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Abstract: The seam tracking operation is essential for extracting welding seam characteristics which
can instruct the motion of a welding robot along the welding seam path. The chief tasks for seam
tracking would be divided into three partitions. First, starting and ending points detection, then,
weld edge detection, followed by joint width measurement, and, lastly, welding path position
determination with respect to welding robot co-ordinate frame. A novel seam tracking technique
with a four-step method is introduced. A laser sensor is used to scan grooves to obtain profile data,
and the data are processed by a filtering algorithm to smooth the noise. The second derivative
algorithm is proposed to initially position the feature points, and then linear fitting is performed to
achieve precise positioning. The groove data are transformed into the robot’s welding path through
sensor pose calibration, which could realize real-time seam tracking. Experimental demonstration
was carried out to verify the tracking effect of both straight and curved welding seams. Results
show that the average deviations in the X direction are about 0.628 mm and 0.736 mm during the
initial positioning of feature points. After precise positioning, the average deviations are reduced to
0.387 mm and 0.429 mm. These promising results show that the tracking errors are decreased by up to
38.38% and 41.71%, respectively. Moreover, the average deviations in both X and Z direction of both
straight and curved welding seams are no more than 0.5 mm, after precise positioning. Therefore,
the proposed seam tracking method with four steps is feasible and effective, and provides a reference
for future seam tracking research.

Keywords: welding robot; seam tracking; laser sensor; feature point extracting; complex welding seam

1. Introduction

Mechanical robots have become crucial for modern welding owing to high-volume
profitability since manual welding yields low production rates [1]. Robotic welding brings
different favorable circumstances, for instance, it has made strides in efficiency, weld
quality, adaptability and workspace use, and it diminishes work costs in addition to
focused unit cost [2].

Be that as it may, most welding robots still work in the working mode of “teach and
playback” and their adaptability is not enough when the welding object or other conditions
are changed [3]. Since welding as an empirical process is influenced by numerous factors,
such as the mistakes of pre-machining, fitting of work pieces, and in-process defects, can
result in variation in welding seam. However, welding robots in teach and playback
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mode have no such capacities and typically weld a weldment with many defects and
poor penetration [1].

There are generally three stages in robotic welding: (i) preparation—calibration,
robot programming, and weld parameter, work-piece setting, (ii) welding—seam tracking,
alternation of weld parameters in real time, (iii) analysis—weld quality inspection [4]. The
seam tracking operation is essential for extracting weld seam characteristics which can be
fed into the controller of welding robot to instruct the motion of the robot along the welding
seam path. Seam tracking technology with laser vision sensing has the advantages of no
contact, fast speed, and high precision, which are the keys to realizing welding automation
and intelligence [5,6].

In order to fulfill the required welding accuracy for robotic welding, a seam tracking
algorithm that enables the robot to plan its path along the actual welding line is necessary.
Therefore, many studies have been conducted on automatic seam tracking using sensors
such as tactile, touch, probe, vision sensors [7,8], laser sensors [9,10], arc sensors [11,12],
electromagnetic sensors [13,14], and ultrasonic sensors [15,16]. The sensors have a very
important role in robotic seam tracking; the chief tasks would be weld starting and ending
points detection, weld edge detection, joint width measurement.

A basic laser sensor consists of three parts: laser diode, CCD camera, and filter. The
laser diode could produce a stripe or dot which would be scanned by the camera. The
CCD camera is always fixed at an angle to the laser to capture properly the projection
of laser on the work piece [17]. The welding seam tracking system based on laser vision
combines laser measurement and computer vision technology. It has the advantages of rich
information acquisition, obvious welding seam characteristics, and strong anti-interference
ability [18,19], which are suitable for real-time tracking systems. The mathematical model
of transforming the laser feature points pixel coordinate to the three-dimensional coor-
dinate of the welding feature points by designing the mechanical structure of the sensor
was proposed [20].

Chen et al. [21] proposed a feature points positioning method that only needs two
profile scans, which can effectively calculate the initial position of the weld. Chang et al. [22]
filtered, derived and convolved the weld profile data, and located the feature points by
finding the local maxima. Wang et al. [23] established welding seam profile detection
and feature points extracting algorithms based on a NURBS-snake and visual attention
model, and verified their effectiveness. Mastui et al. [24] introduced an adaptive welding
robot system controlled by laser sensor for welding of thin plates with gap variation in
single pass.

In a flexible welding process, Ciszak et al. [25] developed a low-cost system for
identifying shapes in order to program industrial robots for a welding process in two
dimension. The programming of industrial robots was to detect geometric shapes proposed
by humans and to approximate them. Based on this, the robot could weld the same profiles
on a two-dimensional plane. This is time-consuming as many welding robot applications
are programmed by teach and playback, which means that they need to be reprogrammed
each time they deal with a new task. Hairol et al. [26] suggested an alternative approach
that can automatically recognize and locate the butt-welding position at starting, middle,
auxiliary, and end point under three conditions which are (i) straight, (ii) saw tooth, and
(iii) curve joint. This was done without any prior knowledge of the shapes involved. As an
automatic welding process may experience different disturbances, Li et al. [27] proposed a
robust method for identifying this seam based on cross-modal perception so as to precisely
identify and automatically track the welding seam.

Wojciechowski et al. [28] proposed the method of automatic robotic assembly of two
or more parts placed without fixing instrumentation and positioning on the pallet, which
could support a robotic assembly process based on data from optical 3D scanners. The
sequence of operations from scanning to place the parts in the installation position by an
industrial robot was developed. Suszynski et al. [29] presented the concept of using an
industrial robot equipped with a triangulation scanner in the assembly process in order to
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minimize the number of clamps that could hold the units in a particular position in space
based on the proposed multistep processing algorithm.

These efforts have brought about many improvements in the feature points of the
target weldment. However, there are certain limitations in the positioning accuracy due
the factors such as the change of the welding type (especially oriented to complex welding
seam) or the surface defects of the welding.

Due to these circumstances, we here introduce a novel seam tracking technique with a
four-step method. First, a laser sensor is used to scan the groove of the weldment to collect
profile data; then the data are processed by a filtering algorithm to smooth the noise; next,
the second derivative algorithm is proposed to initially locate the feature points based on
linear fitting to accurately locate the feature points; finally, according to the results of the
sensor pose calibration, the three-dimensional coordinates in the base coordinate system
of the welding robot are calculated from the two-dimensional coordinates of the image
feature points, and the path planning is completed, with both the line and curve of the
Y-shaped groove being targeted as well. The proposed seam tracking technique is tested
and verified by way of experimental investigation.

Our proposed seam tracking technique with a four-step method utilizes edge detection
and curvature recognition techniques based on laser scan data. The offset of the welding
robot’s motion with respect to the welding seam is measured by a laser sensor. By adding
a differential point searching method, the feature points of the cross-section of the welding
seam are found. Comparing to other seam tracking algorithms, we show the improvement
of the required welding accuracy oriented to complex welding seam through theoretical
proof, simulation, and experiments.

This paper is organized as follows: Section 2 presents the seam tracking system
composition; Section 3 introduces the seam tracking methodology with four steps; Section 4
shows the results of the experimental investigation based on the proposed seam tracking
technique; Section 5 gives the conclusion and perspective.

2. Seam Tracking System Composition

The experimental platform composition of the six-axis robot arm for seam tracking
system is detailed in Figure 1. As evident in Figure 1, this experimental platform is mainly
composed of the motion execution mechanism with six degrees of freedom, laser vision
sensor, D/A conversion module, and industrial computer, robotic controller, welding
equipment, i.e., welding power supply and wire feeding device, etc.

The execution mechanism is composed of two welding robots, and each of them has
six degrees of freedom. The offset of the welding robot’s motion with respect to the welding
seam is measured by a laser vision sensor. Through robotic welding experiments, images
of molten pool morphology and welding geometry under different welding parameters
can be obtained. The main tasks for seam tracking would be weld starting and ending
point detection, weld edge detection, joint width measurement, and weld path position
determination with regard to welding robot co-ordinate frame.
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Figure 1. Diagram of seam tracking system. 

  

Figure 1. Diagram of seam tracking system.

3. Seam Tracking Methodology with Four Steps

In this paper, we introduce a novel seam tracking technique with a four-step method:
scanning, filtering, feature points extracting, and path planning. Firstly, the profile infor-
mation is obtained by scanning the groove with a laser sensor; then, the data are filtered to
smooth the noise; next, the feature points are extracted by the combination of the second
derivative algorithm and linear fitting; finally, the data of the feature points are converted
into the welding seam path of the robot, guiding the welding torch to move and realize the
real-time tracking of the welding seam. The flowchart of the proposed four-step method is
revealed in Figure 2.
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Figure 2. Flowchart of the four-step method for (a) scanning; (b) filtering; (c) feature points extracting; and (d) path planning.

3.1. Scanning and Filtering

The purpose of scanning is to obtain the original data of the weldment groove profile,
which is the basis for realizing seam tracking [30]. The laser sensor obtains the distance
information of the measured object based on the principle of triangulation and then
processes the scan data to obtain the profile feature of the measured object. While scanning,
the sensor is fixed at the end-effector of the robot and parallel to the welding torch to ensure
that the line laser is perpendicular to the measured object [31], covering the groove to the
greatest extent, and at the same time, the welding robot is constantly moved to obtain the
overall shape of the welding seam.
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The combination of limiting filter and Gaussian filter is used to process the groove pro-
file data obtained by scanning. The former is used to remove the pulse interference caused
by accidental factors. The latter is used to smooth the data [32]. The data are processed
using limiting filtering by comparing the absolute value of the difference between two
adjacent sample values and the size of the threshold. Its principle can be expressed as [33]:

y =

{
yn |yn − yn−1| ≤ ∆T
yn−1 |yn − yn−1| > ∆T

, (1)

where yn and yn−1 are the current and last sampled signal values, respectively, and ∆T
represents the specified threshold.

Gaussian filtering is a type of linear smoothing filtering method that selects weights
according to the shape of the Gaussian function. It is very effective in suppressing the
noise that obeys the normal distribution [34], and the Gaussian function has good proper-
ties of symmetry, differentiability, and integrability. The function can accurately identify
the discontinuous points of the signal, which is very beneficial for the subsequent fea-
ture points extracting. The expression of the one-dimensional Gaussian function can be
described as [35]:

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2)

where µ is the mean value, which determines the position of the function, and σ is the
standard deviation, which determines the magnitude of the distribution.

3.2. Feature Point Extracting

The feature points of the weldment are generally the corner points of the groove sec-
tion, and its information can reflect the overall situation of the groove profile [36], so feature
point extracting is required. This is done according to the cross-sectional characteristics of
the weldment groove, combined with the related properties of the function discontinuities
listed in Table 1. The groove feature points could be classified as follows: A, B, E, F, which
are the first type of feature points, and C, D, which are the second type of feature points, as
shown in Figure 3.

Table 1. Properties of discontinuous points of function.

Discontinuous Points Type Amplitude First Derivative Second Derivative

The first continuity Step mutation extremum
The second continuity non-existent /
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Based on the above analysis, the feature points can be located by determining the
types of feature points contained in the groove section, and then deriving them to find the
extreme points.
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3.2.1. Initial Positioning of Feature Points

The preliminary positioning method of the groove feature points is as follows: First,
the original data are processed by filtering, and then the first derivative is obtained by the
forward difference method and the extreme points are found to determine the first type
of feature points, as compared in Figure 4. The abscissa and the ordinate, respectively,
represent the X and Z axes of the sensor coordinate system.
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Figure 4. Initial positioning of feature points for (a) the first type of feature points; and (b) all feature points.

It can be seen from the above figures that the maximum point of the first-order guide
falls between the line segment BC and DE, and fails to accurately correspond to B and E.
This is because the groove of the weldment under actual conditions needs to be machined,
and its blunt edge is not a vertical line in an ideal state, but a diagonal line. Therefore,
the second type of feature points are transformed into the first type, and the first-order
derivative can be continued to differ, and the second-order derivative can be obtained
and the point with the highest value can be found to locate all the feature points, as
shown in Figure 4. So far, the six characteristic points of the trapezoidal groove have been
preliminarily determined, and their location information is listed in Table 2.

Table 2. Results of initial positioning.

Feature Points A B C D E F

X/mm −5.67 −3.37 −3.02 0.72 1.11 3.59
Z/mm −1.35 2.89 6.03 6.01 3.15 −1.02

3.2.2. Precise Positioning of Feature Points

Due to the defects on the surface of the weldment, as given in Figure 5, the feature
points obtained through preliminary positioning are b and c, while the true feature point
should be a, which is clearly a deviation. Therefore, on the basis of preliminary position-
ing, linear fitting is performed on each segment of the groove to accurately locate the
feature points.
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Suppose any straight-line equation to be fitted is y = ax + b, and the calculation of
equation parameters can be written as [37]:

[
a
b

]
=


n
∑

i=1
x2

i

n
∑

i=1
xi

n
∑

i=1
xi n


−1

·


n
∑

i=1
xiyi

n
∑

i=1
yi

, y =

{
yn |yn − yn−1| ≤ ∆T
yn−1 |yn − yn−1| > ∆T

(3)

where a is the slope, b is the intercept, (xi, yi) is the point passing through the straight line,
and n is the number of points.

The fitting results are shown in Figure 6, and the relevant parameters of the straight
line are illustrated in Table 3.
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Table 3. Parameters of fitting straight line.

Fitting Straight Line 1 2 3 4 5 6 7

SSE 0.08 0.44 0.39 0.15 0.50 0.15 0.21
R-squared 0.85 0.99 0.95 0.87 0.97 0.99 0.81

Among them, SSE is the sum variance, which calculates the sum of squared errors
between the fitting data and the corresponding points of the original data. The smaller the
value, the better the fitting affects; R-squared is the coefficient of determination, which is
used to characterize the quality of the fitting [38]; the closer its value is to 1, the better the
fitting affects. It is easy to know that the fitting effect of each straight line is better. The
results of precise positioning of the feature points are listed in Table 4. So far, the feature
points extracting of the profile for the trapezoidal groove section would be completed.

Table 4. Results of precise positioning.

Feature Points A B C D E F

X/mm −5.73 −3.31 −3.04 0.78 1.10 3.76
Z/mm −1.39 3.07 5..98 5..99 3.22 −1.18
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3.3. Path Planning

Because the data measured by the laser sensor are based on their own coordinate
system, it is necessary to convert the feature points to the base coordinate system of the
welding robot through pose calibration [39].

The relationship between two coordinate systems of the robot is depicted in Figure 7.
The sensor calibration is to determine the transformation matrix E

ST of {S} relative to {E}.
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This paper uses the multipoint method for calibration [40]. The main steps are as follows:

1. Select a point P on the weldment, make the end of the welding torch this point, and
record the position of P in the {B} coordinate system BP = (xB, yB, zB, 1)T, as shown in
Figure 8a.

2. Move the robot so that the laser line of the sensor passes through this point, and
record the position of P in the {S} coordinate system SP = (xS, 0 zS, 1)T, as shown in
Figure 8b.

3. Switch the current tool coordinate system of the robot to {E}, record the pose data of the
robot at this time, and from the Euler rotation equation, B

ER can be expressed as [41]:

B
ER =

 cos α − sin α 0
sin α cos α 0

0 0 1

 ·
 cos β 0 sin β

0 1 0
− sin β 0 cos β

 ·
 1 0 0

0 cos γ − sin γ
0 sin γ cos γ

 =

 R11 R12 R13
R21 R22 R23
R31 R32 R33

, (4)

where α, β, γ are the rotation angles of the X, Y, and Z axes of the tool coordinate system
{E}, respectively.
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Then, B
ET can be simplified to

B
ET =

[ B
ER EP

0 0 0 1

]
, (5)

where EP = (xE, yE, zE)T, that is, the position of point P in the tool coordinate system {E}
after the coordinate system is switched.

According to the transformation relationship of point P in space:

BP = B
ET · EST · SP, (6)

where the definition of each parameter in the formula is consistent with the above.
Since E

ST contains 12 unknowns, at least 3 different fixed points need to be selected to
solve the problem. The calibration results in this paper are as follows:

E
ST =


0.998 −0.423 −0.590 75.098
−0.014 0.278 −0.026 6.693
0.002 0.865 −0.814 303.131

0 0 0 1

, (7)

At this point, the pose calibration of the sensor is completed. For any known points
SQ in its coordinate system, the formula to transform it into the robot base coordinate
system can be written as

BQ = B
ET · EST · SQ, (8)

where BQ and SQ are respectively the position of point Q in the coordinate system {B} and
the coordinate system {S}; E

ST is the calibration result of Equation (4); the definition and
calculation of E

ST follow step 3.

4. Experimental Procedures

Experimental demonstration had been carried out at the proposed seam tracking
method with four steps to guide the movement of the welding torch under actual testing
conditions. Figure 9 reveals the prototype of whole experimental system, which mainly
includes ABB IRB 1410 welding robot, IRC5 controller, LS-100CN laser sensor, Ehave CM350
welding power supply, RS-485 communication module, and an industrial computer.
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In this paper, two typical weldments with materials of A304 stainless steel are selected
as the welding objects, the physical prototypes of two typical welding grooves are illus-
trated in Figure 10, and the groove parameters of the weldment with straight line and
curve are listed in Table 5.
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Table 5. Groove parameters of weldment.

Welding Type Dimension/mm Thickness/mm Slope Angle/◦ Blunt Edge/mm

Straight line 100 × 60 8 45 2.5
Curve 130 × 70 10 60 3

When scanning the welding groove, the laser sensor is set to the trigger mode, and
the welding robot is constantly moved to obtain the overall shape characteristics of the
welding seam. The process of scanning two typical welding grooves by the laser sensor is
represented in Figure 11.
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Before the experiment, we mark the starting and ending points of the welding path on
the weldment, and then the straight and curved grooves are respectively taught a section
of motion trajectory in the model of “teach”, as shown in Figure 10. The red point is the
teaching point, which is the position of the end point of the robotic welding torch. Multiple
teaching points are connected to form a welding trajectory, and the pose data of the teaching
trajectory in the welding torch coordinate system will be recorded simultaneously, which
is used as a reference to calculate the experimental deviation.

During the experiment, if the straight groove is taken as an example, let us first move
the end-effector of the robot, i.e., the welding torch, along the teaching trajectory. When it
reaches reference point L1, as shown in Figure 10a, the laser sensor will be turned on to scan
the welding groove and collect data. At the same time, the current tool coordinate system of
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the welding robot will be switched to the end coordinate system, the position and posture
data of the end coordinate system are obtained in real time through the API interface of the
welding robot, and the sampling period is consistent with that of the laser sensor.

The welding robot continues to move. When the end of the welding torch moves to
reference point L2, as shown in Figure 10a, the laser sensor will be turned off, the data
transmission of the API interface is stopped, the data collection is completed. According
to the feature points of the groove, the center point of the welding torch is calculated;
according to the position and posture data of the end coordinate system obtained by API
interface, the trajectory reference point is calculated. Through the calibration matrix of laser
sensor (Formula (7)), the position data of the welding torch center point is transformed
into the welding robot end coordinate system, and then through the calibration matrix of
welding torch, it is transformed into the welding torch coordinate system.

After the above process, the groove data collected by the laser sensor are transformed
into the center point data of the robotic welding torch, and the end coordinate system data
collected by the API interface are transformed into the trajectory reference point data. The
experimental results of two different welding grooves of straight and curved lines with
both initial positioning and precise positioning using the proposed seam tracking method
are compared in Figure 12.
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Figure 12. Experimental results of (a) straight line with initial positioning; (b) straight line with precise positioning; (c)
curve with initial positioning; and (d) curve with precise positioning.

The accuracy of the feature points positioning method is evaluated by comparing
the deviation between the calculated welding center point and the actual welding torch
end point. Among them, the average deviation d (mm) represents the average value of
the difference between each welding center point and the end point of the welding torch;
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the deviation degree p (%) indicates the deviation degree of the deviation in this direction
relative to the entire groove. The average deviation d (mm) and deviation degree p (%) can
be written as:

dx =
1
n

n

∑
i=1

(
xtcp(i) − xt(i)

)
, dz =

1
n

n

∑
i=1

(
xtcp(i) − zt(i)

)
, (9)

where dx and dz are the average deviation in the X and Z directions, respectively. xtcp(i) and
ztcp(i) are the coordinates of the welding center point, xt(i) and zt(i) are the coordinates of
the trajectory reference point, respectively. n is the number of points.

px =
dx

l
, pz =

dz

h
, (10)

where px and pz are the deviation degrees the in X and Z directions, respectively. l is the
total length of the groove, and h is the depth of the groove.

The comparative results of different positioning methods for feature points are de-
picted in Table 6. As can be seen from the figures and table, the average deviations dx (mm)
of the two different welding seams of both straight line and curve in the X direction are
relatively large when only initial positioning is carried out. After precise positioning, the
average deviations are reduced to 0.387 mm and 0.429 mm, respectively. Experimental
procedures show promising results, in that the average deviations display a significant
decrease by 38.38% and 41.71%, respectively.

Table 6. Error analysis results.

Welding
Type

Initial Positioning Precise Positioning

dx/mm dz/mm px/% pz/% dx/mm dz/mm px/% pz/%

Straight line 0.628 0.214 6.688 2.665 0.387 0.230 4.121 2.864
Curve 0.736 0.185 7.838 2.304 0.429 0.251 4.569 3.126

It is worth noting that the average deviations in both X and Z direction of two different
welding seams of both straight line and curve after precise positioning are no more than
0.5 mm; this value is defined by Kovacevic et al. [42] and could fulfill the minimum accuracy
requirements of robotic welding. Therefore, it is suggested that the proposed seam tracking
method with four steps is feasible and effective, and provides a reference for future seam
tracking research.

5. Conclusions

A novel seam tracking technique and experimental investigation of robotic welding
oriented to complex welding seam are proposed in this study. Conclusions are as follows:

• A set of seam tracking systems based on laser sensing and visual information ex-
traction is designed, and the method involving scanning, filtering, feature points
extracting, and path planning is proposed to realize high-precision seam tracking;

• The groove information is collected through the laser sensor and the data are fil-
tered, and the corresponding three-dimensional coordinate value in the sensor co-
ordinate system is calculated using the two-dimensional coordinates of the image
feature points;

• The accuracy problem of feature point positioning when the weldment surface has
defects is solved. Experimental results show that the average deviations of both
straight line and curve of welding feature points after precise positioning is less
than 0.5 mm;

• The experimental errors are mainly caused by the calibration error of the sensor coor-
dinate system and the calculation error of the feature points extracting algorithm. In
addition, increasing the resolution of the sensor could further improve the measure-
ment accuracy.
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