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Abstract: In recent times, the usage of modern neuromorphic hardware for brain-inspired SNNs
has grown exponentially. In the context of sparse input data, they are undertaking low power
consumption for event-based neuromorphic hardware, specifically in the deeper layers. However,
using deep ANNs for training spiking models is still considered as a tedious task. Until recently,
various ANN to SNN conversion methods in the literature have been proposed to train deep SNN
models. Nevertheless, these methods require hundreds to thousands of time-steps for training
and still cannot attain good SNN performance. This work proposes a customized model (VGG,
ResNet) architecture to train deep convolutional spiking neural networks. In this current study, the
training is carried out using deep convolutional spiking neural networks with surrogate gradient
descent backpropagation in a customized layer architecture similar to deep artificial neural networks.
Moreover, this work also proposes fewer time-steps for training SNNs with surrogate gradient
descent. During the training with surrogate gradient descent backpropagation, overfitting problems
have been encountered. To overcome these problems, this work refines the SNN based dropout
technique with surrogate gradient descent. The proposed customized SNN models achieve good
classification results on both private and public datasets. In this work, several experiments have
been carried out on an embedded platform (NVIDIA JETSON TX2 board), where the deployment
of customized SNN models has been extensively conducted. Performance validations have been
carried out in terms of processing time and inference accuracy between PC and embedded platforms,
showing that the proposed customized models and training techniques are feasible for achieving a
better performance on various datasets such as CIFAR-10, MNIST, SVHN, and private KITTI and
Korean License plate dataset.

Keywords: deep convolutional spiking neural networks; spiking neuron model; surrogate gradient
descent; time-steps; embedded platform

1. Introduction

Deep learning is utilized to perform numerous responsibilities, for instance, image
recognition, detection, and speech recognition [1–3]. These modern developments in deep
learning have provided new possibilities for designing various engineering demands and
perceptions of how the biological brain works [4]. Such deep learning methods yield
valuable advancements in traditional artificial neural networks by producing distinct
levels of hierarchical structures and exhibiting extraordinary results that sometimes exceed
human-level capability [5]. Due to such developments, it is used on large-scale computer
systems, medical devices, and robots. In accordance with a large amount of deep learning
data, it needs considerable energy demands on the modern servers.
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Spiking neural networks (SNNs) are biologically inspired neurons, and these neu-
rons communicate in the form of a sequence of spikes. The network consists of spiking
neurons that send data in the form of a small number of spikes [6]. SNNs as neuromor-
phic computing has been quite common for achieving energy-efficiency in the context
of standard artificial intelligence tasks [7]. SNNs are used for the classification of Motor
Imagery Movements from EEG Signals [8], Multivariate Olfaction [9], Odor Data [10],
Surface electromyography (sEMG) [11] and Emotions [12].The computational power of
SNNs is hypothetically no less than that of artificial neural networks (ANNs) [13]. SNNs
are usually considered the third generation of artificial neural networks, and they have
some differences. One difference is that the spiking neural networks are biologically
plausible and are used for biological models. In contrast, artificial neural networks have
continuous values instead of spikes and are not biologically plausible, used in classification
and recognition tasks. Another difference between these two is activation function; SNNs
have discrete values or spikes, so these values or spikes cannot differentiate and often
potentially recurrent due to the accumulation of membrane potential. Spiking Neural
Networks are contenders to conquer neural computation limitations and effectively exploit
real-world deep learning applications. Spiking Neural Networks are stimulated by brain
mechanism [14–17] which can significantly process data in the form of spikes (discrete
values) [18]. The dynamics of the SNN are to be simulated by the Leaky-integrate-and
fire-neuron (LIF), which is categorized from the neuron’s inner state, called membrane
potential of the neuron. This neuron’s potential accumulated from the input at a given time
and produces an action potential or spike each time it crosses the specific threshold value.
In recent times, there are few dedicated hardware units [19–22] that have been established
for the usage of spiking neural networks. They are undertaking low power consumption
for the event-based neuromorphic hardware in the context of sparse input data, specifically
in deeper networks. Current works revealed that in event-based spiking models, the
spiking activity and computational load had been decreased in the deep layers [23,24]. In
contrast to ANNs training, training the SNNs remain a difficult task. The critical aspect
of this is that there is no direct utilization of gradient-based optimization because SNNs
have discontinuous activation functions. SNNs are non-differentiable; despite their non-
differentiability, several implementations of backpropagation methods have been proposed
in the scientific literature.

At first, all the spikes per neuron must be obliged throughout inference [25,26], then
backpropagation methods can differentiate the information in the timing of neuron ac-
tion potential. However, reducing the firing times for some neurons might reduce the
network capacity. The second method is STDP (Spike time Dependent plasticity) that is an
unsupervised learning mechanism and reward-modulated spike-time dependent plasticity
for supervised learning to train deep spiking neural networks for object classification,
recognition, and detection tasks. These bio-inspired learning mechanisms can effectively
diminish the energy consumption in deep convolutional spiking neural networks [27,28].
For the deeper networks having higher than a few layers, such methods are not sufficient
enough. The classification accuracy of ANNs trained using a backpropagation algorithm
with just one hidden layer drops down drastically. The third method approximates the
discontinuous spike activation function due to the spiking nonlinearity and then smoothing
the SNN to be continuously differentiable. Accordingly, the backpropagation technique
in this approach must be performed alongside explicit usage of activation functions [29].
The fourth method uses the Surrogate Gradient Descent; this method uses a different
approach for solving the problems related to the discontinuous nonlinearity. Furthermore,
they propose changes to reduce the potentially high algorithmic complications associated
with training SNNs [29].The first usage of surrogate derivatives has been presented in [25].
Various types of surrogate gradient descent approaches are being developed: piece-wise
linear βmax{0, 1− |U − ϑ|} [25,30,31], exponential function βe{−γ|U−ϑ|} [32], rectangular
βsign{γ|U − ϑ|} [33]. According to the observations demonstrated from the related stud-
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ies, a perfect effective approach of the surrogate gradient do not exist. Rather, there is a
huge dependency of performance on the internal design parameters such as β and γ.

The authors of [34] focused on the emerging deep learning models in SNNs. Their
study initially described the SNNs architectures and their learning methods, such as super-
vised learning, unsupervised learning, and reinforcement learning. They have described
each learning method in more detail and explained how these learning methods could
be used in Deep SNNs. They have revised the Deep SNNs comprised of fully connected
neural networks, feedforward, and presented shallow and Deep SNNs architecture over
some digits and object datasets. They have also discussed the spiking deep belief networks,
spiking restricted Boltzmann machines, and recurrent SNNs. Moreover, they have pro-
vided an inclusive summary comparison of the performance of new deep spiking networks.
The primary purpose of their research has to make ANNs progress and spread effective
and sophisticated deep SNNs. Moreover, [23] used the deep convolutional spiking neural
networks using ANN to SNN conversion method on static datasets. In this work, they
have used the conversion method (ANN to SNN) instead of directly train SNN that re-
quires hundreds to thousands of time-steps while training deep SNNs. To regulate the
Deep SNNs, they have proposed the “Spike Norm” method instead of employing batch
normalization. The goal of using Spike Norm was to optimize the ratio of synaptic weights
concerning neuron firing threshold and to minimize the loss and achieve state-of-the-art
classification results; they have used synaptic weights in SNN. The previous neuron layer
in the network has been scaled by a normalization term equivalent to the maximal neuron
activation. They have also used the threshold-balancing method in which synaptic weights
remain constant, and threshold values were set to the normalization factor. That conversion
approach has utilized more time-steps and degraded the actual ANN performance when
converted into SNN, which is inefficient for the neuromorphic hardware.

The authors of [35] proposed the hybrid computationally efficient training method-
ology for the deep Spiking Neural Networks. They have used the firing threshold, and
weights of Spiking Neural Networks converted from Artificial Neural Networks for spike-
based backpropagation. They have used the spike-based backpropagation for Deep SNNs
for attaining the low latency and number of time-steps. Their techniques have some signifi-
cant drawbacks: For the ANN to SNN conversion method, they have used approximately
2500 time-steps. Moreover, to optimize the learning variables after ANN to SNN conver-
sion method built on spiking activity, the network has not influenced the spikes’ temporal
statistics. Rather than using batch-normalization and dropout technique, they have em-
ployed the normalization element, measured just as the maximal output of the consistent
convolutional or linear layer in the Spiking Neural Networks the threshold-balancing
approach. Since [35] proposed the backpropagation algorithm, using the normalization
factor and threshold-balancing methods, they have used time-steps above a hundred
for the CIFAR-10, 100, and ImageNet dataset. More time-steps slow down the training
and consume more power and energy, which is not adequate for the neuromorphic hips.
Moreover, their proposed Deep SNNs did not achieve the state-of-art-art accuracies on the
aforementioned datasets.

The authors of [36] revisited batch normalization and proposed a temporal batch nor-
malization using the backpropagation through time (BNTT) method. They have presented
backpropagation through time (BNTT) dissociated the learning variables in a BPTT layer,
including the time interval to grab the temporal nature of spikes. The temporal nature
of spikes evolving learning variables in backpropagation through time (BNTT) permits a
neuron to handle its spike rate via a specific number of time-steps, allowing low-energy
and low-latency training. They have showed their experiments on DVS-CIFAR-10, Tiny-
ImageNet, CIFAR-10, and CIFAR-100 datasets. They have utilized the 25 to 30 time-steps
on the complex datasets. By proposing the Batch-Normalization Through Time (BNTT)
using Surrogate Gradient Descent on complex datasets, this method could not achieve
the state-of-the-art performance on complex datasets, that is, the CIFAR-10 dataset. We
have gone through all techniques mentioned above for the Deep Convolutional Spiking
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Neural Network using backpropagation on complex datasets. Till now, previous works
did not achieve state-of-the-art performance using Deep Convolutional Spiking Neural
Network.To attain higher performance and resolve the overfitting problems in Deep SNNs,
we use the dropout technique using surrogate gradient descent by controlling the width γ
and height β of surrogate gradient descent. Keeping these values too small and too large
with the dropout does not overcome the overfitting issue. So, by recursively changing the
values of γ and β, we have reached an optimal value to solve the overfitting issue. For the
CIFAR-10 dataset, we could not solve the overfitting issue by adding the dropout ratios
for the deep SNN models. So, we set an intermediate value of γ and β (i.e., 30, 2) in deep
SNNs to solve the overfitting issue and attained higher performance.

In our knowledge, previous works used surrogate gradient descent backpropagation
technique to train deep convolutional spiking neural networks directly [37]. By tuning
surrogate gradient descent and using batch normalization, they solved the vanishing or
exploding gradient problems. This problem occurs by increasing the number of neurons;
however, their works have not achieved the best results on some datasets such as CIFAR-10
and SVHN. In this work, we encounter an overfitting problem in deeper layers. We use
the dropout [38] technique with the surrogate gradient descent to regularize the deep
SNN during training to solve the overfitting issue. To train deep SNNs, we have used the
dropout technique by controlling the width γ and height β of surrogate gradient descent.
Keeping these values too small and too large with the dropout does not overcome the
overfitting issue. So, by recursively changing the values of γ and β, we have reached an
optimal value to solve the overfitting issue. For the CIFAR-10 dataset, at first, we could
not solve the overfitting issue by adding the dropout for the deep SNN models. So, we set
an intermediate value of γ and β (i.e., 30, 2) in deep SNNs to solve the overfitting issue
and attained better performance. Training SNNs with backpropagation techniques, i.e.,
backpropagation through time, spike-based backpropagation, requires more time-steps,
and some previous works achieved good performance on static and neuromorphic datasets.
However, these backpropagation approaches with more time-steps take a-lot of time for
training SNN that have not been efficient for neuromorphic hardware.Moreover, some
authors managed to achieve good results on some datasets by converting the ANN to
SNN [23] methods; however, this converted method needs a hundred to thousand time-
steps to attain the best performance. To achieve the best classification results on different
datasets and reduce the processing time, we have used fewer time-steps with surrogate
gradient descent for deep convolutional spiking neural networks. For the classification
and recognition tasks, training SNNs on few datasets such as CIFAR-10, SVHN [37,39] is
complex with deeper layers, and it takes much time to train.

The authors of [40] proposed a novel SparkXD framework to attain robust and energy-
effective Spiking Neural Network (SNN) inference below estimated DRAM over error-
aware DRAM mapping and error-tolerate analysis. That method lessened the DRAM
energy by 40% on average; on the other hand, managing the accuracy inside 1% of the
standard Spiking Neural Network (SNN). The proposed method by [40] has done their
experiment on the shallow network for the MNIST dataset. On the other hand, ref. [41]
has also proposed an optimization framework for encoder, model, and architecture design
of FPGA-based neuromorphic hardware. They also deployed their shallow SNNs for the
datasets such as MNIST, Fashion MNIST, Spoken Arabic Digits, and so forth, to compare the
inference latency and power. The purpose of their study has to make the SNN consuming
low power and energy for the shallow networks over datasets such as MNIST, Fashion
MNIST, and so forth. However, in our work, we are more concerned with the deep
SNNs and their classification performance and processing time. So, all of our experiments
have conducted on MNIST, CIFAR-10, KITTI, SVHN, and License Plate dataset using
shallow and Deep SNNs. The authors have not used any embedded platform to evaluate
the processing time and inference accuracy for the Deep Convolutional Spiking Neural
Networks. This work uses the NVIDIA JETSON TX2 board to deploy all the SNNs and
compare the processing time, inference accuracy w.r.t PC.Our goal of using an embedded
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platform is to show the feasibility of proposed deep convolutional spiking neural networks.
We want to understand; such SNN architectures could be implemented with ANN, like
structure or not. In this research work, we discuss the feasibility of explicitly training deep
convolutional spiking neural networks. To accomplish this, a surrogate gradient descent,
as proposed in [29] has been used. Moreover, we exploit the main idea of effective deep
ANN models with LeNet5 [42], VGG [43], and ResNet [44] for optimized construction of
deep convolutional spiking neural network architectures.The major contributions of this
work are defined as follows:

1. This work proposes various Deep Convolutional SNNs to classify the privately ac-
quired Korean License plate and KITTI dataset. Moreover, this work proposes deep
Convolutional SNNs for MNIST, SVHN, and CIFAR-10 datasets.

2. To encounter the overfitting issue during training deep SNNs, this work uses SNN
based dropout technique [39] by altering the scale, width, and height parameters of
surrogate gradient descent.

3. This work evaluates the performances of the SNNs on both the embedded platform
(NVIDIA JETSON TX2) and PC in the context of the processing time and inference
accuracy w.r.t various datasets (both public and private).

4. This work also uses the fewer orders of magnitude in terms of inference time steps
(8,10,20) with surrogate gradient descent on customized Deep SNNs to achieve the
best results, thereby minimizing the inference energy and time.

2. Spiking Neuron Model
2.1. Leaky-Integrate-and-Fire (LIF) Neurons

Figure 1 shows the overall spike generation mechanism in the LIF neuron model. LIF
neuron describes the internal structure of neuron along with the shift in membrane potential
of the neuron and spike generation [45]. The dynamics of SNNs are to be simulated by two
essential computational elements i.e., LIF neurons and interlinked synapses. The threshold
mechanism of leaky-integrate-and-fire neurons is defined as:

τm
dUm(t)

dt
= −Um(t) + i(t), (1)

where Um(t) represents the membrane potential of the input and output neuron and τm
shows the decay term for the membrane potential. The input synaptic current, i(t) is the
weighted sum of pre-synaptic neurons over a given time-steps.

i(t) =
al

∑
i=1

(
wi ∑

k
xi(t− tk)

)
, (2)

where al shows the amount of input neurons, wi represents the synaptic weight connecting
with ith input neurons to output neurons. xi(t− tk) is the spike occurrence from the ith

input neuron over time tk, that is expressed as a Kronecker delta function shown below:

xi(t− tk) =

{
1, if t = tk

0, otherwise,
(3)

where tk is the time of incoming spike occurrence, denoted as xi(t− tk).
Figure 1 shows the LIF neuronal mechanism. The input neurons or spikes xi(t− tk)

are controlled by interconnecting synaptic weights wi to generate output neurons or spikes.
The input neuron current is combined into the output membrane potential Um(t) that leaks
with time and time constant τm. If the input neurons’ membrane potential crosses a defined
threshold Uth, output spikes are generated and then rearranges its membrane potential to
the starting position.
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Figure 1. The spike generation mechanism of neurons in the spiking neuron model (LIF). The pre-synaptic neurons or
spikes xi(t− tk) are controlled by interconnecting synaptic weights (wi) to generate post-synaptic neurons or spikes. The
total input values combine into post-synaptic membrane potential (Um) that leaks exponentially with time and with a
time constant (τm). If the neuron’s membrane potential of the pre-synaptic neurons crosses a specified threshold (Uth),
post-synaptic spikes are generated and then rearranges its membrane potential to the starting value.

2.2. Deep Convolutional Spiking Neural Networks (DCSNNs)
Spiking Convolutional and Pooling Operation

This work establishes a training method for deep convolutional spiking neural net-
work architectures consisting of the input neurons preceded by some hidden layer that
comprises center neurons and the final classification layer. At first, the input values from the
given images are converted into spike trains using the Poisson-distribution. The possibility
of generating an action potential or spike depends on the strength of the pixels. Hidden
layers consist of numerous convolutional and average-pooling layers, which are sorted
alternately in the SNN model. These layers draw out the complex and straightforward
information from the given input image. Finally, the last pooling layer’s spikes are merged
to produce a unidimensional vector input for the linear layers (fully connected layer) used
for the final classification. The learning process of image features occurs between the
convolutional and fully connected layers, while the pooling layers are specified initially.

Figure 2 illustrates the basic operative example of a convolutional layer comprising
some LIF neurons above three different time-steps. During training, each input spike train
combines with the kernels in convolutional layers to calculate its input current. That input
current is then combined into the neuron’s membrane potential, Um(t) at each time-step. If
the membrane potential of the neuron Um(t) is more significant than a specified threshold
value Uth, the neuron spikes, and Um(t), goes to its initial value, i.e., 0. Alternatively, over
the next time-step, Um(t) is assumed to be residual while leakage throughout the defined
time-steps.

Figure 2 illustrates the basic function of the average-pooling method, which lessens
the dimensions of the preceding convolutional layer while preserving spatial statistics.
We perform the spatial-pooling operation in several ways in an artificial neural network.
In the spiking neural networks pooling operation can be used as e.g., max-pooling [24]
and average-pooling [46,47]. Owing to its easiness, we use average pooling in this work.
In SNNs, an auxiliary threshold is used after averaging the neurons to produce a post
or output spike. In Figure 2, the threshold value for the average-pooling layer must be
set carefully so that the spike distribution does not interrupt due to the pooling layer.
There is a chance of too many spikes because of the low threshold value in the average-
pooling layer that can cause loss of spatial information collected from the preceding layer.
When the threshold value is large enough, spikes distribution in the deeper layers will not
be adequate.
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Figure 2. Demonstration of convolutional (a) and average-pooling method, (b) above three different time-steps. At a given
time interval, the pre-neurons or spikes are combined with convolutional or pooling kernels to measure the input current,
which is then combined into the neuron’s membrane potential, Um(t) at each time-step. If the membrane potential of that
neuron Um(t) is greater than a specified threshold value Uth, the spikes are produced, and Um(t) goes to its initial value, i.e.,
0. Alternatively, over the next time step, Um(t) is assumed to be residual while leakage throughout the current time-step.

2.3. Deep Convolutional Spiking Neural Networks (DSCSNNs): Spiking ResNet and VGG

Deep neural networks play a significant role in learning complex input patterns from
the given images to efficiently learn hierarchical illustrations. Following the effectiveness
of deep models, we examine the most common deep neural network architectures such as
ResNet [44], and VGG [43]. VGG is the first deep neural network that uses 3× 3 small ker-
nels in the network. Using 3× 3 small filters in a spiking VGG network enables an efficient
accumulation of convolutional layers while reducing the number of model variables in
deep models. In this research work, we are dealing with deep convolutional spiking neural
networks (DCSNNs) using spiking VGG and spiking residual networks (ResNet). In the
Spiking VGG-13 model, we have a stack of convolutional layers, succeeded by a LIF layer,
average-pooling layer, dropout layer, and fully connected layer for classification. Figure 3
shows the Spiking VGG-13 model consisting of 10 convolutional layers, each followed by a
leaky-integrated-and-fire layer that consists of an activation function, a dropout layer that is
used to avoid overfitting, an average-pooling layer that diminishes the size of the previous
layer while retaining spatial statistics and the fully connected layer for final classification.

Next, the ResNet-6 model [44] has developed skip connections across the network
that has tremendous success in allowing the efficient training of deep networks. The
degradation problem is observed in the ResNet model [44] during the training process.
This problem occurs by increasing the network’s depth and is solved using SNN based
ResNet-6 architecture shown in Figure 3 consisting of leaky-integrate-and-fire neuron layer,
dropout layer, convolutional layers, and an output layer. To reduce the degradation issue,
we utilize the idea of skip connections to create SNN based ResNet-6 model. When the
input and output feature characteristics are equal, then the residual connection includes
identity mapping, and when the input and output feature characteristics vary, then skip
connection or residual connection contains 1× 1 convolutional kernels. The output spikes
of the last convolutional layer (residual) and output spikes of non-residual connections
are accumulated to the last leaky-integrate-and-fire neuron’s membrane potential layer to
produce post spikes from the ResNet-6 model.

The dropout layer is used before the pooling layer for the spiking VGG-13 and spiking
ResNet-6 model to avoid overfitting. Dropout is only used throughout the training process
and then when assessing the model’s efficiency during inference. Inside the spiking
VGG and ResNet model, we have an average-pooling layer that decreases the earlier
convolutional layer dimensions while preserving spatial statistics. Finally, we have a
fully connected layer containing numerous neurons as the total number of classes for
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a classification task. The fully connected layer contains synaptic weights. The spikes
produced in the preceding layer (pooling layer) are added to make a unidimensional vector
for classification at the output layer.

Figure 3. Network Architectures: (a) VGG-13 (b) ResNet-6.

3. Training Deep Spiking Neural Networks
3.1. Surrogate Gradient Descent

At first, assuming a single neuron and examine how to train the neuron for generating
a defined spike train Xgt(t) for a specified stimulus [37]. The author defined the error
function as follows: The energy is taken as an integral of a time period equal to that of
the error current Xerr(t) = X(t)− Xgt(t) raised by the membrane potential of the neuron
Um(t). Therefore, the loss function is defined as:

Eloss =
∫ T

0
Xerr(t)Um(t)d(t)

=
∫ T

0
(X(t)− Xgt(t))Um(t)d(t),

(4)

where T is representing the total spike train duration, such loss function has no issues with
the non-differentiability of the spiking nonlinearity since the gradient of the output X(t) is
null all around and ignored [48], with the function σ(Um) = Um. The loss function defined
in (4) has some necessary characteristics: the loss value gets reduced with the growing
membrane potential when the output spike pulse is absent (X− Xgt < 0) hence allowing
the output spike pulse to appear.On the other hand, the loss grows with the decline in
membrane potential when the output spike pulse does not present (X − Xgt > 0). The
disadvantage of this kind of loss function is that it can obtain mutually positive and
negative values, and values near zero can be found when the membrane potential is close
to zero even if output pulses fluctuate from those of the chosen ones. However, the ideal



Sensors 2021, 21, 3240 9 of 25

values for the weights equivalent to the gradient loss are zero. Similarly, [37] defined a
more general loss with the van Rossum distance.

Eloss =
∫ T

0
[(a× X)(t)− (a× Xgt)(t)](a×Um)(t)d(t) (5)

(a×V)(t) =
∫ t

0
a(t− t

′
)V(t

′
)dt

′
, (6)

where (6) represents a convolution. For example, If the number of spike pulses is greater
than a defined threshold, only one neuron can be used for classification purposes. Similarly,
in (4), [48] has taken the convolutional kernel a(t) = 1 for the entire interval T and
presented a below loss function for classification purposes:

Eloss = [Θ(O−Ogt)]
∫ T

0
Um(t)d(t), O =

∫ T

0
X(t)d(t), (7)

where the symbol Θ represents a Heaviside step function, Ogt = 0, 1 indicates the ground-
truth labels. The gradient of the loss function in (4) can be found subsequently:

E
′
loss =

1
2

∫ T

0
[X(t)− Xgt(t)]2dt. (8)

As an alternative to (4) and

E
′
loss =

1
2
[Θ(O)−Ogt]

2, (9)

rather than (7) in conjunction with a modified rule

∇X −→ ∇U. (10)

Such that, the gradient method of non-differentiable spikes is swap by a different
surrogate gradient method [29].

3.2. Surrogate Gradient Descent for Deeper SNNs

The training SNNs with backpropagation is to exchange the gradient of a non-
differentiable spike with an alternative surrogate gradient [29]. The straightforward substi-
tution ∇X −→ ∇U but, when applied to deeper layers of SNN, this form of gradient leads
to problems. In this case, when the hidden neuron’s membrane potential is near zero states,
gradient descent operation leads the potential to rise or decline of virtually equivalent
probabilities, and the membrane potential stays to zero for an extended period. To prevent
this issue, [37] change the substitution rule as:

∇X −→ f (Um)∇U, (11)

when the membrane potential is near to zero, then f (Um) becomes lesser: f (0) is less than
f (Uth). Mathematical results demonstrate that the real method of the function f (Um) is
not significant. The authors of [37] modified the substitution rule as:

f (Um) = b{1 + [c(Um −Uth)]}−2. (12)

Here, (b = 1) represents a hyper-parameter that shows the surrogate gradient size,
and c shows the gradient thickness. As seen in the above section, the term c = 0 is not
enough for deeper SNNs. In contrast, big values of c make the surrogate gradient often
quite small apart from extreme situations where the membrane potential Um is near the
threshold Uth value. Therefore, an ideal intermediate value of c should be assumed to exist.
Remember, we consider the gradients of spikes xt

k to be zero along with hard reset SNN
neurons. The earlier values of the membrane potential umk do not affect the membrane
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potential gradient after resetting; the history of the neuron’s membrane potential is lost.
Figure 4 shows the overall training process of the SNNs.

Figure 4. Flow diagram of the training process.

3.3. Dropout in Deep Spiking Neural Network

Dropout [38] is a common technique in artificial neural networks to avoid overfitting
during the training process. This method arbitrarily detaches components with a given
probability (p) to prevent overfitting and co-adapting to the training data. Previous
works [49–51] have inspected the biological perceptions of how synaptic stochasticity
comes up with dropout-like advantages in spiking neural networks. In this research work,
we use the idea of the dropout method to regularize the deep convolutional spiking neural
networks efficiently. The dropout approach is only used in the training phase but is not
used to test the network efficiency during inference.

However, in SNNs, dropout [39] is used in a different way than ANNs. In ANNs,
each single training epoch has numerous repetitions of mini-batches. In every repetition,
arbitrarily chosen components (including a dropout rate of p) are separate from the model

and at the same time measuring its subsequent probability (
1

1− p
). In spiking neural

networks, each repetition has numerous forward propagations depending on the spike
train duration. An output error term is to be backpropagated and change the model
parameters at the final time steps.

In the training phase, to make the dropout efficient, it must be a guarantee that the
component associated with each repetition of batch information does not alter; thus, the
DNN (deep neural network) is comprised of similar arbitrarily subcategories of components
throughout the forward propagation in the single repetition. Conversely, during every time-
step, if the units or components arbitrarily link with the result of dropout, then it will be
added up through the whole forward propagation time steps in all repetition. At that time,
the dropout result would disappear when the output error function is backpropagated,
and then the model values will be upgraded only at the final time interval. Therefore, we
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require that the set of arbitrarily associated components be maintained for the whole time
in each repetition. In this work, we utilize the spiking neural network form of the dropout
method along with the likelihood (p) of neglecting ratios from 0.2 to 0.25. Due to sparser
activations in spiking neural networks forward propagations instead of ANNs, the ideal
value of dropout for a spiking neural network needs less than a traditional ANN dropout
ratio (i.e., 0.5).

4. Experiments and Results

This section illustrates the efficiency of our proposed deep convolutional spiking neu-
ral networks (DCSNNs) using the backpropagation technique, that is, surrogate gradient
descent. First, we explain the experimental structure and background. For the observations,
we have built a customized simulation structure using Pytorch’s [52] deep learning library
to test our presented spiking neural network training algorithms.

Our proposed eep convolutional spiking neural networks (DCSNNs) comprise leaky-
integrate-and-fire neurons (with neuron firing threshold value of 1) in which input and
output neurons are linked through adjustable weights, i.e., synapses. Initially, we adjusted
the synaptic weights by using random distribution i.e., Gaussian distribution with zero-

mean and standard deviation of the square root (
u
i1
) where il pre-synaptic neurons as

proposed in [53]. The constant u value varies depending upon the form of the model
structure. For instance, we have taken u = 2 for non-residual connection and u = 1 for
residual connection in ResNet-6 model. For the public and private dataset, we train our
proposed models for 100th, 125th training epochs with a mini-batch SGD optimizer that
decreases its learning rate at 30th, 60th and 115th epochs. Table 1 shows the execution
details.

Table 1. Variables used in this research work.

Variables Values

Training time-steps 10, 20, 30
Inference time-steps Same as training time-steps

Membrane Potential time constant 10
Average pooling and stride ratio 2 × 2 and 2

Batch-size 8, 16 and 32
Neuron Threshold 1 and 0.5

Learning rate 0.0025 to 0.0033
Dropout value 0.2 to 0.25

Constant value for initialization of weights 1, 0

4.1. Private Data Set

We demonstrate our proposed ResNet-6 and VGG-6 architecture effectiveness on the
license plate dataset and KITTI dataset. The License plate dataset consists of numbers from
1–9, some Korean characters whose image sizes are 32 by 32. Each digit and character
are cropped from the license plate data and use data augmentation techniques such as
translation, rotation, shear, and random horizontal flipped. For license plate data, each
input pixel intensity is transformed into several spikes using Poisson-distribution with an
appropriate firing rate. Figure 5 shows the original and spike version of the license plate
dataset. If an image pixel intensity is higher, more spikes are produced, while if the pixel
intensity of an image is lower, fewer spikes are produced. Pixels with greater value have
more spikes and be “on”. The middle-value pixels, relative to their density, are “on" and
“off” time by time, but the low-density pixels with low density are always “off”.

This problem is exemplified in the spike train raster-plot of 1024 neurons correspond-
ing to the license plate image pixel values. Most of the time, the "on" pixel values are
situated in the middle of images; therefore, we can see some darker spike trains in the
center in Figure 6. Precisely, for a given time window, the input pixel values are associated
with a distribution, namely a uniform random number between 0 and 1. The description of
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the license plate dataset is presented in Table 2. We also use the KITTI dataset to classify
six different classes: person, pedestrian, truck, car, bicycle, and motorcycle. Each image is
cropped and resized to 32× 32 size. We implement the SNN based VGG-6 model over the
KITTI dataset and attain good classification performance. The details of the KITTI dataset
demonstrates in Table 2.

Figure 5. Images from the License plate dataset are converted into spikes using Poisson distribution.
The upper images show original images, and the below images represent the spike version of original
images.

Figure 6. Raster plots of random spike trains taken from the license plate dataset.

4.2. Public Data Set

We also show the efficiency of our presented deep convolutional spiking neural net-
works on some benchmark datasets MNIST [42], Street view house number [54], and CIFAR-
10 [55]. The MNIST dataset has gray-scale images of size 28× 28. For the MNIST dataset,
each input pixel intensity is transformed into several spikes using Poisson-distribution
with an appropriate firing rate. Figure 7 shows the original and spike version of the MNIST
dataset.
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Figure 7. Original images of the MNIST dataset are converted into spikes using Poisson distribution.
The upper images show original images, and the below images represent the spike version of original
images.

Unlike the license plate dataset, for MNIST, if the pixel intensity of an image is higher,
more spikes are produced, while if the pixel intensity of an image is lower, fewer spikes
are produced. Pixels with greater value have more spikes and are “on.” The middle-value
pixels, relative to their density, are “on” and “off” time by time, but the low-density pixels
with low density are always “off.” This problem is demonstrated in the spike train raster-
plot of 784 neurons corresponding to several image pixel values. The “on” pixel values
are sometimes positioned in the center of images; therefore, we can see some darker spike
trains in the center in Figure 8. The CIFAR-10 and SVHN dataset have colored images of
size 32× 32. Each image in MNIST, CIFAR-10, and SVHN is transformed into a sequence of
spikes using Poisson distribution. We have applied data augmentation techniques for the
CIFAR-10 and SVHN datasets, that is, random horizontal flip and random cropping. After
applying the data augmentation technique, then we converted each image into several
spike trains. Such image pixel intensities are standardized to specify mean and standard
deviation (0 and 1). We then calculate the pixel intensities of input images and bring
them between −1 to 1 to show the entire distribution of input pixel depictions. After that,
the standardized input images are transformed into spikes by using Poisson distribution.
Description of these vision datasets is presented in Table 2.

4.2.1. Configurations of Network

We use numerous deep convolutional spiking neural networks (DCSNNs) for the
private and benchmark datasets. For the license plate dataset, we used ResNet-6 and
ResNet-7 models. In the ResNet-6 model, several convolutional layers convolve with
pooling layer filters or kernels that have the stride of 2. In the VGG-6 model, six layers, that
is, four convolutional layers and two fully connected layers for the KITTI dataset, have
been applied. For the MNIST dataset, we performed a four-layer spiking neural network
comprising two convolutional layers and two fully connected layers.

Table 3 states the comprehensive network details of a License plate, MNIST, and the
KITTI dataset. Deep convolutional spiking neural networks as VGG-7, VGG-8, VGG-11,
and VGG-13 consisting of convolutional, average-pooling, and fully connected layers are
used on the SVHN and CIFAR-10 dataset. Table 4 states the overall network explanation of
SVHN and CIFAR-10.

4.2.2. Comparison of Classification Performance with Related Works

In this section, we compare classification performance with the state-of-the-art works.
First, we have compared the classification performance achieved by our proposed deep
convolutional spiking neural networks (DCSNNs) w.r.t the performance of supervised,
unsupervised, converted ANN to SNN methods and directly trained SNNs. In the re-
cent research, authors have used Deep SNNs for the classification of digits (MNIST) and
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objects (CIFAR-10) datasets. Previously, authors have used supervised [29,56–58] and
unsupervised [59–63] learning methods for training Deep SNNs. In unsupervised learning,
refs. [59–63] has used a new learning mechanism called Spike-Time-Dependent Plasticity
(STDP). That learning method is used for the classification and recognition tasks with more
time-steps above 100, and the authors have attained a good performance using shallow
SNNs. Using STDP [27] has attained 98.40% accuracy on the MNIST dataset below state-
of-the-art performance. However, the STDP learning mechanism is limited to shallow
networks such as three and four layers and could not perform well for the Deep SNNs.

Moreover, some works [27,64,65] have combined both these unsupervised and supervised-
based learning methods to train the SNN and attained the highest results on both ap-
proaches using shallow SNNs with time-steps 100 and 200. However, these approaches
have also been limited to shallow models and could not be functioned on large-sized
networks. These approaches achieved below 98% accuracy on the MNIST dataset and 90%
accuracy on the CIFAR-10 dataset. These approaches are far away from the state-of-the-art
classification and recognition inference results.

Table 2. Details of License Plate, KITTI, MNIST, SVHN and CIFAR-10 Dataset.

Datasets Image Size Training
Examples

Testing
Examples Classes

Korean License Plate 32 × 32 40,000 10,000 50
KITTI 32 × 32 14,885 3722 6

MNIST 28 × 28 60,000 10,000 10
CIFAR-10 32 × 32 50,000 10,000 10

SVHN 32 × 32 73,000 26,000 10

Figure 8. Raster plots of random spike trains taken from the MNIST dataset.

Few authors put forward ANN to SNN conversion methods for the training of
deep SNNs [23,24,47,66] and attained approximately 99.10% classification accuracy on
the MNIST dataset. Till now, ANN to SNN conversion methods [23,24,67] accomplished
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the highest inference results on the CIFAR-10 dataset, that is, 93.63%. However, these
converted methods need hundreds to thousands of time-steps to train deep convolutional
SNNs. This ANN to SNN degrade the actual ANN performance when converted into SNN,
and training is prolonged for the deep SNNs.

In this work, our approach of directly training SNNs achieved state-of-the-art inference
results using surrogate gradient descent over MNIST and CIFAR-10 datasets about 99.66%
and 91.58% with effective processing time. Moreover, we have used fewer time-steps for
the fast and energy-efficient SNNs using surrogate gradient descent and achieved the
highest classification results till now. Table 5 demonstrates the associated classification
results using the proposed approach against other methods. Table 6 shows optimized
parameters used in our work compared with the recent works over MNIST and CIFAR-10
dataset. For the MNIST dataset, we achieved good accuracy as compared to the related
works. The CIFAR-10 dataset analyzes the most challenging to train directly with SNNs,
and we attained the best accuracy compared to related works. We also evaluated the
preceding best SNN training performance in the related works with proposed deeper SNN
models. Later by adjusting the weights, we trained the SNNs using surrogate gradient
descent with input images that must be converted into spikes using Poisson distribution.

Table 3. Proposed DCSNN models for MNIST, KITTI and License plate dataset.

Four-Layer Model

Model Layers Filter Size Number of Output Feature Maps Stride
Convolutional layer 1 × 3 × 3 32 1

Average Pooling Layer 2 × 2 2
Convolutional Layer 32 × 3 × 3 64 1

Average Pooling Layer 2 × 2 2
Fully Connected Layer 200

Output Layer 10

VGG-6 Model

Model Layers Filter Size Number of Output Feature Maps Stride
Convolutional Layer 1 × 3 × 3 32 1
Convolutional Layer 32 × 3 × 3 32 1

Average Pooling Layer 2 × 2 2
Convolutional Layer 32 × 3 × 3 64 1
Convolutional Layer 64 × 3 × 3 64 1

Average Pooling Layer 2 × 2 2
Fully Connected Layer 4096

Output Layer 6

ResNet-6 Model

Model Layers Filter Size Number of Output Feature Maps Stride
Convolutional layer 1 × 3 × 3

32
1

Average Pooling Layer 2 × 2 2
Convolutional Layer 32 × 3 × 3 64 1
Convolutional layer 64 × 3 × 3 64 1

Skip Connection 32 × 3 × 3 64 2
Convolutional Layer 64 × 3 × 3 128 1
Convolutional Layer 128 × 3 × 3 128 2

Skip Connection 64 × 3 × 3 128 2
Fully Connected Output Layer 50
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Table 4. Proposed DCSNN models for Street View House Number(SVHN) and CIFAR-10 dataset.

VGG-8 Model

Model layers Filter size Number of output feature maps Stride
Convolutional layer 32 × 3 × 3 64 1
Convolutional layer 64 × 3 × 3 64 2

Average pooling layer 2 × 2
Convolutional layer 64 × 3 × 3 128 1
Convolutional layer 128 × 3 × 3 128 1

Average pooling layer 2 × 2 2
Convolutional layer 128 × 3 × 3 256 1
Convolutional layer 256 × 3 × 3 256 1

Average pooling layer 2 × 2 2
Fully connected layer 1024

Output layer 10

VGG-11 Model

Model layers Filter size Number of output feature maps Stride
Convolutional layer 3 × 3 × 3 64 1
Convolutional layer 64 × 3 × 3 64 1

Average pooling layer 2 × 2 2
Convolutional layer 64 × 3 × 3 128 1
Convolutional layer 128 × 3 × 3 128 1

Average pooling layer 2 × 2 2
Convolutional layer 128 × 3 × 3 256 1
Convolutional layer 256 × 3 × 3 256 1

Average pooling layer 2 × 2 2
Convolutional layer 256 × 3 × 3 256 1
Convolutional layer 256 × 3 × 3 512 1

Average pooling layer 2 × 2 2
Fully connected layer 1024
Fully connected layer 1024

Output layer 10

VGG-13 Model

Model layers Filter Size Number of Output Feature
Maps Stride

Convolutional Layer 3 × 3 × 3 64 1
Convolutional Layer 64 × 3 × 3 64 2

Average Pooling Layer 2 × 2
Convolutional Layer 64 × 3 × 3 64 1
Convolutional Layer 128 × 3 × 3 128 1

Average pooling Layer 2 × 2 2
Convolutional Layer 128 × 3 × 3 128 1
Convolutional Layer 256 × 3 × 3 256 2

Average Pooling Layer 2 × 2 2
Convolutional Layer 256 × 3 × 3 256 1
Convolutional Layer 256 × 3 × 3 256 1

Average pooling Layer 2 × 2 2
Convolutional Layer 256 × 3 × 3 512 1
Convolutional Layer 512 × 3 × 3 512 1

Average Pooling Layer 2 × 2 2
Fully Connected Layer 1024
Fully Connected Layer 1024

Output Layer 10

Our analysis of the MNIST dataset produces a classification result of 99.66%, which
is the highest associated performance compared to other SNN training methods and
indistinguishable from other ANN to SNN converted approaches. Furthermore, we attain
the best inference results on the SVHN dataset, about 94.01% for VGG-8 and 93.7% VGG-
9 based SNN models. For the license plate dataset, which has not been listed in the
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literature, we achieve approximately 96.46% and 93.7% classification inference results for
ResNet-6 and ResNet-7 SNN models, respectively. Finally, for the CIFAR-10 dataset, a
very challenging dataset to train directly using spiking neural networks, we used VGG-
11 and VGG-13 SNN based models and reached around 91.25% and 91.58% inference
results, respectively. All-inclusive, our presented Deep Convolutional Spiking Neural
Network(DCSNN) accomplishes the best inference results for SNN based ResNet and VGG
models. Figure 9 shows the training and validation curves of MNIST, CIFAR-10, KITTI,
Korean License plate and SVHN datasets.

4.2.3. Classification Results by Increasing the Number of Network Layers

We have trained different models for the License plate, KITTI, SVHN, and CIFAR-10
datasets to investigate SNN performance with surrogate gradient descent by increasing the
model layers. We began with the four-layer SNN model that consists of two convolutional
layers and two fully connected layers for the license plate dataset. By performing experi-
ments on the license plate dataset with four-layer SNN, we have encountered an overfitting
issue. Then, we changed our four-layer SNN network to six layers as the VGG-6 model.
On the SNN based VGG-6 model, we achieved an inference accuracy of around 91.45%.
After that, we proceeded with our experiments by making SNN based ResNet model. So,
we implemented ResNet-6 and ResNet-7 models on license plate datasets and achieved an
inference accuracy of nearly 96.46% and 93.68%, respectively. For the KITTI dataset, we
started experiments from a four-layer network, and finally, the SNN based VGG-6 model
performed well and achieved the highest results. For the SVHN, we followed the same
network structure as four-layer SNN.

Table 5. SNN Classification Performance evaluation on MNIST and CIFAR-10 datasets.

Model Learning
Techniques

Accuracy
MNIST

Accuracy
CIFAR-10

[66] Offline Learning, conversion 99.10% -
[24] Offline Learning, conversion 99.44% 88.82%
[67] ANN2SNN - 93.63%
[23] Offline Learning, conversion - 91.55%
[27] Layer-wise STDP 98.40% -
[32] Spike-based BP 99.36% -
[58] Spike-based BP 99.46% -
[39] Spike-based BP 99.59% 90.55%
[57] Spike-based BP 99.31% -
[33] Spike-based BP 99.42% 50.70%
[37] Backpropagation 99.40% 90.20%

This Work Surrogate Gradient Descent 99.66% 91.58%

Table 6. Comparison of optimized parameters of our work with SOTA.

Method MNIST
Accuracy

CIFAR-10
Accuracy

Threshold
Value Optimizer Time Steps Learning

Rate Batch Size

[58] 99.46% - 1 ADAM 300 0.0001 64
[33] 99.42% 50.70% 1.5 SGD, ADAM 30 0.5 100
[23] - 91.55% 1.5 SGD 2500 0.005 256
[37] 99.40% 90.20% 1 ADAMW 10, 20, 40 0.0005 32, 64
[39] 99.59% 90.55% 1 SGD 50, 100 0.002, 0.003 16, 32

Ours 99.50% 91.58% 1 and 0.5 ADAM,
SGD 8, 10, 15 0.00285,

0.0033 16, 32, 64



Sensors 2021, 21, 3240 18 of 25

Figure 9. Training and Validation curves: (a) MNIST (b) CIFAR-10 (c) KITTI (d) Korean License Plate (e) SVHN.

At first, for four-layer SNN, we attained an inference accuracy of 89.96%. Our model
performance has improved by increasing the network depth from four layers to eight and
nine-layer. We implemented VGG-8 and VGG-9 based SNN model on SVHN datasets
and reached an inference accuracy of approximately 94.01% and 93.68%, respectively. At
last, we proceeded with the same experiments on the CIFAR-10 dataset. We managed
experiments on CIFAR-10 datasets with SNN based VGG-6 model, reached an inference
accuracy of 86%. Then we started to increase the layers of the SNN based VGG-7, VGG-8,
VGG-11, VGG-13. So, for VGG-7, VGG-8, VGG-11, VGG-13, we reached an accuracy of
around 88.16%, 90.56%, 91.25%, and 91.58%, respectively. Figure 10 shows the inference
accuracy and proposed SNNs architectures over private and public datasets.

Figure 10. Inference accuracy performance, along with different DCSNN models and datasets.
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4.2.4. Classification Results and Number of Inference Time-Steps

To check the SNNs classification performance, different time-steps (8,10,15,20) have
been used. In all our experiments, we have observed that our network’s performance
varies by increasing or decreasing the number of time-steps. First, SNN based four-layer
and VGG-6 have trained using the number of time-steps, that is, 8 and 10. We have seen
that managing a smaller number of time-steps increases inference accuracy. Figure 11
clearly illustrates that by keeping smaller number of time-steps increases the inference
performance. It shows the inference accuracies over MNIST, KITTI, and License Plate
datasets using time-steps 8 and 10. In the case of the MNIST and KITTI dataset, we can see
in the Figure 11, the classification accuracy reaches above 99% for time-steps 8 and 10. In
the case of deeper models for the License plate and SVHN dataset, 10 and 15 time-steps
have been adopted. For 20 time-steps, inference accuracy increases, but with the rise in
time-steps from 20 to 30, the inference accuracy substantially declined.

Likewise, for the CIFAR-10 dataset, we have considered 10 and 20 time-steps for SNN
based VGG-13 model where the inference performance is degraded. Then by decreasing
the time-steps from 20 to 15, the SNN has attained the best accuracy. In the literature,
studies have used [23,47,66] ANN to SNN conversion methods, which requires hundreds to
thousands of times-steps during training. Nevertheless, these conversion methods are hard
to train and often degrade classification performance during training. We have adapted
fewer time-steps with surrogate gradient descent to train customized SNNs that provide
the best classification results in this work.It can be shown in Figure 12 that by increasing
the number of time-steps for complex datasets such as CIFAR-10, SVHN decreases the
classification performance. We use 20 time-steps for the SVHN dataset, which increases the
inference accuracy and attains 95% inference accuracy; however, using the same time-steps
for the CIFAR-10 dataset decreases the performance. In the Figure 12, for the CIFAR-
10 dataset, we use time-steps 10 and 15 using VGG-11 and VGG-13 models, and the
classification performance rises and achieves approximately 92% inference accuracy.

Figure 11. Classfication Performance w.r.t time-steps over MNIST, KITTI and License Plate dataset.
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Figure 12. Classfication Performance w.r.t time-steps over CIFAR-10 and SVHN dataset.

5. Performance Evaluation on Embedded Platform

This work used an embedded platform to compare the processing time and inference
accuracy of SNNs and ANNs on both PC and NVIDIA JETSON TX2. We have used all the
same proposed SNNs for ANNs to check the processing time and inference accuracy. All
trained DCSNNs and ANNs models have been deployed on an embedded platform. First,
we have deployed a shallow model of SNNs and ANNs and calculated the processing time
(milliseconds) and inference accuracy. We have seen that for the shallow model, SNNs
outperform than ANNs in terms of accuracy. We have then deployed trained DCSNN
and ANNs models on the board and measured the processing time and inference accuracy.
Deep models consume more resources in terms of inference accuracy and processing time
for SNNs. Compared with ANNs, SNNs performance has declined in terms of accuracy
and processing time for deeper models. Table 7 has listed the processing time and inference
accuracy of both SNNs and ANNs on the PC and an embedded platform w.r.t diverse
datasets.

Table 7. Processing time and inference accuracy of different datasets on PC and NVIDIA JETSON TX2.

SNN Performance ANN Performance

Dataset Proposed
Model Accuracy Processing Time (per Image) Accuracy Processing Time (per Image)

PC NVIDIA
TX2 PC NVIDIA

TX2 PC NVIDIA
TX2 PC NVIDIA

TX2
MNIST 4-layer SNN 99.66% 99.66% 0.16 ms 1.93 ms 99.31% 99.31% 0.06 ms 0.07 ms
KITTI VGG-6 95.03% 99.27% 3.12 ms 13.2 ms 98.01% 98.01% 0.10 ms 0.010 ms

License Plate ResNet-6 96.46% 95.01% 6.0 ms 21.0 ms 93.57% 94.01% 0.75 ms 2.08 ms
ResNet-7 93.68% 93.84% 6.3 ms 21.5 ms 94.37% 94.40% 0.80 ms 2.07 ms

SVHN VGG-8 94.01% 95% 4.3 ms 13.5 ms 93.70% 93.70% 0.30 ms 1.35 ms
VGG-9 93.68% 93.68% 4.5 ms 13.60 ms 92.08% 92.08% 0.30 ms 1.40 ms

CIFAR-10 VGG-11 91.25% 91.25% 8.2 ms 23.3 ms 91.03% 91.55% 0.070 ms 0.15 ms
VGG-13 91.58% 91.43% 11.3 ms 25.2 ms 92.08% 92.50% 0.80 ms 0.45 ms

In Table 7, for each dataset, the processing time for the PC and the embedded platform
is calculated as the average processing time over the entire test batch. In the case of
MNIST, we have seen that SNN performance is increased than ANN regarding accuracy.
However, processing time (per image) on PC and board for SNN is still higher than ANN.
For the KITTI dataset, the PC’s processing time is approximately four times faster than the
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embedded platform, and accuracy has improved by deploying the SNN model. However,
ANNs outperform in terms of accuracy and processing time (per image) than SNNs on an
embedded platform. For the License Plate dataset, in the case of SNNs, we examine that
the accuracy and processing time (per image) of SNNs outperforms than ANNs. Following
the same experiments of SNNs and ANNs, for the SVHN dataset, we have investigated
that accuracy and processing time (per image) is more significant for SNNs than ANNs
on both PC and an embedded platform. Subsequently, for the CIFAR-10 dataset, all the
SNN and ANN-based VGG models have deployed and calculated the processing time and
inference accuracy. We can see that the processing time for VGG-11, VGG-13 models for
ANNs on the PC and the NVIDIA board is higher than the SNNs. NVIDIA JETSON TX2
has been used to validate the accuracies and processing time over different datasets for
ANNs and SNNs.

Our goal of using this board is to show the feasibility of proposed Deep SNNs.
We want to learn; such SNN architectures could be implemented with similar ANN
structures or not. We could not calculate the total power consumption of SNNs on the
NVIDIA board. Because less accuracy and more processing time than ANNs leads to
more power consumption for SNNs [32] on this board. To check the actual energy of the
SNNs, we require neuromorphic chips such as TrueNorth, SpiNNaker, and Intel Loihi. In
the literature, the authors of [32] mentioned that SNN consumes less power than ANNs.
Neuromorphic architectures, due to non-von Neumann architectures, are more suitable for
SNNs. Neuromorphic hardware has been designed to check the energy consumption of
SNNs, and we will consider deploying all the proposed SNNs on such hardware in the
future.

The above metrics are to be explored in conjunction with the customized SNN and
ANN models on both PC and embedded systems to investigate the model training perfor-
mance against existing literature. However, most works focused on PC-based performance
evaluations, which must be validated against proposed model performances. However,
due to the lack of literary works that employ deeper SNN directly trained using backpropa-
gation and tested on embedded platforms, the results attained in the proposed work could
serve as a benchmark for such research interests. To check the energy consumption of
SNNs, we will use neuromorphic chips for better understandings and calculations in the
future.

6. Discussion

In this work, we presented the possibility of directly training the deep convolutional
spiking neural networks (DCSNNs) with surrogate gradient descent by following the deep
neural network architectures such as VGG and ResNet. Furthermore, we emphasize that
SNNs can be trained directly by considering trivial yet effective techniques compared to
traditional ANNs. However, we also encounter the overfitting problem during training the
SNNs. We show that by using the dropout technique, overfitting issues are to be resolve by
applying small dropout ratios as compared to ANNs. We also observe that, during SNN
training, by increasing the number of model layers, classification performance decline for
the CIFAR-10 dataset. We then solve this issue by using the smaller number of output
feature maps in convolutional layers for SNN based VGG model compared to the ANN.
Moreover, we use fewer time-steps with surrogate gradient descent for deeper spiking
neural networks, which leads to an increase in inference accuracy. In the case of CIFAR-10,
we utilize 20 time-steps with SNN based VGG-13 network then the inference accuracy
decline. We then change the number of time-steps from 20 to 15 with surrogate gradient
descent to improve the classification performance.

A limitation of our work is that, with the growing number of layers in the SNN,
classification results diminish. This avoids using the deeper models for inference, which
will be the next step in this research direction. By conducting experiments, we reduce the
loss with surrogate gradient descent. Still, we assume that the difference between this
loss and the loss we want to reduce increases with the growing number of layers in the
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SNNs. In the future, this problem is considered for a deeper exploration. Additionally,
training SNNs directly require somewhat different architectures rather than using the same
architectures as ANNs. In this research work, we have implemented customized models
similar to deep artificial neural structure, yet, more focused research has to be carried out
to improve the performance of SNNs in all aspects.

7. Conclusions

To conclude this work, we proposed various deep convolutional SNNs trained with a
surrogate gradient descent. These proposed SNN models achieved the best classification
results on private as well as on public datasets. In the case of the four-layer SNN, we noticed
that this network attains higher results than ANNs. We also used fewer inference time-
steps with surrogate gradient descent, which leads us to efficient training and inference
results in SNNs. Moreover, we resolved the overfitting problems by adding a small dropout
ratio compared to traditional ANNs. We then deployed all the proposed models on an
embedded platform to calculate the processing time and inference accuracy between the
PC and the NVIDIA JETSON TX2 board.

As SNN accuracy still lags behind ANNs, in the future, we will design different
architectures to implement SNNs with some customized backpropagation methods, which
will reduce the training and inference processing time, as well as give a higher accuracy than
ANNs. Moreover, we will deploy all the SNNs on neuromorphic chips such as TrueNorth,
SpiNNaker and Intel Loihi to prove that SNNs consume less energy and processing time
than ANNs.
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