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Abstract: In recent years, electroencephalographic (EEG) signals have been intensively used in
the area of emotion recognition, partcularly in distress identification due to its negative impact
on physical and mental health. Traditionally, brain activity has been studied from a frequency
perspective by computing the power spectral density of the EEG recordings and extracting features
from different frequency sub-bands. However, these features are often individually extracted from
single EEG channels, such that each brain region is separately evaluated, even when it has been
corroborated that mental processes are based on the coordination of different brain areas working
simultaneously. To take advantage of the brain’s behaviour as a synchronized network, in the present
work, 2-D and 3-D spectral images constructed from common 32 channel EEG signals are evaluated
for the first time to discern between emotional states of calm and distress using a well-known deep-
learning algorithm, such as AlexNet. The obtained results revealed a significant improvement in the
classification performance regarding previous works, reaching an accuracy about 84%. Moreover,
no significant differences between the results provided by the diverse approaches considered to
reconstruct 2-D and 3-D spectral maps from the original location of the EEG channels over the scalp
were noticed, thus suggesting that these kinds of images preserve original spatial brain information.

Keywords: convolutional neural networks; electroencephalography; power spectral density; nega-
tive stress

1. Introduction

Nowadays, one of the major issues in advanced societies is negative stress, also
known as distress, given its detrimental influence on health of people who suffer from
it [1,2]. Inhabitants in developed countries are surrounded by an economic and social
pressure and a frenetic rhythm of life that leads them to a continuous state of anxiety
and nervousness [3]. Furthermore, the current coronavirus pandemic has contributed
to generally increasing the level of uncertainty and distress in the global population,
with multifaceted drastic repercussions for people’s lives [4]. Short-term negative stress
appears as a fight or flight reaction for self-protection and integrity of the organism, and it
may not be a risk factor for health [5]. However, a long-term exposure to distressful
conditions has demonstrated the production of serious negative effects on physical and
mental health, causing, or even aggravating, several disorders related to cerebral, immune
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and endocrine systems [6,7]. Consequently, the accurate detection and regulation of distress
could be essential to maintaining a healthy functioning [8].

Negative stress produces a series of measurable alterations on different physiological
systems, such as the brain [9]. Brain activity can be quantified by means of electroen-
cephalographic (EEG) recording, which represents the electrical activity originated under
the scalp due to neural connections. The brain is the physiological system firstly responding
against any stimulus, and then this response spreading to the rest of the peripheral organs
by means of the central nervous system [10]. Therefore, the assessment of EEG signals may
reveal more relevant information than secondary effects of the brain’s activity in the rest
of the body [10]. This could be why the study of EEG recordings is receiving increased
interest for the recognition of emotional states in recent years [11].

Traditionally, EEG recordings have been studied from a frequency perspective, an-
alyzing brain activity in different spectral bands [12]. Indeed, it is widely known that
emotional processes may induce changes in the cognitive state of an individual, which
are accompanied by alterations in the brain’s oscillatory activity [13]. The information of
interest in emotional processes occurs between 4 and 45 Hz, corresponding to theta (θ),
alpha (α), beta (β) and gamma (γ) frequency sub-bands [14]. To analyze this information,
power spectral density (PSD) is usually computed using different algorithms, such as Fast
Fourier transform or Welch’s periodogram [12]. Then, power features are extracted from
the different frequency sub-bands and combined using machine learning methodologies,
such as k-nearest neighbor (k-NN) [15], support vector machine (SVM) [16,17], and Bayes
neural networks [18]. However, most previous works only focused on how to combine
these single-frequency parameters, without exploring spatial information collected from
locations of the electrodes over the scalp [19].

Recently, in addition to machine learning methods, deep learning algorithms have
also been used to diagnose some mental disorders, such as epilepsy [20,21], dementia [22],
depression [23] or Parkinson [24]. In this respect, convolutional neural networks (CNN)
are the most-used techniques within the wider context of deep-learning [25], as well as
in the emotion recognition field [26]. Unlike traditional machine learning methods, CNN
automatically learns complex features using different convolutional filters and combining
the weights to predict class membership. According to the literature, most of the studies
related to emotion recognition with CNN used 2-D EEG spectrograms as input data [27–29].
However, these spectrograms represent the information from a single channel, with each
brain region being evaluated separately. From this perspective, the global coordinated
brain information is ignored even when it has been corroborated that the brain works as a
network, and mental processes are based on the synchronized performance of different
areas [30,31]. Hence, for a thorough assessment of the underlying brain dynamics under
different emotions, simultaneous analysis of all brain regions has been suggested [32,33].

To take advantage of that global brain information, the present work evaluates, for the
first time, 2-D and 3-D spectral images constructed from simultaneous 32 channels typically
acquired by EEG recordings. More precisely, a well-known CNN-based model, such as
AlexNet, is proposed to discern these images from emotional states of calm and distress.
Moreover, transfer learning (TL) has proven to be an effective methodology in many
applications to palliate some drawbacks originated when a CNN is trained from the
beginning [34]. Thus, several CNN models conserving the hyper-parameters from the
original pre-trained AlexNet and with randomized initial hyper-parameters have been
analyzed in the present work. Additionally, since there is not a gold-standard method
regarding the rearrangement of the common location of the EEG electrodes over the scalp
into a 2-D map [35], diverse approaches found in the literature have been compared.

The structure of the paper is as follows. Section 2 describes the analyzed database,
as well as how the EEG signals were preprocessed and their power spectral density was
computed. The diverse options considered for the rearrangement of EEG electrode locations
into 2-D maps, the trained CNN models and the experimental protocol are also included
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in this section. The results obtained are presented in Section 3 and discussed in Section 4.
Finally, conclusions extracted from this study are summarized in Section 5.

2. Materials and Methods
2.1. Dataset

The EEG signals analyzed in this study were extracted from the Database for Emotion
Analysis using Physiological Signals (DEAP) [36]. This publicly available database con-
sists of a total of 1280 samples of various emotional states, obtained from 32 participants
(50% males, mean age 26.9 years). Each subject visualized 40 one-minute length video-
clips with emotional content, while EEG signals and other physiological variables were
recorded. After each visualization, participants rated their emotional state by means of
self-assessment manikins (SAM), which are a graphical representation of nine levels of
intensity of different emotional parameters. More precisely, the ratings of two parameters,
called valence (i.e., the degree of pleasantness or unpleasantness of a stimulus) and arousal
(i.e., the level of activation or deactivation provoked by a stimulus), were considered in
this study. Although the whole scales of valence and arousal were covered during the
creation of the DEAP dataset, only samples corresponding to calm and distress emotions
were selected for the present study. In accordance with previous works [37,38], samples
from the distress group were selected as those with a valence lower than 3 and an arousal
higher than 5. On the other hand, the calm group was formed from samples with a valence
between 4 and 6, and an arousal level lower than 4. Hence, a total of 122 trials of distress
and 137 of calm were finally analyzed.

2.2. Preprocessing of the EEG Recordings

The EEG recordings were obtained from 32 channels distributed over the scalp accord-
ing to the international standard 10–20 system for electrodes location [39]. Before further
analysis, the raw EEG signals were preprocessed in order to eliminate nuisance and inter-
ferences blurring neural information. Precisely, the Matlab toolbox EEGLAB, specifically
created for processing EEG recordings, was applied for this purpose [40]. The signals were
firstly downsampled from 512 to 128 Hz, and a new reference based on the average poten-
tial of all electrodes was established. Later, high-pass and low-pass forward/backward
filters were applied at 3 and 45 Hz, respectively, with the aim of maintaining the frequency
sub-bands of interest in the EEG spectrum [14]. These filtering approaches also eliminated
baseline and power line interferences. Then, artifacts and other interferences not eliminated
in previous steps were rejected by means of a blind source separation technique, called
independent component analysis (ICA). It is based on the computation of independent
components, such that those identified as artifactual were discarded, and only the informa-
tion related to brain activity was maintained [41]. Briefly, ICA was applied for the removal
of artifacts derived from physiological (eye blinks, facial movements, or heart bumps) and
technical sources (electrode-pops, or bad contacts of the electrodes on the scalp). Finally,
highly contaminated channels were eliminated and reconstructed by interpolating the adja-
cent electrodes [42]. Although these noisy signals were identified before ICA procedure,
the interpolation was done after that step to avoid the nonlinearities derived from the
influence of interpolation on ICA decomposition [43]. Hence, the rejection of artifacts was
not affected by the existence of the noisy channels replaced by interpolation [43].

2.3. Power Spectral Density Computation

Although the EEG signals collected in the DEAP database had a duration of 60 s,
only the last 30 ones were used for power computation from frequency sub-bands, as in
previous studies [36,37]. This segment for each EEG recording was then divided into six non-
overlapped epochs of 5 s of length, such that a total number of 822 (137 trials × 6 epochs/trial)
and 732 (122 trials × 6 epochs/trial) excerpts were analyzed for emotional states of calm and
distress, respectively. PSD was computed from every segment using a Welch’s periodogram,
with a Hamming window of 2 s-length, 50% of overlapping between adjacent windows
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and a resolution of 256 points. Then, the power for every EEG channel was individually
obtained for each frequency sub-band (θ, α, β and γ) and for the whole band (4–45 Hz) as
the area under the PSD curve within the corresponding frequency band. In the case of the
frequency sub-bands θ, α, β and γ, the resulting power was normalized by the one obtained
for the whole band, with the purpose of preserving the variations between subjects [17].
Equations (1)–(5) describe the power computation for all the band, and for each frequency
sub-band, respectively, with Pw( f ) the PSD estimated for each EEG excerpt.

Pt =
f=45 Hz

∑
f=4 Hz

|Pw( f )| (1)

Pθ =
1
Pt

f=8 Hz

∑
f=4 Hz

|Pw( f )| (2)

Pα =
1
Pt

f=13 Hz

∑
f=8 Hz

|Pw( f )| (3)

Pβ =
1
Pt

f=30 Hz

∑
f=13 Hz

|Pw( f )| (4)

Pγ =
1
Pt

f=45 Hz

∑
f=30 Hz

|Pw( f )| (5)

2.4. Rearrangement of EEG Channels in 2-D and 3-D Maps

The power values Pt, Pθ , Pα, Pβ and Pγ obtained for the 32 EEG channels were then
initially transformed into 2-D images to feed several CNN models. The original locations
of the 32 EEG channels on the scalp presented in Figure 1a were mapped, following three
different approaches. The first mapping scheme, called direct matrix distribution (DMD),
consisted of the placement of the EEG channels in a 9 × 4 matrix, as shown in Figure 1b.
Each element of the matrix directly represented one electrode; thus, the disposition of
the channels in the matrix was most similar to their real locations over the scalp, with-
out leaving blank spaces. Furthermore, the channels located between left and right brain
hemispheres, i.e., Fz, Cz, Pz and Oz, were duplicated in the central columns of the matrix
for a symmetrical representation of all electrodes.

The second mapping approach was called direct matrix distribution interpolated
(DMDi). As can be observed in Figure 1c, the DMDi approach presented the same distri-
bution of channels as DMD. The only difference was that DMDi interpolated the power
values between channels, making use of a biharmonic spline interpolation scheme [44],
and thus coloring the whole 2-D surface. On the contrary, DMD presented a grid in
which each cell was filled with a color according to the level of power calculated for the
corresponding channel.

The third mapping approach was based on the azimuthal equidistant projection
(AEP) [45]. Considering the human head as a sphere, the spherical coordinates of each elec-
trode can be converted into Cartesian coordinates. Therefore, locations in the space were
projected over a 2-D surface, maintaining proportional distances between electrodes and
directions from the central point of the head, which corresponds to channel Cz. This projec-
tion of electrodes in a 2-D map is shown in Figure 1d. A biharmonic spline interpolation
was also applied to calculate the values between channels.

It should be noted that, in the three mapping approaches, the spectral power values
were represented using a Jet colormap with 256 colors, ranging from dark blue (assigned to
the minimum value) to dark red (assigned to the maximum value). Furthermore, given that
the input layer of AlexNet requires a 227-by-227 input image [46] (as will be mentioned
in the next subsection), the 2-D maps obtained by the three mapping approaches were
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appropriately rescaled. In the cases of DMDi and AEP, each pixel of the image had a
different value due to interpolation. On the other hand, DMD images still maintained a
9 × 4 grid of cells, where each one covered a 25 pixel height (227/9) and 56 pixels width
(227/4) with the same color. As an example, Figure 1e shows the same EEG segment
represented with the three mapping approaches.
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(b) DMD DMDi AEP

(e) DMD DMDi AEP

Figure 1. (a) Representation of 32 EEG channels on the scalp according to the 10–20 system. (b) Dis-
tribution of 32 EEG channels in the DMD mapping scheme. (c) Distribution of 32 EEG channels
in the DMDi mapping scheme. (d) Distribution of 32 EEG channels in the AEP mapping scheme.
(e) Example of Pt values from the same segment represented with the three mapping approaches.

Finally, in order to explore complementary information between frequency sub-bands,
3-D images were also constructed by stacking the resulting 2-D maps from each of the three
mapping approaches separately. More precisely, for every EEG excerpt, the 2-D images
obtained from the parameters Pt, Pθ , Pα, Pβ and Pγ were piled to obtain 3-D cubes with a
size of 227 × 227 × 5.

2.5. AlexNet-Based CNN Models

AlexNet is the first documented large-scale, pre-trained CNN architecture, which won
the ImageNet Large-Scale Visual Recognition Challenge in 2012 [46]. Since then, AlexNet
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has been used in a variety of applications [25]. The original model was formed by eight
layers (five convolutional and three fully connected ones) with weights and ability to learn.
On the one hand, convolutional layers assist in the extraction of features, performing a
convolution operation between the input data and a kernel with different settled weights.
During the training process, a backpropagation algorithm regulates weights according
to the target using a rectifier linear unit (ReLU) as an activation function. Note that data
resulting from these layers are usually normalized and downsampled using a max-pooling
operation to reduce the spatial dimension of the feature map, while retaining the relevant
information and making the network less prone to overfitting [46]. On the other hand,
the fully connected layers ensure that all the neurons in the previous layer are connected to
all neurons in the current one, such that the number of fully connected neurons in the final
layer defines the number of output classes.

The original architecture of 2-D AlexNet is presented in Figure 2. This network
receives 2-D images with a size of 227 × 227 and three color channels as input data, which
are convolved with 96 kernels of size 11 × 11 × 3. Next, the output is normalized and
max-pooled before being transmitted to the second convolutional layer, which filters the
resulting feature space with 256 kernels of size 5 × 5 × 48. Then, the feature space is
also normalized and max-pooled before being filtered with 384 kernels of size 3 × 3 × 256.
The resulting feature space is convolved, with two layers presenting similar kernel sizes of
3× 3× 192 and 384 and 256 kernels, respectively. No pooling and normalization operations
are applied between the third and fifth convolutional layers. Furthermore, a ReLU function
is used after every convolutional and fully connected layer. Finally, the resulting feature
space is recombined using three fully connected layers with 4096 neurons each. It is
worth noting that a dropout regularization operation is performed after the first two
layers, randomly dropping out nodes during the training stage with the aim of decreasing
overfitting and improving generalization errors [47].

11×11×3
(96)

5×5×48
(256)

3×3×256
(384)

3×3×192
(384)

3×3×192
(256)

4096 4096 2

Convolution Layers

Input Output

Fully Connected Layers

Max. Pooling Layers Dropout Layers

Figure 2. Illustration of the sequential layer-based architecture of AlexNet used in this study.

Recently, this 2-D network has been extended to deal with 3-D cubes as input data [48,49].
This 3-D version of AlexNet has been achieved by modifying its original convolution and
max-pooling layers. More precisely, the five convolutional layers maintained 96, 256, 384,
384 and 256 kernels, but with sizes of 11 × 11 × 11 × 3, 5 × 5 × 5 × 96, 3 × 3 × 3 × 256,
3 × 3 × 3 × 384, and 3 × 3 × 3 × 384, respectively. Similarly, the size of the three max-
pooling layers was extended to 3 × 3 × 3.

2.6. Fine-Tuning and Learning Parameters of the AlexNet-Based Models

The original 2-D AlexNet was initially trained with a subset of the ImageNet database,
composed by more than one million images, to discern among more than 1000 classes [46].
In the present work, the original layer structure of 2-D AlexNet was adopted, except for
the last outcome layer, which was modified to deal with only two classes (i.e., calm and
distress), as can be observed in Figure 2. Nonetheless, two different training schemes for
this network were conducted. On the one hand, a pre-trained version of AlexNet was
fine-tuned by taking advantage of TL. Thus, the original weights of the AlexNet were
transferred to this study and fine-tuned during the training stage. On the other hand,
a 2-D AlexNet network with initial random weights was trained from scratch. In both
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cases, training was conducted with 40 epochs, 103 learning iterations per epoch, and a mini
batch size of 12 signals. For that purpose, a stochastic gradient descent algorithm with a
momentum of 0.9 was used. Furthermore, the initial learning rate was set to a constant
value of 0.001 during the 4120 total iterations and no learn rate drop factor was established
during the training stage. Additionally, L2 weight decay for convolutional weights was
set to 0.001 and both weights and bias were updated at each 103 iterations in the direction
of the negative gradient of the loss [50]. To avoid overfitting, the training progress was
continuously monitored, validating the network every 50 iterations by predicting the
response of the test data and calculating the loss and global accuracy on training and
test samples. Thus, it was seen that training loss outcomes were comparable with test
loss in every checkpoint, while global training accuracy was not significantly higher than
test accuracy.

In a similar way, two 3-D AlexNet models were also trained in this study. Firstly,
the weights from the original pre-trained 2-D AlexNet network were stacked five times
to deal with the 3-D cubes generated, as described in Section 2.4. Secondly, random
weights were initially established in the 3-D network. For both cases, the training stage was
conducted as aforementioned for the 2-D AlexNet models, but 250 epochs with 50 iterations
per epoch were run.

2.7. Experimental Setup and Performance Analysis

Every set of 2-D images obtained from each frequency sub-band, i.e., θ, α, β and γ
bands as well as the band covering 4–45 Hz, and from each mapping scheme proposed to
distribute the EEG channels into 2-D maps, i.e., DMD, DMDi, and AEP, were used to train
the two previously described 2-D AlexNet models. Similarly, the set of 3-D cubes obtained
for the three mapping approaches were employed to train the 3-D AlexNet networks with
known and random initial weights. To quantify the performance of the resulting CNN
model in each case, several validation cycles following a 80/20 hold-out approach were
conducted. More precisely, 10 iterations were run for each network, such that, in each one,
658 calm images (out of 822) and 586 distress images (out of 732) were randomly selected
for training. Then, the remaining images from each class were used to test the model
and values of sensitivity (Se), specificity (Sp) and accuracy (Acc) were obtained. Finally,
mean and standard deviation (std) of these performance metrics for the 10 iterations were
computed. While Se was defined as the rate of correctly classified distress EEG segments,
Sp was defined as the percentage of properly identified calm EEG segments. Finally, Acc
was computed as the total proportion of correctly detected EEG segments. These metrics
were mathematically computed as

Se =
TP

TP + FN
, (6)

Sp =
TN

TN + FP
, and (7)

Acc =
TN + TP

TN + TP + FN + FP
, (8)

where TP was the number of correctly identified distress EEG segments, TN was the
amount of correctly classified calm EEG segments, FP the number of calm segments
improperly classified as distress ones, and FN the amount of distress EEG intervals wrongly
identified as calm segments.

3. Results
3.1. AlexNet-Based 2-D CNN Models

Table 1 summarizes the classification outcomes obtained by pre-trained 2-D AlexNet
networks for each mapping methodology, described in Section 2.4, and each frequency
sub-band analyzed. As can be observed, notable differences in classification were obtained
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among the different frequency bands. On the one hand, Pθ , Pα and Pβ achieved comparable
global accuracy, ranging from 58.74% to 62.35% when discriminating between calm and
distress images. In this respect, DMDi mapping showed a slightly higher performance
for Pθ and Pβ bands, almost similar to the score achieved by Pα using DMD mapping.
However, DMD exhibited lower dispersion among validation cycles than DMDi and AEP
mappings. In this respect, values lower than 8% were reported for all the performance
indices with DMD representation, whereas higher values of std were reported for DMDi
and AEP schemes, especially for the Sp index. On the contrary, std values lower than
3% were reported for Acc, regardless of the mapping scheme used. It is worth noting
that average Se and Sp metrics were unbalanced on these frequency sub-bands, showing
the same trend for the three mapping approaches. Indeed, the ability to detect correctly
distress images was between 10 and 15% higher than that used to detect calm images in α
and β sub-bands, and around 30% higher for θ sub-band, when DMD and DMDi mapping
schemes were used.

Table 1. Classification results reported by pre-trained AlexNet networks for 2-D images obtained
from Pθ , Pα, Pβ, Pγ and Pt using DMD, DMDi and AEP mapping schemes.

DMD DMDi AEP

Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%)

Pθ
Mean 77.26 43.36 61.29 74.76 48.42 62.35 66.95 53.49 60.61

Std 2.42 3.17 2.43 3.35 11.48 1.75 13.68 16.83 2.07

Pα
Mean 65.30 56.16 61.00 68.23 52.67 60.90 65.12 51.58 58.74

Std 3.58 7.15 0.42 12.79 19.20 1.54 4.49 4.32 0.09

Pβ
Mean 68.29 50.48 59.90 63.23 58.97 61.23 61.95 59.79 60.94

Std 6.45 7.52 1.05 3.93 6.74 0.48 10.16 12.76 1.02

Pγ
Mean 81.8 83.2 82.4 79.9 82.9 81.3 82.5 82.7 82.6

Std 1.98 2.77 0.69 1.49 1.37 0.45 2.18 2.23 0.53

Pt
Mean 85.24 84.25 84.77 80.67 82.60 81.58 83.66 84.52 84.06

Std 0.62 3.02 0.44 1.52 2.86 0.66 0.39 0.95 0.35

Conversely, the performance shown by the γ sub-band was notably higher than in
the other frequencies. Firstly, average accuracies were comparable, ranging from 81.3% for
DMDi mapping to 82.6% for AEP mapping. This improvement represents an increase of
more than 20% with respect to the other frequency sub-bands. Secondly, std values lower
than 3% were observed for Se and Sp and than 1% for Acc. Finally, Se and Sp metrics were
well-balanced, reporting differences lower than 3%. The average performance outcomes
obtained when the whole frequency band was considered (Pt) were very similar to those
obtained by Pγ. However, the global accuracy increased by 2%, reaching a final value of
84.77% when DMD mapping was used.

Regarding the 2-D AlexNet-based CNN models with random initial weights, Table 2
summarizes the main classification outcomes in terms of mean and std for the 10 validation
cycles. In general terms, lower values of Acc than the pre-trained CNN models were
provided for all the images obtained from the diverse frequency sub-bands and mapping
approaches. More precisely, decreases of about 1 and 2% in values of Acc were noticed
for Pθ , Pα and Pβ when the DMD mapping was used. The decrease in Acc was still more
notable for the AEP mapping, reaching values between 2 and 4% lower than with the
pre-trained 2-D networks. Moreover, it is worth noting that average values of Se and
Sp were significantly unbalanced, especially when the AEP mapping was used. For this
mapping approach, high std values among the 10 validation cycles were noticed in terms
of Se and Sp for most of the frequency sub-bands.
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Table 2. Classification results reported by AlexNet networks with random initial weights for 2-D
images obtained from Pθ , Pα, Pβ, Pγ and Pt using DMD, DMDi and AEP mapping schemes.

DMD DMDi AEP

Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%)

Pθ
Mean 69.13 47.77 59.07 80.95 32.11 57.94 81.48 29.20 56.85

Std 10.71 11.18 1.25 11.37 29.33 1.44 20.22 28.48 1.39

Pα
Mean 74.70 44.86 60.65 74.70 44.86 60.60 87.04 21.32 56.09

Std 13.20 39.65 2.27 13.20 39.65 2.27 14.48 39.41 1.65

Pβ
Mean 55.49 64.73 59.84 71.49 39.73 56.53 61.20 53.00 57.34

Std 8.31 9.50 0.72 21.32 38.92 0.66 5.43 10.86 0.48

Pγ
Mean 76.83 76.88 76.85 80.56 73.80 77.38 75.84 80.22 77.90

Std 3.64 6.18 0.22 1.14 1.31 1.54 0.20 1.58 0.29

Pt
Mean 76.75 80.91 78.71 80.03 79.79 79.92 76.83 76.88 76.85

Std 2.29 1.43 0.18 1.11 4.75 2.29 3.64 6.18 0.23

The same falling trend was also noticed in the classification performance exhibited
by Pγ. In this case, Acc values of 76.85%, 77.38% and 77.90% were obtained for DMD,
DMDi and AEP mappings, which represented decreases of 6, 4 and 5%, respectively,
in comparison with those obtained by the pre-trained 2-D AlexNet-based CNN networks.
Nonetheless, in this frequency sub-band, values of Se and Sp were balanced for the three
mappings, and the dispersion among validation cycles was notably lower than in Pθ , Pα

and Pβ. As in the case of the pre-trained CNN models, the outcomes obtained for the
frequency sub-band covering 4–45 Hz were similar to those reported by the γ sub-band.
Thus, a poorer performance between 2 and 7% was noticed in this case.

3.2. AlexNet-Based 3-D CNN Models

The classification results obtained by 3-D AlexNet-based CNN networks, both with
initial weights transferred from the pre-trained 2-D AlexNet (i.e., making use of TL) and
with random initial weights (i.e., without using TL), are presented in Table 3 for the three
mapping approaches. No great differences were noticed among DMD, DMDi and AEP
mapping schemes, but, in both cases, the best results were reported by the first mapping
approach. It is also interesting to note that about 3% higher values of Acc were always
obtained when 3-D CNN models were initialized with the weights transferred from the
original pre-trained 2-D AlexNet. Moreover, lower values of std among the 10 validation
cycles, as well as more balanced values of Se and Sp (especially for DMDi and AEP
mapping schemes), were also noticed in that case.

Table 3. Classification results reported by AlexNet-based CNN networks with initial weights transferred from the pre-
trained 2-D AlexNet and with random initial weights for 3-D cubes obtained with DMD, DMDi and AEP mapping schemes.

Initials DMD DMDi AEP

Weights Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%)

Known Mean 87.11 84.77 86.12 85.25 84.32 84.87 83.48 85.25 84.18
(with TL) Std 0.71 1.18 1.25 1.37 1.77 1.44 0.88 1.48 1.39

Random Mean 82.42 83.27 82.87 77.32 84.71 81.23 75.32 85.15 80.52
(without TL) Std 5.39 6.90 4.05 3.42 2.86 3.6 3.42 4.31 2.14

4. Discussion

The understanding of how emotions are generated and regulated has become the
focus of interest in recent years, fostering the appearance of what is known as the sci-
ence of emotion regulation [51]. In the literature, a wide range of works which face the
challenge of emotion recognition from different perspectives can be found. Nonetheless,
to the best of our knowledge, this is the first work focused on distress identification from
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spectral features of the EEG signal with 2-D and 3-D CNN-based models. The results
obtained corroborate the hypothesis that evaluating all brain locations simultaneously
with a CNN-based classifier represents an enhancement of the outcomes with respect to
the analysis of single and isolated EEG channels, traditionally conducted with machine
learning algorithms. To this respect, Table 4 shows information from recent studies dealing
with stress recognition using EEG spectral features and machine learning classifiers. As can
be observed, the classification results obtained by these works presented accuracy values
between 57 and 80% [15–18,52], which are significantly lower than those obtained in the
present study by all pre-trained 2-D and 3-D AlexNet-based networks.

It is important to remark that these studies must be compared with caution, be-
cause most of them used different methodologies and experimental protocols, where
substantial changes in the number of participants, EEG electrodes, and emotion elicitation
ways were found. Nonetheless, two studies included in Table 4, i.e., works [15,52], used the
same public database as in the present work, and thus a direct and fair comparison could
be established. In this case, the use of pre-trained 2-D and 3-D CNN-based classification
models has reported an improvement of around 10–15% with respect to the accuracy
obtained by common machine learning classifiers in [15,52]. This outcome is in line with
previous studies where deep learning methods have outperformed the results reported by
traditional machine learning classifiers, such as SVM and decision trees, for the recognition
of different valence and arousal levels [53].

Table 4. Comparison of the present study with other works detecting stress from power spectral
features of EEG signals and machine learning classification algorithms.

Work Experiment Classifier Results

Jebelli et al. [16]
7 subjects

SVM Max Acc: 80.32%14 EEG channels
Construction work

Shon et al. [15]
32 subjects

k-NN Max Acc: 71.76%32 EEG channels
Videoclips

Ahn et al. [17]
7 subjects

SVM Max Acc: 77.90%2 EEG channels
Eyes open and close

Arsalan et al. [18]
28 subjects SVM, NB 1 and

MLP 2
57–71% with all
frequency bands4 EEG channels

Resting pre and post-activity

Hasan & Kim [52]
32 subjects

k-NN Max Acc: 73.38%32 EEG channels
Videoclips

This work
32 subjects 2-D AlexNet

3-D AlexNet
Max Acc: 84.77%
Max Acc: 86.12%32 EEG channels

Videoclips
1 NB: Naive Bayes; 2 MLP: Multilayer perceptron

For the three mapping approaches, the best classification outcomes using 2-D CNN-
based networks were reported by the relative power obtained from the frequency band
covering 4–45 Hz, i.e., Pt. The relevance of this power measure with respect to the sub-
bands θ, α, β and γ has also been previously described in another study of emotion
recognition from EEG signals with CNNs [54]. This could be explained by the fact that
these frequency sub-bands are involved in emotional processes, although with a different
degree of significance depending on the emotional state. Indeed, classification results
obtained by Pγ were notably higher than those obtained by the remaining sub-bands. Thus,
an improvement of more than 20% of accuracy with respect to Pθ , Pα and Pβ was noticed for
the three mapping schemes, when discerning between calm and distress. The brain activity



Sensors 2021, 21, 3050 11 of 15

in the sub-band γ has already been strongly related to emotional processes, with a special
intensity for negative stimuli [55]. Indeed, the induction of negative emotions has reported
a higher level of activity in this sub-band with respect to positive and neutral stimuli
in healthy subjects [56,57]. Moreover, in previous works Pγ has also reported a notable
increment in frontal and parietal regions under stressful conditions during task-switching
activities [58]. The waves γ reflected on the EEG have also allowed for the differentiation
of worry from relaxation and baseline, with an increase in activity in the sub-band γ for
the case of patients with anxiety disorder [59].

In the literature, other research has also applied 2-D CNN-based approaches for
the classification of different emotions by means of EEG spectral features using similar
mapping approaches. In this respect, Li et al. [19] used a mapping scheme similar to
DMDi for the representation of spectral power values from four different emotional states.
The maximum classification accuracy ranged between 50% and 75%, depending of the
window time size selected to estimate spectral features from the EEG channels, and using a
combination of CNN and long–short-term memory recurrent neural networks [19]. On the
other hand, Li et al. [60] represented spectral features in AEP maps for the identification
of depression using different CNN-based classifiers. The accuracy outcomes obtained for
the spectral power of the whole frequency band ranged between 76 and 80%, depending
on the hyper-parameters used in each CNN model [60]. Although comparisons should
be carefully established, the present study outperformed the results from these works,
achieving accuracy values of about 85%. This improvement could be a consequence of the
different focuses of these works, since the emotional states under study are different in
each case.

Another strength of the present work regarding the aforementioned studies is the
use of pre-trained AlexNet-based networks, instead of CNN-based models constructed
and trained from scratch [19,60]. According to the literature, the use of TL methodologies
and fine-tuning parameters to adapt pre-trained networks to different problems could
have some advantages over networks constructed from scratch [34]. On the one hand,
the number of samples needed to train a CNN from scratch is large due to the high number
of parameters that need to be settled. Instead, TL provides an effective way of training
complex network architectures using scarce data without overfitting [61]. Furthermore,
hyper-parameters have to be configured randomly and then readjusted when a CNN is con-
structed from scratch, thus requiring extensive computational and memory resources [62].
On the contrary, hyper-parameters only have to be refined when using pre-trained net-
works. Therefore, most weights are maintained and only a few are filtered to adapt the
network to the current classification problem, thus achieving better generalization and
outperforming other models constructed from scratch. Accordingly, the results obtained in
the present work were better when TL was used to maintain initial weights in pre-trained
2-D and 3-D AlexNet-based networks than when random initial weights were established
in similar classifiers, regardless of the mapping approach. Thus, in addition to obtaining
values of Acc between 3 and 6%, better, more balanced values of Se and Sp and lower
dispersion among validation cycles were noticed in the first case.

To assess the criticality of representing neural information in 2-D images used as input
data for CNN-based classifiers, three different mapping approaches have been evaluated.
All DMD, DMDi, and AEP maps preserved the topology information in EEG channels,
since they were distributed to resemble the actual location of the electrodes over the
scalp. The difference is that DMD and DMDi were a direct reorganization of all EEG
channels in a 9 × 4 matrix, without considering their relative locations, and the AEP
model was a projection of the electrodes into a 2-D image. In this last case, the proportions
of distance and direction of the EEG channels with respect to a reference point were
regarded. In terms of classification performance, the results obtained by the three mapping
approaches in each frequency sub-band were similar, with slight differences in values
of Acc around 1–3%. Consequently, the spatial information provided by preservation of
proportional locations of the EEG channels within AEP images seems not to imply a notable
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improvement regarding the matrix distribution of the electrodes in DMD and DMDi maps.
Furthermore, interpolation between electrodes in the matrix distribution did not entail
substantial changes between classification results reported by DMD and DMDi maps. As a
result, selection of one of these three mapping approaches would not be crucial to discern
between emotional states of calm and distress from EEG recordings. A similar finding has
also been obtained in a previous work that compares different mapping approaches to
detect high and low levels of arousal and valence with a CNN-based classifier [63]. More
precisely, in that work, four matrix distributions with random positions of the EEG channels
and two DMD-based schemes were analyzed [63]. No relevant differences were obtained
among the six mapping options, thus suggesting that the distribution of EEG channels
into 2-D maps does not play a key role in identifying different emotional processes [63].
On the contrary, the presence of information from all EEG channels, instead of only single
locations, could be more essential than the distribution of the electrodes in the images.

Similarly, no great improvement in distress detection was noticed when 2-D images
were stacked to construct 3-D cubes with simultaneous information from all analyzed fre-
quency sub-bands (i.e., θ, α, β, γ, and the whole frequency band covering 4–45 Hz). Indeed,
for the three mapping approaches, 3-D AlexNet-based CNN networks only reported values
of Acc 1–2% greater than 2-D classifiers. This result was observed both when the networks
maintained initial weights from previous pre-training and when they used random initial
weights. The fact that the sub-band γ seems to contain the most relevant information to
discern between emotional states of calm and distress could explain that outcome. Indeed,
2-D AlexNet-based classifiers have provided no relevant classification differences between
using 2-D maps from the sub-band γ or from the frequency band covering 4–45Hz, thus
suggesting that no complementary information exists among the analyzed spectral regions.

To bring any of our CNN-based systems to the real world, we will embed it into a
programmable logic device. Although it is well-known that CNN-based algorithms are
computationally intense and require vast computational resources and dynamic power for
computation of convolutional operations, in recent years, some programmable devices have
been specifically developed to run these kinds of algorithms in real-time [64]. In this respect,
some researchers have already successfully tested a variety of hardware implementation
methods for different CNN-based structures, mostly based on field-programmable gate
arrays (FPGA) architectures [65,66]. In fact, at present there are available commercial
FPGA-based systems designed for vision artificial intelligence, which can be configured for
enhancing the acceleration of vision applications. Interestingly, they contain implemented
CNN-based algorithms which can be adapted and tuned for diverse applications [67].
Hence, bearing in mind that technical requirements of our system would be considerably
limited regarding those needed by common vision artificial intelligence applications,
its implementation in such embedded devices will be feasible. Indeed, our system only
analyzes a 227× 227× 3 image each five seconds, and its computational load can, therefore,
be considered notably low in comparison with other applications requiring real-time image
processing with CNN-based methodologies.

Finally, some limitations should be considered. Firstly, every CNN-based algorithm
does not allow for understanding the rationale behind its classification results. Thus, it is
not possible to give a clinical interpretation of the outcomes, since functional dependencies
between input and output information are completely hidden [68]. On the other hand,
the database from which the EEG signals were extracted was not specifically created for
recognition of calm and distress, since it contains samples corresponding to emotions
in the whole valence/arousal space. Moreover, although the DEAP database presents
interesting advantages, such as it being freely available and able to obtain comparable
results with other previous studies, it contains a limited number of subjects. Additionally,
the number of calm and distress samples for each subject is not completely balanced,
and some subjects do not present samples from both emotional states. These two aspects
aimed for all samples to be considered together for training and testing the CNN-based
models, regardless of the subject they came from, such as in some previous works [29].
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Nonetheless, because this approach could lead to some overfitting, additional experiments
considering separate subjects for training and testing every classifier were also conducted.
In this respect, the pre-trained 2-D and 3-D AlexNet-based CNN networks were trained
and tested through 10 validation cycles, where, in each one, the participants randomly
selected for training had approximately the 80% of the samples, and the remaining ones
were used for testing. In this case, for the three mapping approaches, only values of Acc
about 3–4% and 1–2% lower than those presented in Section 3 were noticed for pre-trained
2-D and 3-D classifiers, respectively, thus suggesting that the proposed algorithms for
distress recognition were not significantly overtrained.

5. Conclusions

The present work has introduced, for the first time, the use of 2-D and 3-D CNN-based
classifiers to discern emotional states of calm and distress by taking advantage of the
brain’s behavior as a synchronized network. Thus, receiving 2-D and 3-D spectral maps
constructed from common 32 channel EEG recordings as input data, the algorithms have
provided significantly better classification of both emotions than previous methodolo-
gies based on combining isolated information from different brain regions with machine
learning algorithms. Moreover, the use of pre-trained CNN-based classification models
has also improved the diagnostic accuracy reported by other similar deep learning algo-
rithms trained from scratch, thus highlighting the usefulness of transfer learning in distress
recognition. Finally, no significant differences between the results provided by the three
approaches considered to reconstruct 2-D spectral maps were noticed, then suggesting an
independency of the distribution of the EEG electrodes in the maps.
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