculate objective function value of Xi;

3 Xbest ← min( f (Xi));
4 for j = 1 : NP do
5 Ft(Xj)← calculate traction function of Xj;

6 XFt_best ←select the first Nb organisms with the best Ft value;
7 Ncount = 0;
8 for g = 1 : G do
9 for i = 1 : NP do

10 Randomly select Xj where j 6= i;

11 Mutual_Vector ← Xi+Xj
2 ;

12 Xij_new ← Xi + rand(0, 1) ∗ (Xbest −Mutual_Vector ∗ BF);
13 if f (Xij_new) < f (Xi) then
14 Replace Xi with Xij_new;

15 Xinew ← Xi + rand(0, 1) ∗ (XFt_best,k − Xi) + F ∗
(
Xi − Xj

)
, ∀k ∈

{1, 2, . . . , Nb};
16 if f (Xinew) < f (Xi) then
17 Replace Xi with Xinew;

18 Update Xbest and XFt_best;
19 if Xbest,g+1 − Xbest,g < ε then
20 Ncount ← Ncount + 1;
21 else
22 Ncount = 0;

23 if Ncount > Nstag then
24 Select the worst Nw organisms from the ecosystem;
25 Randomly generate Nw organisms and replace the worst ones;

26 Post-processing the results and visualization.
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Figure 2. Flowchart of HDSOS.

5.2. Application of HDSOS in Practical UAV Path Planning

According to the analyses in Section 3.2, the cost function for UAV path planning
could be complicated, especially when many control points are needed to determine a
flyable path, which turns the case into a high-dimensional problem. For example, in a
two-dimensional path planning scenario as shown in Figure 3a, the cost function could be
intractable even when the decision variable is a two-dimension vector. The corresponding
graphical view of the cost function for this scenario is displayed in Figure 3b. The figure
shows that the objective function has irregular functional image, and there are several
local minimum points, which could be misleading for general evolutionary algorithms.
Moreover, the X− Z view and Y− Z view show that even for the local minimum points,
they could be in a basin area which is relatively flat, and this will further impede the
process for EAs to find the global minimum rapidly.
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(a) An example of a 2-D scenario.

Original View X-Y View

X-Z View Y-Z View

(b) Graphical visualization of the cost function for the 2-D
scenario on the left.

Figure 3. Example of a 2-D scenario and visualization of its cost function (Dim(Xi) = 2).

In general, two-dimensional or three-dimensional UAV path planning is to minimize
the cost function as shown in Equation (1). Through proper preprocessing, the equation can
be applied to both two-dimensional and three-dimensional scenarios. For two-dimensional
scenarios, threat cost Cthreat can be calculated from all the path segments that overlap
with obstacles, whereas in three-dimensional scenarios, threat cost can also be calculated
from all the path segments that pass through three-dimensional obstacles. The ways to
obtain distance cost Cdist are similar in both kinds of scenarios. For the curvature cost
Ccurv, Equation (4) is practicable to three-dimensional scenarios if we properly represent
the feasible solutions. In this paper, once the start and target points are determined, one
way to represent a possible solution in three-dimensional scenarios is to uniformly divide
the space into a set of cubic grids, then decide the coordinates on two axes in advance
according to the dimensions of the decision variable. Please note that by this way, the
torsion cost of the path curve could be transformed into the curvature cost, which is proved
to be an efficient way in solving path planning problem here.

However, to get a flyable path as illustrated in Figure 1, we need to process the output
results of the HDSOS algorithm to satisfy the physical properties of UAVs. Specific method
adopted to smooth the original path will be detailed in the following sections.

6. Path Smoothing Method

Generally, the original paths obtained by evolutionary algorithms are not suitable for
practical UAV flight, since they are usually continuous polylines but non-differentiable. To
ensure the path is flyable and smooth, special techniques are needed here. B-Spline curve
smoothing strategy is introduced and used to dynamically smooth the paths generated by
HDSOS. The B-Spline curves have evolved from Bezier curves, and are highly appropriate
in the real-time path planning for UAVs since they need only a few variables to define
complicated curves [2]. The advantages of Bezier curves, such as geometrical invariability,
convexity-preserving, and affine invariance, are all inherited by B-Spline curves [31,43].

B-Spline curves are constructed based on base functions. Suppose that there are
n + 1 control points for the curve with coordinates (x0, y0, z0), . . . , (xn, yn, zn), then the
coordinates of the B-Spline curve can be denoted as:

x(u) = ∑n
i=0 xi · Ni,k(u)

y(u) = ∑n
i=0 yi · Ni,k(u)

z(u) = ∑n
i=0 zi · Ni,k(u)

, (15)
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where u is the free parameter of the curve, (xi, yi, zi) are the control points, and Ni,k(u)
are the k-order normalized B-Spline base functions defined by the following Cox-de
Boor recursion: Ni,0 =

{
1, i f ui 6 u 6 ui+1

0, otherwise
Ni,k(u) =

u−ui
ui+k−ui

Ni,k−1(u) +
ui+k+1−u

ui+k+1−ui+1
Ni+1,k−1(u)

, (16)

where U = u0, . . . , um is called knot vector, of which the most common form is the uniform
non-periodic one, denoted as follows:

ui =


0, i f i < k + 1
i− k, i f k + 1 6 i 6 n
n− k + 1, i f n < i

. (17)

Figure 4 shows the B-Spline curves in two-dimensional and three-dimensional spaces,
all with five control points of order 3. Compared with the Bezier curves, B-Spline curves
overcome the disadvantage that changing a control point will affect the entire curve.
Furthermore, the degree of the polynomial would not increase no matter how many control
points are used.

(a) A cubic two-dimensional B-Spline curve. (b) A cubic three-dimensional B-Spline curve.

Figure 4. The cubic B-Spline curves and their control polygons.

7. Simulation Experiments and Results

In this section, the proposed algorithm HDSOS is evaluated under eight different
scenarios, i.e., four two-dimensional scenarios and four three-dimensional scenarios. To
show the superiority of HDSOS, three popular metaheuristic algorithms are adopted here
for comparison, including PSO, DE, and SOS. The latter two algorithms are related to the
proposed algorithm. For the fair comparison in terms of run times and performance, all
the experiments are conducted in MATLAB R2015a on Windows 10 operating system, with
Core i7-6500U 2.60 GHz CPU, 8 GB memory.

For the two-dimensional scenarios, obstacles are placed in a field with the size of
1000 × 1000 square units. The starting point is set to (0,0) and the target point (1000,1000).
Scenario A of the two-dimensional field has obstacles denoted by filled polygons, scenario
B by filled circles, whereas scenario C and scenario D have both kinds of obstacles mixed,
and scenario D has more densely distributed obstacles. For the three-dimensional scenarios,
obstacles are represented by prisms and cylinders and are placed in a space with the size
of 1000 × 1000 × 1000 cubic units. The starting point is set to (0,0,0) and the target point
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(1000,1000,1000). Scenario E is a three-dimensional space with obstacles represented by
prisms, scenario F by cylinders, whereas scenario G and scenario H have both kinds of
obstacles scattered in the space, and scenario H has more densely distributed obstacles.

It is worth mentioning that while the polyline corresponding to the control points is
guaranteed to avoid the obstacles with the optimization procedure, the B-spline curve that
results from the path smoothing method might not avoid the obstacles. There are basically
two solutions to address this issue. The first solution is to increase the dimension of the
decision variable, i.e., number of control points, to ensure that the smoothed path is as
close to the original polyline path as possible. However, this may result in a prominent
increase in computational complexity and time consumption. Another efficient solution is
to set a buffer zone around each obstacle, which would effectively reduce the possibility
that the smoothed path might not avoid obstacles. In this article, the latter solution is
adopted in the optimization process to achieve this purpose. In both two-dimensional and
three-dimensional scenarios, obstacles have buffer zones around them with the width of 5,
thus to further improve the performance of the algorithm.

The dimension of the decision variable Xi is set to 10 in all scenarios. All three existing
algorithms and the proposed algorithm HDSOS will be conducted for 30 independent
runs under each of the eight scenarios. Since all the four algorithms are population-based
evolution, the number of the population is set to 50 for all, furthermore, the generation is
set to 50 for all. The comparative results under each scenario are analyzed and compared
in terms of mean value, standard deviation and runtime. Moreover, for each scenario,
representative optimization results will be visualized and the convergence curves of four
algorithms will be shown in figures for intuitive comparisons.

7.1. Experiments and Comparisons under Two-Dimensional Scenarios

For scenario A with polygon obstacles, Figure 5 shows one of the optimization results
of four algorithms. We can see from Figure 5a that the flyable paths obtained by PSO, DE
and HDSOS can satisfy the requirements without crossing any obstacles while the paths
planned by SOS is a failure. Among the three successful paths, the one planned by HDSOS
is obviously optimal compared with the other two paths, with less swerves and shorter
length. The convergence curves of the four algorithms are shown in Figure 5b. Through
the iteration, HDSOS rapidly converges to near-optimal level in less than 10 iterations, and
stays at the optimal value of 81.16 after iteration 31. DE has the suboptimal performance in
this case with the final cost value 125.97 after iteration 22. PSO also converges rapidly in
the first 20 iterations, but stays at a relatively high value of 142.73 during the last half of
iterations. SOS, however, performs worst in this case with an unflyable path and a high
cost value of 149.24 at the end of the iteration.

For scenario B with circle obstacles, Figure 6 shows one of the optimization results of
final paths and corresponding convergence curves. In this case, only the paths generated by
HDSOS and DE are flyable whereas the other two are failures, of which the final trajectories
pass through the obstacles, as shown in Figure 6a. Moreover, the trajectory obtained by
HDSOS is smoother with shorter total length than that by DE. We can see from Figure 6b
that the HDSOS again has the rapidest rate of convergence, in less than 10 iterations, it
converges to the near-optimal value and stays at 79.39 at the early stage. Compared with
HDSOS, SOS algorithm has a relatively small value at the initial stage, but is trapped in the
local minimum after several iterations and finally stays at a high value of 370.75. Compared
with PSO, DE converges faster but is also trapped in local minimum and has the final value
of 144.89. PSO, however, has the worst performance in this case with a high convergence
value of 387.81.
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Figure 5. The comparative results for two-dimensional scenario A.

X

Y

(a) The path planning results of four algorithms in scenario B.

C
o

st
 V

al
u

e

Iteration

(b) Convergence comparison in scenario B.

Figure 6. The comparative results for two-dimensional scenario B.

Scenario C has mixed obstacles of prisms and cylinders, Figure 7 shows one of the
optimization results. In this case, we can see from Figure 7a that HDSOS and DE are the
two algorithms that finally obtain the flyable paths while the other two fail. Compared with
the path generated by DE, the path obtained by HDSOS is smoother and with shorter total
length. Figure 7b shows that HDSOS converges in less than 10 iterations with the smallest
final value of 80.66. Algorithm SOS, although with the smallest value at initial stage, is
trapped in the local minimum and finally surpassed by HDSOS, with the final convergence
value of 102.53 and an unflyable trajectory. PSO again has the worst performance in this
case with the final convergence value of 248.19.
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(b) Convergence comparison in scenario C.

Figure 7. The comparative results for two-dimensional scenario C.

Scenario D has dense and mixed obstacles, which is rather difficult for general methods
to find a flyable path. Figure 8 shows one of the final comparative results of the four
algorithms. In this case, however, HDSOS is the only algorithm that finds a flyable path
while others all fail, as shown in Figure 8a. The path generated by SOS crosses the most
obstacles, and the path generated by DE crosses the least obstacles. Figure 8b shows that
HDSOS converges quickly to its optimal value in iteration 20, and stays at a very small
cost value of 96.12 afterwards. SOS converges pretty fast at the early stage, but is trapped
in some local optimal point within 10 iterations, and finally stays at a high cost value of
1646.59. DE performs better compared with SOS in this case, it converges continuously
throughout the iteration process, but with a slow speed and a final cost value of 1038.22.
PSO is also trapped in some local optimal point at very early stage, and stays at a high
cost value of 2466.02 after iteration 21, the corresponding path has several unnecessary big
swerves and a long total distance as well.

(a) The path planning results of four algorithms in scenario D. (b) Convergence comparison in scenario D.

Figure 8. The comparative results for two-dimensional scenario D.

Table 1 shows the statistical results of the four algorithms in 30 independent runs
under each scenario, and the results are further illustrated in Figure 9. It can be seen that
HDSOS outperforms any other algorithms in all the four two-dimensional scenarios. In
scenario A, HDSOS has the best mean cost value and a very small standard deviation of
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only 1.72. SOS has the second-best mean value and standard deviation, but the runtime
is nearly twice as long as that of HDSOS. PSO, however, has the worst performance with
respect to mean value and standard deviation, although it has the shortest runtime. In
scenario B, HDSOS is significantly superior compared with other algorithms in terms of
mean value and stability. DE, of which the runtime is as long as that of HDSOS, obtains
much larger mean cost value and standard deviation. In scenario C, HDSOS again has the
best mean value compared with other algorithms, although the standard deviation is a
bit larger than that of SOS. PSO still has the worst mean value and standard deviation. In
scenario D, which is the most challenging one among all four two-dimensional scenarios,
HDSOS still has the best performance with respect to the mean cost value, although the
standard deviation of DE is smaller than that of HDSOS, the mean cost value of DE is more
than twice as that of HDSOS, while the two algorithms have nearly the same runtime. SOS
has the second-best performance with respect to the mean cost value; however, it runs
almost twice as long as algorithm HDSOS or DE. Algorithm PSO has the least runtime,
but the mean cost value and standard deviation are more than twice as large as those
of HDSOS.

Table 1. Performance of algorithms in two-dimensional scenarios (30 runs).

Algorithms
Scenario A Scenario B Scenario C Scenario D

Mean Std Runtime(s) Mean Std Runtime(s) Mean Std Runtime(s) Mean Std Runtime(s)

PSO 212.80 95.72 32.80 649.72 290.22 17.36 423.77 292.97 18.33 1106.98 490.29 31.5473
DE 147.57 18.76 64.96 320.29 139.89 34.39 137.07 48.67 38.91 692.31 201.68 62.4913
SOS 94.49 15.58 129.52 261.47 125.53 67.98 101.24 1.17 55.61 584.27 354.58 123.903

HDSOS 77.92 1.72 64.46 90.67 53.40 34.09 90.48 10.40 34.86 344.75 230.92 63.5827

Figure 9. Performance comparison of algorithms among scenarios.

7.2. Experiments and Comparisons under Three-Dimensional Scenarios

Three-dimensional scenario E contains many prismatic obstacles. Figure 10 shows
one of the final path planning results of the four algorithms, where Figure 10a is the three-
dimensional overview of the results, Figure 10b is the X-Y view of the final results and
Figure 10c shows the convergence curves of the four algorithms. We can see from the upper
two figures that in this case, HDSOS, SOS and DE all get the flyable path, whereas the
path generated by PSO is a failure. Among the three flyable paths, the one acquired by
HDSOS has the least swerves and the shortest total length, i.e., the smallest cost value. The
comparison of the convergence curves clearly testifies the superiority of HDSOS over other
algorithms. The HDSOS converges rapidly to its near-optimal value in less than 5 iterations
and finally gets a satisfying value of 99.40. PSO and DE, on the other hand, converge rather
slow and obtain the final values of 135.54 and 125.54, respectively. SOS also converges at
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a slow rate, although it has the smallest cost value after the first iteration, but stays at a
relatively high value of 123.40 at the final stage.

(a) The path planning results of four algorithms in scenario E. (b) X-Y view of the comparison in scenario E.
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(c) Convergence comparison in scenario E.

Figure 10. The comparative results for three-dimensional scenario E.

For three-dimensional scenario F, which contains many cylinder obstacles, Figure 11
shows one of the final path planning results of the four algorithms. We can see from
Figure 11a,b that the paths attained by HDSOS, DE and SOS are all flyable, with the
path acquired by HDSOS being the shortest and optimal one. The path attained by PSO,
however, passes through more than one-cylinder obstacles, which means it is a failure. The
convergence curves show the details of the four algorithms through iterations. The HDSOS
converges quickly at the early stage and finally stays at its optimal value of around 110.09.
Algorithm SOS acquires a relatively small value at the first iteration but converges slowly
and end up with the cost value of 144.64. DE also converges at a low rate and remains
a high value of 148.93 at the end of the iteration. PSO once again has the lowest rate of
convergence and acquires the worst results at the end of the iteration.
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(a) The path planning results of four algorithms in scenario F. (b) X-Y view of the comparison in scenario F.
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(c) Convergence comparison in scenario F.

Figure 11. The comparative results for three-dimensional scenario F.

For three-dimensional scenario G with both prismatic and cylinder obstacles, Figure 12
shows one of the final results acquired by the four algorithms. In this case, we can see
from the upper two figures that all the four paths obtained by these algorithms are flyable
without passing through any obstacle. However, the HDSOS still outperforms the other
algorithms in terms of distance cost and curvature cost. The convergence curves prove
that HDSOS converges quickly to its near-optimal value and stays at 94.36. SOS has the
second-best final cost value of 112.76. Although DE gets the final value of 138.79 with a
slow speed, PSO again obtains the worst cost value of 213.67, which we can see from the
final path with several big swerves that are indeed unnecessary.
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(a) The comparative path planning results in scenario G. (b) X-Y view of the comparison in scenario G.
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(c) Convergence comparison in scenario G.

Figure 12. The comparative results for three-dimensional scenario G.

For three-dimensional scenario H with dense obstacles including prisms and cylinders,
Figure 13 shows one of the final path planning results of the four algorithms. We can see
from Figure 13a,b that in this case, only algorithm HDSOS finally gets the flyable path
whereas all other algorithms fail. The path acquired by HDSOS is direct and efficient,
and with the shortest total length. The paths acquired by other algorithms all cross some
obstacles at several certain path segments. The convergence curves as shown in Figure 13c
further testify the competitiveness of the proposed algorithm. HDSOS quickly finds
solution with a relatively small cost value at the early stage, and continues to converge to
the global optimal point afterwards, and finally gets a very small cost value of 103.38. The
DE and SOS have poor convergence rates and finally stay at high cost values of 191.67 and
143.90, respectively. PSO has pretty fast convergence rate at the early stage, but is soon
trapped in some local minimum within 20 iterations, and acquires the second worst cost
value of 171.77 at the end of the iteration.
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(a) The comparative path planning results in scenario H. (b) X-Y view of the comparison in scenario H.
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(c) Convergence comparison in scenario H.

Figure 13. The comparative results for three-dimensional scenario H.

Table 2 and Figure 14 show the statistical results of the four algorithms in each three-
dimensional scenario. The histogram shows clearly that the PSO performs worst whereas
HDSOS performs best in all the four scenarios. In scenario E, HDSOS gets the smallest
mean value and standard deviation of 94.27 and 2.11, respectively. DE, while requires as
much time as HDSOS, obtains much larger mean value and standard deviation. Algorithm
SOS has the second-best performance but it requires nearly twice as long as HDSOS.
PSO has the worst performance, although it requires less time than other algorithms. In
scenario F, HDSOS obtains the smallest mean value of 96.65 and standard deviation of
4.24, which are much smaller than any other algorithms here. However, in this scenario,
DE outperforms SOS in terms of all the three indices. In scenario G, with HDSOS being
the best at mean value, SOS has a slight advantage over HDSOS in terms of standard
deviation. PSO remains the worst and DE remains the second worst in terms of mean value
and standard deviation. In scenario H, HDSOS has the smallest mean cost value and the
second-best standard deviation value, and only takes half as much time as that of SOS.
Although DE has the smallest standard deviation value, it has much larger mean value
than HDSOS. PSO again has the worst performance among all the four algorithms. Table 2
and Figure 14 once again testify the superiority of HDSOS over other algorithms.
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Table 2. Performance of algorithms in three-dimensional scenarios (30 runs).

Algorithms
Scenario E Scenario F Scenario G Scenario H

Mean Std Runtime(s) Mean Std Runtime(s) Mean Std Runtime(s) Mean Std Runtime(s)

PSO 154.56 21.69 28.04 175.34 48.27 15.00 190.27 41.62 18.19 183.96 48.67 25.043
DE 134.64 13.20 55.25 143.96 15.60 29.84 152.15 18.70 36.53 178.33 13.89 50.738
SOS 98.96 7.62 107.98 150.47 40.26 57.43 109.79 4.69 69.42 160.13 42.02 97.9167

HDSOS 94.27 2.11 53.84 96.65 4.24 30.62 98.21 6.97 35.87 125.52 24.99 51.3263

Figure 14. Performance comparison of algorithms among scenarios.

7.3. Advantages and Limitations of HDSOS

Experimental studies above show that the proposed HDSOS has strong capability in
generating flyable paths in both two-dimensional and three-dimensional scenarios. The
combination of the traction function and the mutation strategy of DE gives the proposed
algorithm excellent ability in exploring the solution space at the early stage, whereas the
adopted mutualism and commensalism phases of SOS enable the algorithm to avoid being
trapped in local optimality at the later stage. The proposed algorithm has very stable
performance in terms of mean value and standard deviation, and can always get the flyable
path in limited iterations compared with other algorithms. Moreover, the time consumption
of HDSOS is satisfying due to the simplicity of the strategy.

However, there are still limitations for the proposed algorithm. First, the implemen-
tation of HDSOS in UAV path planning needs an extra traction function, which should
be defined in advance, making the algorithm not very convenient in general use. Second,
the calculation of traction function also adds extra execution time, reducing efficiency of
the algorithm to some extent. Third, the algorithm is mainly designed for environments
with solid obstacles, and usually with the same dimension of the environment, i.e., two-
dimensional obstacles for two-dimensional environments, and three-dimensional obstacles
for three-dimensional environments. Therefore, the algorithm might not be efficient for
two-dimensional environments with linear obstacles or three-dimensional environments
with planar obstacles.

8. Conclusions and Future Work

In this paper, a new algorithm called hybrid differential symbiotic organisms search
(HDSOS) is proposed to solve the UAV path planning problem under two-dimensional
and three-dimensional scenarios. The mutualism phase and parasitism phase of SOS are
modified and adopted in the new algorithm in consideration of the local search capability
of SOS, the concept of traction function is introduced to improve the efficiency of the
algorithm. To enhance the global search ability of the algorithm, mutation strategy of DE
is adopted and combined with the algorithm in commensalism phase. Furthermore, a
perturbation strategy is applied when the evolutionary process seems to stagnate for certain
generations, thus to improve the robustness of the algorithm. B-Spline curves technique is



Sensors 2021, 21, 3037 22 of 24

illustrated and used to smooth the initial path acquired by the algorithm. To demonstrate
the superiority of the proposed algorithm, comparative experiments are conducted among
HDSOS and another three algorithms including PSO, DE and SOS. Simulation results
and analysis under four two-dimensional scenarios and four three-dimensional scenarios
show that the proposed algorithm is pretty competitive and efficient compared with other
algorithms aforementioned.

In our future work, we will be interested in studying the physical attributes of UAVs
and the influence they may have on UAV path planning. Moreover, multi-UAV path
planning and joint mission will also be of the interests of our research.
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ABC Artificial Bee Colony
ACO Ant Colony Optimization
ANN Artificial Neural Network
BA Bat Algorithm
DE Differential Evolution
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GA Genetic Algorithm
GWO Grey Wolf Optimizer
HDSOS Hybrid Differential Symbiotic Organisms Search
HSGWO-MSOS Hybrid Simplified Grey Wolf Optimizer and Modified Symbiotic Organisms Search
MBGD Mini-batch Gradient Descent
MILP Mixed Integer Linear Programming
MMPDE Modified Multi-population Differential Evolution Algorithm
PSO Particle Swarm Optimization
SGD Stochastic Gradient Descent
SOS Symbiotic Organisms Search
UAV Unmanned Aerial Vehicle
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