
sensors

Article

Rechained: Sybil-Resistant Distributed Identities for the
Internet of Things and Mobile Ad Hoc Networks

Arne Bochem 1,*,† and Benjamin Leiding 2,†

����������
�������

Citation: Bochem, A.; Leiding, B.

Rechained: Sybil-Resistant

Distributed Identities for the Internet

of Things and Mobile Ad Hoc

Networks. Sensors 2021, 21, 3257.

https://doi.org/10.3390/s21093257

Academic Editor: Hong-Ning Dai

Received: 22 February 2021

Accepted: 30 April 2021

Published: 8 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer Science, University of Goettingen, 37077 Goettingen, Germany
2 Institute for Software and Systems Engineering, Clausthal University of Technology,

38678 Clausthal-Zellerfeld, Germany; benjamin.leiding@tu-clausthal.de
* Correspondence: arne.bochem@cs.uni-goettingen.de
† These authors contributed equally to this work.

Abstract: Today, increasing Internet of Things devices are deployed, and the field of applications for
decentralized, self-organizing networks keeps growing. The growth also makes these systems more
attractive to attackers. Sybil attacks are a common issue, especially in decentralized networks and
networks that are deployed in scenarios with irregular or unreliable Internet connectivity. The lack of
a central authority that can be contacted at any time allows attackers to introduce arbitrary amounts
of nodes into the network and manipulate its behavior according to the attacker’s goals, by posing as
a majority participant. Depending on the structure of the network, employing Sybil node detection
schemes may be difficult, and low powered Internet of Things devices are usually unable to perform
impactful amounts of work for proof-of-work based schemes. In this paper, we present Rechained, a
scheme that monetarily disincentivizes the creation of Sybil identities for networks that can operate
with intermittent or no Internet connectivity. We introduce a new revocation mechanism for identities,
tie them into the concepts of self-sovereign identities, and decentralized identifiers. Case-studies
are used to discuss upper- and lower-bounds for the costs of Sybil identities and, therefore, the
provided security level. Furthermore, we formalize the protocol using Colored Petri Nets to analyze
its correctness and suitability. Proof-of-concept implementations are used to evaluate the performance
of our scheme on low powered hardware as it might be found in Internet of Things applications.

Keywords: Internet of Things; Identity; security; authentication; Sybil attack; blockchain; self
sovereign identity

1. Introduction

The persistent growth and expansion of the Internet of Things (IoT) [1,2], the progress-
ing digitization of our daily life [3,4], and the emergence of complex machine-to-machine,
or machine-to-human transaction and interaction scenarios [5], results in a growing popu-
larity of wireless ad hoc networks such as mobile ad hoc networks (MANETs) or vehicular
ad hoc networks (VANETs). While participants of the Internet of Things should be always
connected to the Internet by default, MANETs and their sub-types are often heavily parti-
tioned, with transient connections occurring between nodes due to their mobility, resulting
in a constantly changing network topology. Moreover, communication in MANETs is
usually organized in a decentralized manner without a connection to any central authority
or the Internet [6,7]. However, even IoT scenarios have to account for Internet disconnects
and short period of ad hoc organization due to missing coverage or temporary disconnects,
e.g., [8,9].

The growing popularity raises the issue of providing proper security mechanisms.
Without such, the distributed nature of ad hoc networks and their lack of a central authen-
tication authority leaves them easy targets for Sybil attacks. In a Sybil attack, malicious
nodes participate in a network not only with their own identity, but also present multiple
other identities under which they act. For example, in voting or majority based systems,

Sensors 2021, 21, 3257. https://doi.org/10.3390/s21093257 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2124-7048
https://orcid.org/0000-0002-9191-7548
https://doi.org/10.3390/s21093257
https://doi.org/10.3390/s21093257
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093257
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093257?type=check_update&version=2


Sensors 2021, 21, 3257 2 of 27

if left unchecked, this type of attack can allow an attacker to use a minority of nodes with
many identities to overvote outvote the legitimate participants. Such attacks are very
common in peer-to-peer networks, and they can threaten the overall security and integrity.
Malicious or faulty agents that either by intent or accident act under multiple identities can
end up subverting the system by assuming control of a substantial fraction of it [10].

Many previous works put their focus on the prevention of Sybil attacks by barring
misbehaving nodes from entering the network [11,12]. Another common approach is to
detect misbehaving nodes that act under multiple identities [13,14]. However, the main
reason that such attacks are possible at all is the fact that there is no mechanism in place,
which prevents the creation of (virtual) identities or nodes in the network. This is usually
the case for ad hoc networks or other networks without access to a central authority
that manages and restricts access to the network. Such a central authority would often
require access to an internet connection that may not be available in the network, or it
may be available only intermittently. We previously proposed the Unchained [15] as a
different approach to this issue. Unchained economically disincentivizes the creation
of new identities that could be used to deploy Sybil attacks. The approach is based on
requiring a proof-of-work, but avoiding the necessity for the user creating the identity to
perform this work by themselves. Instead, it is, in effect, offloaded to the mining network
of a public blockchain and a direct payment transaction on that network is used to generate
an identity creation proof that may be verified offline.

The original Unchained protocol and Rechained, as we propose here, both create
identities from such transactions on a blockchain. Because these transactions are signed
suing the public/private key pair of the sender, the identity also becomes tied to this
key pair. The actual transaction that is used to create an identity has to follow certain
requirements, such as a minimum amount of currency being transferred to one or multiple
specific receiver addresses. We propose a way of determining certain amount boundaries,
which ensure that attempting to circumvent the protocol would require the expenditure of
more funds than are required by following it. Unchained focuses on offline verification
of proofs, in effect “unchaining” its security mechanism and allowing its use in isolated
networks with no internet connectivity.

This work builds on top of the initial Unchained publication [15] as well as a further
extension, called UnchainedX [5]. In the following, we extend the Unchained protocol
and its extension to incorporate the concept of self-sovereign identities (SSI) for network
participants and add the missing functionality of revoking Rechained identities. Moreover,
we formalize the protocol using Colored Petri Nets (CPNs) [16,17] to detect and eliminate
possible design flaws, missing specification details, as well as thus far undetected security
issues [18]. In Rechained, we also consider how scenarios with or with intermittent
internet connectivity allow nodes to verify current blockchain parameters, which is also
the reason for the updated name. Finally, we address the issue of eclipse attacks targeting
the Rechained protocol.

The remainder of this paper is structured, as follows: Section 2 introduces supplemen-
tary literature and related work. Section 3 focuses on the operational details and outlines
the security properties of the Rechained protocol. Next, Section 4 elaborates on different
options to handle difficulty changes in the underlying cryptocurrency. In Section 5, we
utilize Colored Petri Nets to create a formal model of our protocol. Afterwards, Section 6
presents an evaluation of Rechained based on case studies and the previously created CPN
models. Finally, Section 7 concludes this work and provides an outlook on future work.

2. Supplementary Literature and Related Work

This section provides background information, supplementary literature, and it also
introduces related work regarding previous approaches to solve the issue of Sybil attacks.
Section 2.1 briefly summarizes the concept of self-sovereign identities and decentralized
identifiers, while Section 2.2 provides general information on the concept of blockchain
technology. Section 2.3 focuses on related work.



Sensors 2021, 21, 3257 3 of 27

2.1. Self-Sovereign Identities and Decentralized Identifiers

Decentralized identifiers (DIDs) are a specific instantiation of the self-sovereign iden-
tity (SSI) concept. It has been proposed and it is also currently under development by the
W3C [19]. DIDs provide a digital identity representation that is controlled by the owning
entity while at the same time being “independent of any centralized registry, identity
provider, or certificate authority” [19].

A DID (did:rechained:123456789abcdefghi) consists of three parts. First, the so-
called URL scheme identifier (did), second the DID method identifier (e.g., rechained) and
last the DID method-specific identifier (123456789abcdefghi). The scheme part simply
explains that we are handling a DID. The DID method identifier defines “how a specific
DID scheme can be implemented on a specific distributed ledger or network, including
the precise methods by which DIDs are resolved and deactivated and DID documents
are written and updated” [19]—in our case, the Rechained protocol. The last part of the
example details the unique entity identifier.

A DID corresponds to an entity and resolves to a DID document, which is represented
by JSON-LD documents and describes how to use the DID. The DID document consists
of a reference that links it to the corresponding DID, public keys that can be used for
verification purposes, authentication methods to authenticate a DID, or the owning entity
and service endpoints [19]. Moreover, DID documents may contain an authentication
property, a mechanism “by which a DID subject can cryptographically prove that they
are associated with a DID” [19]. The authentication property provides a list of various
verification methods, e.g., public keys. Proving control over a DID document is exerted by
resolving the DID to a DID document according to its DID method specification. Proving
control over the public key specified in a DID document is achieved via a signature-based
challenge-response mechanism using the private key that corresponds to the public key.

2.2. Blockchain Technology

Figure 1 illustrates the general structure of a blockchain, as used by, e.g., the Bitcoin [20],
or Ethereum platform [21]. As the name suggests, a blockchain consists of a sequentially
ordered number of blocks that records transaction events (denoted as TX), e.g., transfer of
a cryptocurrency from entity A to entity B. Each block contains the hash of the previous
ancestor block, thereby chaining all blocks together. Changing a transaction in a block
results in a hash mismatch of the succeeding block. As a result, tampering with one block
requires the recalculation of all succeeding blocks.

Block Header
Parent Block

Hash

Transaction Counter

TX TX TX TX TX

Block Header
Parent Block

Hash

Transaction Counter

TX TX TX TX TX

Block Header
Parent Block

Hash

Transaction Counter

TX TX TX TX TX

Block x-1 Block x Block x+1

Figure 1. General blockchain structure—based on [20].

Different methods for achieving a global consensus on which transactions are included
in a blockchain exist. The most common approach is called proof-of-work (PoW), and it is
in use by the most used blockchains Bitcoin and Ethereum [21]. proof-of-work in the way
it is used in Bitcoin was first introduced as Hashcash [22]. In this approach, the so called
mining process works by having many different parties attempt to solve a computational
problem of variable difficulty. Specifically, a search problem is used, where the hash of a
nonce value concatenated with the next block’s block header is hashed and a hash with a
value falling below the predefined difficulty target number is searched. This means that
the first miner to find a hash with beginning with a certain number of zero bits is allowed
to publish the next block in the blockchain.



Sensors 2021, 21, 3257 4 of 27

The important properties of this process are that the actual difficulty of the search
problem can be adjusted over a wide range, while the result always remains easy to verify
in constant time (a single hash operation). Increasing the difficulty target or number of
leading zeros exponentially increases the average amount of work that is necessary to solve
the problem [20]. Usually, each blockchain has a set target block time. This is the average
time that it should take for a new block to be found. Using this as a target, the difficulty is
adjusted to adapt the mining process to the amount of available computing power. If blocks
are found too fast, the difficulty is automatically increased to compensate. If finding blocks
takes too long, it is decreased. In the case of Bitcoin, these adjustments take place every
2016 blocks, which, with a target block time of 10 min., corresponds to around two weeks.

To incentivize the participation in the mining process, miners who find and publish
a valid block may include a special transaction awarding themselves the so-called block
reward, which also serves to initially distribute the currency. For Bitcoin, as of June 2020,
this block reward amounts to 6.25 B plus any transaction fees paid by users of the currency
to have their transactions included in the blocks. Once a new block is published, all of
the participants in the blockchain’s network will verify the validity of the block’s hash, its
correspondance to the difficulty target as well the validity of the included transactions. Each
block contains the hash of the previous block, chaining them together into a blockchain
and ensuring that past blocks cannot be tampered with. As the longest chain, meaning the
chain with the highest accumulated proof-of-work, is considered to be the valid chain, any
attacker that would attempt to tamper with a past block would have to redo proofs-of-work
for all subsequent blocks while being faster than the rest of the network, so as not to
fall behind.

2.3. Related Work

Sybil attack prevention and Sybil attack detection in different network environments is
a topic of on-going research with various approaches. Thus, we only highlight a selection of
related work. SybilGuard [23] is a well-known protocol that limits the harmful influence of
Sybil attacks in P2P networks. The SybilLimit protocol is an advanced version of SybilGuard
and it aims to defend online social networks from Sybil nodes [24]. Both rely on human-
established trust relationships; hence, they cannot be applied to mobile ad hoc networks or
the IoT. Moreover, the correctness of SybilGuard depends on the fast-mixing property of the
underlying social network graph, which constrains its applicability in IoT scenarios.

Other works focus on specific types of ad hoc networks. While [14] focuses on signal
strength-based Sybil attack detection in MANETs, Ref. [25] targets the detection of Sybil
nodes in VANETs. The latter deploys monitoring nodes that collect information, like distance,
angle, or signal-strength, with neighboring nodes and use fuzzy logic on the collected data
to detect suspicious nodes. While the presented solutions are applicable in some MANET or
IoT networks, they have quite specific requirements, e.g., monitoring nodes, which limits
their applicability and adds complexity to the network in terms of node configuration and
computational tasks that are performed on the nodes. Ref. [26,27] try to prevent and detect
Sybil attacks in sensor networks. The approaches are either limited to a particular application
scenario (wildfires) or add the cost of additional complexity by deploying monitoring nodes.
In contrast to the approaches that are presented above, Rechained focuses on preventing
Sybil nodes from joining a network unless they sacrifice a pre-defined amount of resources
instead of detecting them once they are already part of the network. Rechained does not
require any monitoring nodes that collect data and perform extra computational tasks.
Ref. [28] rely on a PoW-dependent Sybil node prevention strategy that requires nodes to
calculate proofs-of-work to join a network, a solution that is rarely applicable in energy-
and computationally-constrained IoT scenarios. The authors of [29] briefly outline some
limitations of PoW-based Sybil node attack prevention and question the applicability of PoW
for node identity generation. They argue that, by constraining the PoW difficulty so that
users are willing to wait for it during identity creation, it will be limited to low costs that
are not effective in disincentivizing Sybil attacks. Rechained, however, offloads the actual



Sensors 2021, 21, 3257 5 of 27

PoW process onto an existing Blockchain, such as the Bitcoin blockchain, which makes this
argument inapplicable. Instead, the PoW process is replaced by a direct payment transaction
on the blockchain.

Distributed ledgers and blockchains matured and spread in popularity—most no-
ticeably by providing the foundation of the cryptocurrency Bitcoin [20]. Being inspired
by the Bitcoin system, several further DLT platforms emerged, e.g., Ethereum (https:
//ethereum.org/, accessed: 5 May 2021), Hyperledger (https://www.hyperledger.org/,
accessed: 5 May 2021), or Tezos (https://tezos.com/, accessed: 5 May 2021). Moreover,
a variety of applications involving blockchain technology has been proposed, e.g., for
IoT applications and platforms [30,31], in the automotive sector [32], in the agriculture
industry [33], or for asset tokenization [34].

3. Protocol Specification

Our primary consideration is the creation of identities that can be verified without,
or with only, irregularly available Internet connections. MANETs may be deployed in situ-
ations or environments without infrastructure, which facilitates Internet access for nodes.
In IoT or vehicular applications, nodes may move through areas without connectivity
or even remain there for a longer duration (e.g., underground parking without WiFi).
In scenarios without, or intermittent Internet connectivity, identities are generated before
the deployment of nodes and then preloaded onto them.

Specific applications further require resistance against eclipse attacks. In an eclipse
attack, an attacker creates Sybil nodes with identifiers being selected to form a neighbor-
hood around a target node according to some distance metric. In order to prevent this,
the identifier of an identity should be selected randomly in such a way that the owner
of the identity has no direct influence on the selection process. It becomes infeasible to
perform such an attack if generating new identities is sufficiently expensive and there exists
a sufficient number of nodes. We design our scheme with this in mind.

In the following, we present the design of our protocol, i.e., how to create and verify
identities, as well as how our scheme ties into the concept of DIDs.

3.1. Creating Identities

An overview of the binding process for an existing DID-based identity, e.g., did:
rechained:123456789abcdefghi, is given in Figure 2. It assumes a pre-defined identity
outside the Rechained context and a corresponding key pair that represents a wallet ad-
dress. Alternatively, a non-DID based identity is instantiated without the DID linking
by creating an identity using a public and private key pair that will be associated with
the created identity and sends a transaction with a predefined amount to one or multiple
predefined addresses. Once this transaction is mined, then the transaction and certain meta
data will be used to construct an identity proof, which will allow network participants
to confirm that the identity of the given public key was created legitimately. The created
identity proof can finally deployed on a device to let it join the Rechained secured network.

We assume that a Bitcoin (or other cryptocurrency) address with public key pub
and private key priv has been prepared for the process and has been funded with the
necessary amount of tokens, e.g., Bitcoin. To explain the process, we first define a number
of parameters.

receiver shall be the deposit address for our scheme. The deposit is sent to this
address during the identity creation process. Possible attackers must not be able to recover
the deposit from this address. In Section 4, we will detail various further properties of
this address.

amount shall be the price of creating an identity. This is the minimum amount of
cryptocurrency sent to receiver to create a new identity. More information regarding the
choice of this parameter can be found in Section 4.

We follow the basic approach of BlockVoke [35] to make it possible to revoke this
identity at a later point in time, which will be explained in more detail in Section 3.3.

https://ethereum.org/
https://ethereum.org/
https://www.hyperledger.org/
https://tezos.com/


Sensors 2021, 21, 3257 6 of 27

For this purpose, the user generates another separate Bitcoin (or other) address and also
adds it to the identity proof.

linked to

Vehicle A

1.) Send deposit

Deposit Wallet

Identity proof

Transaction

Block Header

Block #

Block Hash

Difficulty Target

Index of TX-ID

Block Hashtree

proofID = HMAC

Public Key

TX-ID

BlockVoke addr.

Private Key

TX-ID

Amount: $

From: Vehicle Wallet

Receiver: Deposit Address

Wallet

Private key

2.) Receive
deposit

Block
X-1

Block
X+1Block X

3.) Mining

4.) ID on chain

5.) Flash to vehicle

Figure 2. Creating a new identity proof—based on [5,15].

To create a new identity, an amount of at least amount is sent to receiver from the
address corresponding to pub (steps 1 and 2). Additionally, an OP_RETURN output is in-
cluded in the transaction. OP_RETURN outputs are a way to include an arbitrary 40 byte
payload in a transaction. In this case, it contains the address to be used for revocation
purposes. The transaction is mined into block x of the blockchain (step 3). Subsequently,
the block is used to create an identity proof (step 4) containing the block header (block num-
ber, block hash, difficulty target of the block, etc.), the deposit transaction, the Merkle tree
proof hashes necessary to prove that the transaction is part of the block, the transaction index
txIndex of the deposit transaction in the block, the public key pub, and a unique proof ID
proofID of at least 128 bit. The proof ID is determined, as given in Equations (1) and (2).

keyHMAC := xBlockHash (1)

proofID := HMAC(keyHMAC, txIndex) (2)

Because the user creating the identity has no influence on the block hash or index of
the transaction within the block, this way of calculating the proof ID makes it resistant
to eclipse attacks. Even assuming that a user collaborates with a miner, influencing the
resulting proof ID is costly, since it requires the miner to discard valid solutions for the
PoW search puzzle in order to find a block hash and transaction index combination that
satisfies any given requirements by the user.

The identity proof and private key priv are flashed or otherwise transferred to the
device that uses the generated identity (step 5). The device can then be deployed or
otherwise join the network.

3.2. Verifying Identities

Before nodes start communicating, they verify their peers’ identities to prevent Sybil
nodes from entering the network for free. Figure 3 provides an overview of this process.
To start communicating, two nodes exchange identity proofs as part of a two-way hand-
shake. Alternatively, a node may have received an identity proof for another node through
some other method, such as learning about it from neighboring peers.



Sensors 2021, 21, 3257 7 of 27

Vehicle A

Accept/Reject

Vehicle B

Identity proof
1.) Validate structure
2.) Verify:
2.1) Block hash
2.2) Block hash < difficulty
2.3) Difficulty >= minDifficulty
2.4) TX hash tree
2.5) Receiver and amount
2.6) proofID

Figure 3. Validation process—based on [5,15].

First, the structure of the identity proof is verified to ensure that it contains the
necessary block header, transaction data and index, Merkle tree proof, the public key,
and the proof ID. Moreover, it is checked whether the public key matches the private key
used during the two-way handshake.

For the next verification step, two configurable parameters minHeight and minDiffi-
culty are used, which will be further explained in Section 4. If the block number from the
block header is higher than minHeight, the block hash corresponds to a difficulty of at least
minDifficulty, as well as the block’s own difficulty target, and matches the contents of
the block header, this part of the verification process succeeds.

Next, the Merkle tree proof is used to verify that the given transaction is indeed part
of the given block. It is also checked that the transaction sends an amount of at least amount
to receiver and that its signature is correct and can be verified with the public key pub.

Finally, the proof ID is verified according to Equations (1) and (2).
If all of the verification steps succeed, the identity proof is accepted, and communica-

tions may take place. Otherwise, it is discarded, and no further communication takes place
between the nodes.

3.3. Revoking Identities

It may become necessary to revoke identities, depending on the intended lifetime of
the network. The most basic mechanism is to give each identity a limited lifetime. However,
the drawback is that identities need to be recreated periodically, incurring unnecessary
costs for users who have no reason to revoke their identities.

Therefore, we propose the following mechanism to revoke identities, basically fol-
lowing the approach of [35]. Each identity proof contains an additional Bitcoin address,
as specified in Section 3.1. To revoke this identity proof, enough funds need to be sent to
the revocation address to cover the transaction fees for an outgoing transaction. There-
after, a Bitcoin transaction will be made from the revocation address containing only an
OP_RETURN output containing the six bytes “RECHND” and the 32 byte transaction ID of
the transaction originally used to create the identity proof. This transaction will then act as
a proof of revocation that any node in the network can verify, if it knows the corresponding
identity proof.

When creating their identity proof, users may scan the blockchain for revocations by
scanning for transactions containing only an OP_RETURN output containing the six bytes
“RECHND” and then verifying that the transaction that is specified by the transaction ID
following these bytes could actually generate a valid identity proof following the usual
verification rules. If this is the case, the proof ID may be added to a list of revoked identities
and flashed on the node, together with the identity proof. A user may further include
the most recent revocation transactions on the node and disseminate them through the
network to help in preserving its integrity.

3.4. Distributed Identities

The previous Section 2.1 described the concept of decentralized identifiers (DIDs)
as a specific instantiation of self-sovereign identities. Rechained may be integrated with
DID-based SSIs in two ways. First, a Rechained identity proof is linked as part of the Au-



Sensors 2021, 21, 3257 8 of 27

thentication field of the DID document corresponding to the machine identity. The Authen-
tication field contains verification methods authorized by the DID subject for authentication
purposes. This way, the Rechained identity proof is used for authentication purposes.

Alternatively, we propose a standalone instantiation of Rechained by implementing a
specific Rechained DID scheme, e.g., did:rechained:proofID. The generated proofID is
used as the DID method-specific identifier and “did:rechained” indicates the implementa-
tion of a DID scheme implementation specifically for Rechained.

4. Parameter Choices and Updates

Rechained depends on a number of parameters that can be set up in different ways
to make it suitable for different types and sizes of networks. Depending on the estimated
value of an attack, the cost of identities can be adjusted to either make it easier for users
to join the network or to make it costlier for attackers gain enough identities to perform
attacks. Table 1 provides an overview of network parameters.

Table 1. Overview of Rechained parameters.

Parameter Description

minHeight Identity proofs have to refer to blocks of at least this height on the chain.

receiver One or multiple addresses that receive the payment for transaction creation.

amount
The minimum amount of crypto currency that has to be sent to create
an identity.

amountLocked
Optional: A timelocked output sent back to the user, with the lock time
determining the lifetime of the identity.

minDifficulty The minimum mining difficulty required for an identity proof to be valid.

4.1. Network Parameters

In the following, we explain the configurable network parameters of Rechained.

4.1.1. Starting Block Height

The parameter minHeight is used to set a certain block height as the minimum height
acceptable to ensure that no identity proofs created prior to the creation of the network can
be used. This also means that no significantly lower difficulty values need to be considered
as difficulty tends to go up over time, as shown in Section 6.

4.1.2. Deposit Address

The parameter receiver is the address that funds have to be sent to in order to create
a new identity. The main property of this address is that an attacker trying to create a large
number of identities is unable to recover the funds from it in any way. A receiver address
has to be used rather than using the funds as mining fees, since an attacker may be able to
collude with a miner or successfully mine a block themselves, allowing them to recover
mining fees. In the following, we present three options for a receiver address.

The most secure way is proof-of-burn [36]. To burn funds, they are sent to an address
with no knowable existing private key. However, because this method destroys the funds
and the supply of Bitcoin is limited, it is considered to not be an elegant solution.

If the network secured with Rechained is developed or maintained by a certain entity,
this entity may provide a receiver address under their control, i.e., the network operators
sell identities. The funds thus gained are used for further development and maintenance
or simply be considered as profit. Unless there is a conceivable reason for the network
operators to attack their own network, this should also prevent possible attackers from
recovering funds after the creation of identities.

Finally, receiver could be the donation address of a charity. In fact, it would be
possible to slightly extend the scheme in such a way, where receiver contains multiple



Sensors 2021, 21, 3257 9 of 27

donation addresses and funds that must either be distributed equally among them or sent
to one of them according to the user’s choice. Unless the chosen charities all have an
interest in attacking the network or are compromised in some way, an attacker is highly
unlikely to be able to (fully) recover the funds.

4.1.3. Deposit Amount

The parameter amount sets the minimum amount that has to be send to the receiver
address. The value is chosen in such a way that it is high enough to disincentivize the
creation of spurious or malicious identities, while still being affordable for regular users
who wish to participate in a given network. The choice of amount may also be influenced
by the expected size of the network, as smaller networks may be more vulnerable against
attacks and may, therefore, require a higher amount setting to defend against them. At the
same time, the expected value that can be gained from attacking a network with Sybil
identities should also be considered when setting the amount parameter.

Alternatively, Rechained can be implemented in such a way that a smaller amount is
sent to receiver, while a second bigger amountLocked is sent back to the user creating an
identity. However, the output amountLocked is time locked for the expected life time of the
identity using a CheckLockTimeVerify [37] output. As a result, users recover most of their
funds once they stop participating in the network, while still requiring attackers to acquire
a significant amount of funds up front.

Further considerations on the choice of amount are given in Section 4.2.

4.1.4. Minimum Difficulty

The parameter minDifficulty represents a set of different parameters, depending on
the current block height. It is initially set at the time the network is created to the current
difficulty, or slightly lower to compensate for fluctuating difficulty values. Unless over-
written by some sort of update mechanism, as discussed in Section 4.3, this remains the
minimum accepted difficulty for identity proofs. If an update mechanism is implemented,
then each period of time between difficulty adjustments (2016 blocks in Bitcoin, or roughly
two weeks) will receive its own minDifficulty value.

4.2. Price Considerations

We attempt to disincentivize the creation of Sybil identities by introducing cost to
the creation of identities. Any attacker would attempt to minimize their cost of attack.
In networks without Internet connectivity and rare network parameter updates, an attacker
may attempt to do so by making use of the actual Bitcoin network’s target difficulty and
the presumably lower target difficulty still used by Rechained. Such an attack is performed
by cooperating with a miner to create a block with a target difficulty minDifficulty, filled
completely with identity creating transactions. As this block targets a lower difficulty
than the target difficulty of the Bitcoin network, it is cheaper to mine, but it cannot be
published to earn block rewards. This introduces a significant opportunity cost for any
miner cooperating with an attacker, unless the difference in target difficulties is very large.

An attacker has to compensate the miner for at least the opportunity cost value and,
most likely, also has to pay an additional fee. The opportunity cost of creating a block
and not publishing it is easy to quantify, as it is equal to the block reward (6.25 B) and any
additional fees paid by transactions. Given the block size limit of 1 MB and a minimum
transaction size of 224 B, this leads us to an upper limit for identity prices as calculated
in Equations (3) and (4). Above these identity prices, the opportunity cost of creating a
block optimized for identity creation may fall below the amount that is spent to create
these identities properly.

amountmax = block reward × min TX size
max block size

(3)

= 6.25 BTC × 224 B
1 MB

= 0.0014 BTC (4)



Sensors 2021, 21, 3257 10 of 27

As of 22 April 2021, the price of Bitcoin is at approximately 52,009 USD [38,39], leading
to a maximum identity price of approximately 72.81 USD.

In networks with at least intermittent Internet connectivity, an attack, as described
above, is unlikely to occur as nodes can easily check if blocks are actually part of the
blockchain once they get online. To do so, the nodes neither have to download the full
blockchain nor have light-client capabilities. Instead, they act like super-light clients that
just query a trustworthy source of their choice for the relevant block hashes. The calcula-
tions regarding the amount may still be a valuable guideline for pricing identities.

4.2.1. Blockchain-Based 51% Attacks

At this point, the possible impact of blockchain-based 51% attacks, where one party
controls more PoW hashing power than the rest of the network, should also be considered.
Generally, this kind of attack can be considered to be a catastrophic event for the underlying
network and undermine its security and public trust. In the case of Rechained, performing
a 51% attack would be a highly costly path of attack, as compared to the aforementioned
methods. However, if such an attack is already taking place, an attacker might be able
to use such an ongoing attack to create identities more cheaply. It is expected that the
price of a cryptocurrency undergoing a 51% attack would decline sharply, in turn reducing
the costs of creating identities. It might also become possible for an attacker to bribe
the party performing the 51% attack to let the attacker double-spend the funds used for
identity creation.

4.3. Updating Parameters

For scenarios where network participants have Internet connectivity at least some-
times, nodes may check the difficulty at certain block heights and set their corresponding
minDifficulty accordingly. The amount parameter is updated either through signed
updates published by the network operator or one of the mechanisms discussed in the
following, except that there is no need to distribute these updates in a P2P-manner.

In scenarios without Internet connectivity, the following mechanisms are proposed to
keep the network parameters up-to-date and minimize the impact of difficulty and price
changes. They may also be used in scenarios with intermittent Internet connectivity to
bridge the offline periods.

4.3.1. Maximum Seen Difficulty

This is a fully decentralized approach that is also easy to implement. Once a node first
receives an identity proof created within a given, so far unknown, difficulty adjustment
period of two weeks, it sets the target difficulty seen in that identity proof’s block as the
minDifficulty for this period if it is above the networks initial minDifficulty value. If an
identity proof is received for a period that has been initialized in this way, and the new
proof’s block contains a target difficulty that is higher, any previous identity proofs for this
period with a lower target difficulty are invalidated and the minDifficulty for the period
is updated to the new value.

This method allows for the eventual detection of identities that are created using forged
lower difficulty blocks once a connection to an honest node whose identity was issued
in the same two weeks period is made. It does not require any additional infrastructure
to operate.

However, the approach is vulnerable to a denial-of-service attack. If an attacker creates
a block for a two weeks period that has a higher difficulty than the target difficulty of the
actual Bitcoin network, all of the honestly created proofs will be discarded. As creating
such a block is even more difficult than creating a regular Bitcoin block, and it also cannot
be transmitted to the Bitcoin network due to a mismatch in the target difficulty block
header field, this attack incurs significant costs for the attacker.

The method can be used as a fallback method for the following approaches.



Sensors 2021, 21, 3257 11 of 27

4.3.2. Bundled Updates

If the network is run by a single operator, this network operator may publish signed
network parameter messages for every difficulty adjustment period. When creating their
identity proofs, users also download the corresponding update message. When joining the
network, the user’s node distributes the update message together with the identity proof.
Nodes receiving the update message verify the signature and set their minDifficulty and
amount for the given period accordingly. This can be combined with the previous approach
to allow nodes to join without having to retrieve an update bundle. A minDifficulty
set through an update message would never be overridden by a higher difficulty, thus
preventing denial-of-service attacks. At the same time, combining both methods still allows
users to keep joining the network through the maximum seen difficulty approach if the
network operator ceases publishing update messages.

4.3.3. Majority Vote

A more decentralized alternative to the previous approach is for nodes to accept
signed difficulty update messages from multiple providers. Any number of these messages
may be provided together with an identity proof. The difficulty values are stored in a
list for each difficulty adjustment period. If different values are provided by different
providers, the majority vote is treated as the correct difficulty value. If there is no majority,
then the highest value is treated as the correct difficulty value.

The approach removes the single-point-of-failure that is present in the previous pro-
posals above. If an attacker wants to influence the target difficulty for a given period,
then the attacker has to compromise a majority of update providers to get their difficulty
target chosen. Like bundled updates, this approach can be used with the maximum seen
difficult approach as a fallback option for nodes that are unable to provide bundled update
messages or in the case these messages cease being available at some point.

5. Protocol Formalization

Designing and specifying a new security protocol, such as Rechained, is a difficult
task. Designing the protocol in such a way that prevents design flaws, security issues, as
well as incomplete specifications that pose risks to the protocols stakeholders and the user
is yet another challenge [40–43]. Even in a best-case scenario, issues of a security protocol
can pose dangers to the individual users who rely on it, while, in other cases, design
flaws and errors bring about serious real world consequences: The broken encryption of a
wireless network [44] is an example for the first case, whereas a broken security protocol
that grants an attacker access to sensible parts of nuclear power plants [45] illustrates a
more serious threat.

Formal methods, such as Petri nets [46], π-calculus [47], and communicating sequen-
tial processes [48], address the posed challenge and are utilized for the design, development,
and analysis of new as well as existing protocols, thereby eliminating, or minimizing, the
security issues of the targeted protocols [49,50].

5.1. Colored Petri Nets

In the following sections, we formalize the Rechained protocol using Colored Petri Nets
(CPNs) [16,17] in order to detect and eliminate eventual design flaws, missing specification
details, as well as thus far undetected security issues [18]. CPN is a graphically oriented
language that is used to design, specify, simulate, as well as verify systems. Moreover, it
allows for describing the states of a modeled system and the events that cause the system to
change states.

CPN models are represented using a directed bipartite graph that consists of places,
transitions, arcs, and tokens. Places are denoted as circles and transitions as rectangles.
Arcs connect places with transitions, or transitions with places, and have inscriptions given
as CPN-ML expressions [16,17,51–53]. CPN-ML is an expression programming language
for inscriptions that are used to further specify data types and operations of the modeled



Sensors 2021, 21, 3257 12 of 27

system. CPN tokens and their colors represent the different data types of the modeled
system. The resulting CPN model “of a system describes the states of the system and
events (transitions) that can cause the system to change state. By making simulations of
the CPN model, it is possible to investigate different scenarios and explore behaviors of the
system” [16].

Besides its general suitability for system formalization, CPNs are especially well-
suited for application in the context of blockchain-based systems. CPN models are discrete
state machines and change states via transitions. Analogous to this, blockchains are also
discrete state machines as well, where the most recent block represents the current state of
the system. With each new block, the system’s state transitions to a successor state. While,
in CPNs, data structures are represented in the form of colored tokens, many blockchain
platforms also use a data structure concept of tokens for the same reason. Moreover,
blockchain transactions can be easily mapped to CPN token data structures. Furthermore,
CPNs use CPN-ML expressions to specify and implement data types and operations of
the modeled system, which correspond to the functionalities of smart contracts in the
context of blockchain technology. Finally, the hierarchical structure of CPN models can
be used to formalize blockchain-based dApps (decentralized applications) components
of interleaved smart contracts. Thus, CPNs are well-suited as a formalism of choice for
blockchain systems.

In the following, CPN-Tools (http://cpntools.org/, accessed: 5 May 2021) is used to
design, evaluate, and verify the CPN models. The result is a formal specification of the
protocol that is used to guide further implementation efforts and design decisions.

5.2. Modeling Strategy

An appropriate modeling strategy is required to map the existing descriptions of
the Rechained protocol as described in Sections 3 and 4 to the corresponding elements
of a CPN model. We map the informal descriptions and requirements of Rechained to a
formal model using CPN, resulting in a sound formal model. To do so, we first outline
the modeling strategy used to create the CPN models before presenting the resulting CPN
models in the subsequent sections.

Rechained organizes and defines the exchange of information between different
entities that are modeled as agents. In software engineering, various agent-oriented
approaches exist, such as: Tropos [54], Gaia [55], Prometheus [56], MASB [57,58], and
MaSE [59]. In [60], Mahunnah et al. introduce a mapping heuristics from agent models to
CPN models based on Sterling’s and Taveter’s [61] sociotechnical requirements-engineering
methodology of Agent-Oriented Modeling (AOM).

In system development and software engineering, good requirements follow certain
characteristics. Requirements address one issue only and they are completely specified
without missing information, according to [62,63]. Moreover, they have to be consistent
and must not contradict themselves, or pose contradictions in correlation with other
requirements. Finally, a requirement must also be atomic and without conjunctions [64].

The Agent-Oriented Modeling (AOM) methodology allows technical- and non-technical
stakeholders to model complex systems by capturing and understanding their functional- and
non-functional requirements. An AOM goal model relies on three main elements to capture
the system requirements and goals, as illustrated in Figure 4. Involved stakeholders are
represented as sticky men, being usually used solely for human entities, but this work
also comprises IoT devices, agents, and infrastructure components. Parallelograms depict
functional requirements and are referred to as goals. Non-functional requirements are
depicted as clouds and refer to as quality goals of the modeled system. The AOM goal
model follows a tree-like hierarchy with the root value proposition of the modeled system
at the top. Subsequently, this main goal is decomposed into sub-goals, where each sub-goal
represents an aspect for achieving its parent goal [65]. The goals are further decomposed
into multi-layered sub-goals until the lowest atomic level is reached. Additionally, the roles
and quality goals may be assigned to goals and they are inherited to lower-level goals.

http://cpntools.org/


Sensors 2021, 21, 3257 13 of 27

Quality goalGoal

Figure 4. Selection of AOM notation elements.

5.3. AOM Model

Figure 5 presents the AOM goal model of the Rechained protocol.The main objective
of Rechained is to disincentivize and price the cost of Sybil node attacks. The main goal
is further decomposed into multi-layered sub-goals until the lowest atomic sub-goal is
reached. In the context of Rechained, the main goal is further divided into the following
sub-goals: Create deposit transaction, Mine transaction, Create identity proof, Validate identity
proof, and Revoke identity proof. The five quality goals secure, correct, tamperproof, entity
agnostic, and automated are attached to the overall main goal of the goal model, meaning
they are relevant and inherited to all sub-goals. The quality goal reliable pertains to the three
sub-goals of Mine transaction, Validate identity proof, and Revoke identity proof. In addition,
we list three different roles: The user—either a human, or machine—the mining entity
that performs the PoW calculations of the underlying blockchain and the validator who
validates an identity proof once received.

Figure 5. Rechained top-level AOM goal model—extension of [5].

Next, the AOM behavior model refines the AOM goal model for specific agents
and activities. A behavior model in AOM has two parts: An agent behavior model is
coupled with a behavior interface model [61]. The former describes the rule-based behavior
of an agent, while the latter focuses on identifying activities with associated triggers,
preconditions, and post-conditions [60].

Table 2 presents the behavior interface model of the goals that are depicted in the
goal model of Figure 5. Each activity is listed with its corresponding trigger, optional
pre-conditions, and its post-conditions. The execution of an activity is either triggered by
an event, or by a pre-condition after the occurrence of an event [60].

The Create Deposit Transaction-activity is triggered after providing the required net-
work input parameters as well as a machine identity (e.g., a network node) and a wallet.
Afterwards, as part of the Mining-activity, the resulting deposit transaction is mined into a
new block. During the Create Identity Proof -activity, the block, the machine identity and
the provided wallet are used to create an identity proof for the node. Finally, the created
identity proof is validated as part of the Validate Identity Proof -activity that takes an identity
proof, the network parameter, the machine identity, and the initial wallet to determine
whether the identity proof is valid.



Sensors 2021, 21, 3257 14 of 27

Table 2. Behavioral interfaces of activities for Rechained—extension of [5].

Activity Trigger Pre-Condition Post-Condition

Create Deposit
Transaction

User wants to create a
deposit transaction

Network parameters, machine identity
and machine wallet

Network parameter, machine
identity, machine wallet, deposit
transaction

Mining
Received
deposit/revocation
transaction

Deposit/revocation transaction,
previous block hash, deposit/revocation
wallet and blockchain difficulty target

Block, previous block hash,
blockchain difficulty target,
deposit/revocation wallet

Create Identity
Proof

Deposit transaction mined
into block and user wants to
create new identity proof

Block with deposit transaction, machine
identity and machine wallet

Identity proof, machine identity,
machine wallet

Validate Identity
Proof Incoming identity proof Identity proof, network parameter,

machine identity and machine wallet

Boolean statement whether the
provided identity proof is valid,
or not

Create
Revocation
Transaction

User wants to create a
revocation transaction

Identity proof, network parameter,
machine identity and machine wallet

Network parameter, machine
identity, machine wallet, revocation
transaction and identity proof

Revoke Identity
Proof

Revocation transaction
mined into block

Block with revocation transaction,
identity proof, identity revocation list,
machine identity and machine wallet

Identity proof, machine identity,
machine wallet and identity
revocation list

5.4. Mapping AOM Models to CPN Models

Mapping the created AOM goal and the AOM behavior interfaces to CPN is the final
step necessary to derive a CPN model of Rechained. Figures 6 and 7 illustrate the mapping
heuristic of AOM goal models to CPN models as well as the mapping of behavior interface
models to the CPN models.

Notation Name

Connecting Arc

Sub-goal or Activity

Trigger or Precondition

Postcondition

Goal

Figure 6. Notation mapping CPN to AOM—based on [60].

In the CPN model, the Rechained protocol execution is modeled using places and
transitions thata re connected by directed arcs. The goals of the AOM goal model are
mapped to rectangular CPN transitions. Double-boarded transitions are used to indicate
sub-goals and hierarchically structured CPN modules. The CPN modules and sub-modules
of the overall CPN model map to the relation between goals and sub-goals of the AOM
goal model, as illustrated in Figure 7. The triggers and pre-conditions of the AOM behavior
interfaces are displayed as places with outgoing arcs, while post-conditions are represented
by places with incoming arcs [60].



Sensors 2021, 21, 3257 15 of 27

Trigger 1 Activity

Precondition

Postcondition

Figure 7. Mapping a behavior interface model to a CPN model—based on [66,67].

The complete and formalized Rechained CPN model as derived from the AOM goal
model and the AOM behavior interfaces and implemented using CPN-Tools is shown in
Figure 8.

Network
Parameter

In/Out
NetworkParameter

initNP

In/Out

TXID

INT

initTXID

TX

INTxTransaction

depositWallet

Wallet

initDepositAddress

BC

INTxBlock

IDProof

INTxIdentityProof

END
Out

INTxBOOLxIP
Out

Machine

In/Out

INTxMachineIdentityxWallet

1`(1, {DID="did:m2xsolution:11", KeyPair = {pubKey = "pubKey-1", privKey = "privKey-1"}},
{Address="0xMachineAddress-1", Balance =25})++
1`(2, {DID="did:m2xsolution:12", KeyPair = {pubKey = "pubKey-2", privKey = "privKey-2"}},
{Address="0xMachineAddress-2", Balance =25})++
1`(3, {DID="did:m2xsolution:13", KeyPair = {pubKey = "pubKey-3", privKey = "privKey-3"}},
{Address="0xMachineAddress-3", Balance =25})

In/Out

BlockID

INT

initBlockID

prevBlockHash

STRING

initPrevBlockHash BlockchainDiffTarget

INT

initBlockchainDiffTarget

IdentityRevocationList

IRL

[]

IDP

INTxIdentityProof

Create
Deposit

TX

[#Balance
machineWallet >=
#minDeposit NP]

Mining

Create
Identity Proof

[ID = mID andalso
#amount (hd((#txList Block))) >1]

Validate
Identity Proof

[mID = ID andalso #BlockchainDiffTarget IP >= #Difficulty NP andalso
#to (hd(#BlockTXList IP)) = #depositAddress NP andalso
#TXID IP = #ID (hd(#BlockTXList IP)) andalso
#proofID IP = Int.toString(hash(#BlockHash IP ^
Int.toString(#ID (hd(#BlockTXList IP))))) andalso
#Address machineWallet = #from (hd(#BlockTXList IP)) andalso
#privKey (#KeyPair machineID) = #txSig (hd(#BlockTXList IP))]

Revoke Identity
Proof

[ID = mID andalso
#amount (hd((#txList Block))) = 1]

Create
Revocation

TX

[validationResult
= true]

NP
NP

TXID

TXID + 1

(ID, {ID= TXID,
from = #Address machineWallet,
to = #depositAddress NP,
amount = #minDeposit NP,
pubkey = #pubKey (#KeyPair machineID),
txSig = #privKey (#KeyPair machineID)})

depositWallet {Address = #Address depositWallet,
Balance = (#Balance depositWallet) + (#amount TX)}

(ID, TX)

(ID, {
ID = BlockID,
prevBlockHash = prevBlockHash,
BlockchainDiffTarget = blockchainDiffTarget,
txList = TX::[]})

(ID, Block)

(ID, {BlockID = #ID Block,
BlockHash = Int.toString(hashBlock(Block)),
BlockchainDiffTarget = #BlockchainDiffTarget Block,
TXID = #ID (hd((#txList Block))),
BlockTXList = #txList Block,
proofID = Int.toString(hash(Int.toString(hashBlock(Block))^
Int.toString(#ID (hd((#txList Block)))))),
proofSig = #privKey (#KeyPair machineID)})

(ID, IP)

(ID, machineID,
machineWallet)

(mID, machineID, machineWallet)

(ID, machineID, {
Address= #Address
machineWallet,
Balance = (#Balance
machineWallet)-
(#minDeposit NP)})

BlockID

BlockID + 1

prevBlockHash

prevBlockHash ^
Int.toString(hashBlock( {
ID = BlockID,
prevBlockHash = prevBlockHash,
BlockchainDiffTarget =
blockchainDiffTarget,
txList = TX::[]}))

blockchainDiffTarget

blockchainDiffTarget

NP

NP

(mID, machineID, machineWallet)

(mID, machineID, machineWallet)

TXIDTXID + 1

(ID, machineID,
machineWallet)

(ID, machineID,
machineWallet)

(ID, {ID= TXID, from = #Address machineWallet, to = #depositAddress NP, amount = 1,
pubkey = #pubKey (#KeyPair machineID), txSig = #privKey (#KeyPair machineID)})

NP

NP

IRL

IRL

(ID, Block)

(ID, IP)

IRL

mID:: IRL

(ID, validationResult, IP)

(mID, machineID, machineWallet)
(mID, machineID, machineWallet)

(mID, machineID, machineWallet)

if contains IRL [mID] orelse
#amount (hd(#BlockTXList IP)) < #minDeposit NP
orelse #BlockID IP < #minBlockHeight NP
then (ID, false, IP)
else (ID, true, IP)

(ID, IP)

(ID, IP)

Figure 8. Rechained CPN model—extension of [5].

The CPN model consists of six transitions that are derived from the five sub-goals of
the top-level AOM goal model. The protocol flow starts on the left-hand side of Figure 8
with the Create deposit transaction-transition. An infrastructure provider, user, or machine



Sensors 2021, 21, 3257 16 of 27

that wishes to create a new identity triggers the transition by providing the required
network parameters, as described in previous sections, as well as information relating to
the entity’s identity (in the CPN model, a machine is assumed), i.e., a machine identity
consisting of a DID and a public/private key in addition to a wallet that corresponds to the
used key pair. In case the wallet balance is sufficient to make a deposit, a matching deposit
transaction with the target deposit address is created via the Create deposit transaction-
transition. After that, the transaction is mined into a new block of the underlying blockchain
platform (Mining-transition). The resulting block contains a BlockID, the hash of the
previous block, the blockchain’s difficulty target, and a list of included transactions. Once
the block is mined, an identity proof is created (Create identity proof -transition) according
to the specifications described in previous sections. Next, the resulting identity proof is
checked for validity while passing the Validate identity proof -transition resulting in a Boolean
representation of the validation process’s success or failure. Subsequently, a valid identity
proof may be revoked by the owning entity. To do so, the Create revocation transaction-
transition creates a revocation transaction similar to the deposit transaction, which is mined
into the blockchain. Afterward, the Revoke identity proof -transition allows for revoking
an identity proof, registeriing the revoked proofID with the IdentitiyRevocationList. Once
revoked, the identity proof validation fails and the CPN model terminates.

The CPN token color sets, names, and abbreviations used in the model are introduced
in the following sections, while the complete and executable CPN model is available in
Data Availability Statement.

5.5. Protocol Semantics

Next, we introduce the CPN token color sets, names, and acronyms of the Rechained
CPN model. CPN token colors represent the data structures of data objects that are used to
illustrate the data flow throughout the CPN model. Exemplary acronyms, names, and the
description of the token colors of the CPN model are presented in Table 3. The first column
specifies the name, followed by a short description in the second column. The last column
lists information concerning the data types. A complete list of all acronyms, names, and
abbreviations, as well as the description of the token colors of the Rechained CPN model is
available in Data Availability Statement.

Table 3. Exemplary acronyms, names, and description of token colors of the Rechained CPN model—extension of [5].

Token Color Description Type

KeyPair Key pair (pubKey, privKey)

Wallet Blockchain wallet (Address, Balance)

NetworkParameter, NP Rechained network parameter (Difficulty, minBlockHeight, minDeposit,
depositAddress)

Difficulty Minimum PoW difficulty for an identity proof
as defined by the network operator Integer

minBlockHeight Minimum block height as defined by the
network operator Integer

minDeposit Minimum deposit to be made for an identity
proof as defined by the network operator Integer

depositAddress Deposit address as defined by the
network operator String

Transaction, TX Structure of a deposit transaction (ID, from, to, amount, pubKey, txSig)

Block Blockchain block (ID, prevBlockHash, BlockchainDiffTarget, txList)

IdentityProof, IP Identity proof (BlockID, BlockHash, BlockchainDiffTarget, TXID,
BlockTXList, proofID, proofSig)

proofID proofID as specified by the protocol String



Sensors 2021, 21, 3257 17 of 27

Table 3. Cont.

Token Color Description Type

MachineIdentity Machine entity identity (DID, KeyPair)

depositWallet Deposit wallet as defined by the
network operator Wallet

machineWallet Machine’s wallet Wallet

IdentityRevocation-List,
IRL List of IDs of revoked identity proofs [Integer]

validationResult Result of the identity proof validation Boolean

6. Evaluation and Discussion

The following section focuses on evaluating the Rechained protocol. First,
Sections 6.1 and 6.2 focus on the evaluation of the security guarantees that are provided by
Rechained. Those mainly depend on the target difficulty level as well as the token price of
the underlying PoW blockchain. In the context of this work, we choose the Bitcoin and the
Ethereum blockchain as the most popular and utilized PoW chains to deploy a fictional
network of Rechained nodes. The combination of evaluating both blockchains covers
important corner cases of changing difficulties and token prices, such as increasing and
decreasing difficulty in combination with sudden price declines and raises. Our evaluation
focuses on the time period from January 2017 to April 2021. Even though neither future
price developments of Ether and Bitcoin nor the target difficulty can be reliably predicted,
the analysis provides an intuition on the historical worst-case performance of Rechained.

Afterwards, Section 6.4 presents the results of the state-space analysis of the Rechained
CPN model. Subsequently, Section 6.5 presents an Ethereum- and Bitcoin-based proof-of-
concept implementation. Finally, Section 6.6 critically discusses the evaluation results.

6.1. Bitcoin Price and Difficulty Analysis

Figure 9 presents the target difficulty level and token price of the Bitcoin blockchain
between January 2017 and April 2021. The target difficulty level is steadily increasing with
minor decreases in October 2018, October 2019, and March 2020—the last one being caused
by the global COVID-19 pandemic. The price of the Bitcoin token follows a similar pattern,
but with a high-price peak at the end of December 2017 and higher volatility. The lowest
token price (ignoring the low price at the beginning of our evaluation period)—caused by
the largest price-drop—occurs in January 2019. Very recently, throughout the beginning of
2021, the price has spiked upwards again significantly.

Section 4 discusses the lower bound security guarantees of Rechained, which depend
on the minimum target block difficulty and the lowest token price equivalent per block
that occurred during the existence of a particular network. Figure 9 shows that all of
the nodes joining a hypothetical network later than January 2017 have higher security
guarantees than the initial bootstrapping nodes due to an increased block difficulty and
token price—even despite substantial declines of the Bitcoin price and the target difficulty
levels between the end of 2017 and the end of 2018, as well as a subsequent decline in early
2020; the lowest price and difficulty levels still remain above the values at the time of the
network initialization. Nonetheless, since the minimum price per identity is determined
by the network operator, the token price and difficulty level only represent a theoretical
measurement for security guarantees. Yet, a higher token price results in an increased block
price, which again results in higher attack costs.



Sensors 2021, 21, 3257 18 of 27

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

2017-02-01

2017-08-01

2018-02-01

2018-08-01

2019-02-01

2019-08-01

2020-02-01

2020-08-01

2021-02-01

 0

 5x1012

 1x1013

 1.5x1013

 2x1013

 2.5x1013

P
ri

ce
 (

U
S
D

)

D
iffi

cu
lt

y

Date

Difficulty
USD/Bitcoin

Figure 9. Average daily price of Bitcoin in USD and block difficulty level between January 2017 and
April 2021—partially based on [5,15], Data Source [39].

Deploying a network at the lowest price of our evaluation period results in subse-
quently higher security guarantees after price gains. However, deploying a network at the
highest point in Bitcoin’s price history, at the beginning of November 2017—days before
the decreasing Bitcoin price as illustrated in Figure 9—decreases the security guarantees,
and makes it less expensive to introduce new identities into the system for a short period
of time. Again, the actual pricing of identity proofs depends on the network operator
determining the minimum price of an identity. For practical reasons, it is likely that most
of the operators pick minimum values below the maximum determined in Section 4.2,
allowing for difficulty declines without affecting the security guarantees of a given network.
In case of substantial price and difficulty declines, e.g., between the end of 2017 and the
end of 2018, a price and difficulty network parameter update is recommended.

Upwards price spikes, like in December 2017 and the beginning of 2021, can present
a concern with regards to the usability of a network using Rechained. A sharp increase
in price will also increase the costs to join the network. If a network is created during
a price spike, the operator may elect to configure the required amount to be lower to
compensate, but, if a network is created and configured before such an increase, it may
cause issues. To address this, one of the proposed network parameter update mechanisms
from Section 4.3 should be used. Overall, higher prices are beneficial to the security of
Rechained, as they allow more freedom and a higher upper bound of the dollar price per
identity when choosing a price per identity as per Equation (3). At the same time, it also
remains possible to choose lower prices per identity.

Figure 9 only provides an overview of the volatility of the Bitcoin token price and
the block difficulty level. Table 4 utilizes the same data set and analyzes the occurrence
of substantial token price declines by calculating, for each possible deployment date of a
hypothetical network, the highest drop in price and, thus, security level experienced by
the network. Price drops are calculated based on the daily average Bitcoin prices at the
end of each given day. A price lower than the previous day indicates a price decline while
the opposite is true for increasing prices. The probability of dropping, at any point in time
during the evaluation period, below 10% of the initial security level is 0%, while there is
only a 1% chance of dropping below 20% of the price at any point in time.



Sensors 2021, 21, 3257 19 of 27

Table 4. Affected starting dates after which the Bitcoin price drops below a certain percentage of the
given day’s price between January 2017 and April 2021.

Drop to Affected Start Dates

<10% 0.0%
<20% 0.8%
<30% 4.6%
<40% 10.1%
<50% 22.0%
<60% 36.3%
<70% 43.2%
<80% 52.6%
<90% 60.0%

<100% 81.1%

Smaller price-drops occur frequently. Almost 76% of all starting days experience price
drops of at least 10% at some point in our analysis. However, substantial declines are rare.
Most of the networks can tolerate some price volatility without relevant declines with
regards to the provided security level. Nonetheless, large price drops or rising token prices
are an issue. While price drops result in lower security guarantees, rising prices may be an
issue too since they can make identities too expensive for regular users. Thus, an update
mechanism for the network parameter amount is recommended in the context of networks
that operate for a long time. We have proposed different mechanisms to perform such
updates in Section 4.3. Even though price volatility is a major issue for most cryptocur-
rencies right now, the volatility level of cryptocurrencies and fiat currency is expected to
converge if the mass-adoption of cryptocurrencies occurs. As a result, Rechained’s security
guarantees could be expected to vary less, due to the lower price volatility.

6.2. Ethereum Price and Difficulty Analysis

Rechained itself is a blockchain-agnostic protocol. It only requires the underlying
blockchain platform to utilize a PoW-like consensus algorithm. Therefore, we also analyze
the provided security guarantees for hypothetical Rechained networks when deployed
on the Ethereum platform during the same time period as above. Figure 10 illustrates the
Ether token price and the Ethereum block difficulty between January 2017 and April 2021.
Similarly to the Bitcoin token price, the Ethereum token price also increased massively
between January 2017 and the end of December 2017, followed by a significant drop until
April 2018. Subsequently, a price recovery in May 2018 is followed by a further decline
until December 2018, before slowly starting to increase again until February 2020, followed
by a decline that is caused by the COVID-19 pandemic at the end of the evaluation period
and another steep incline at the beginning of 2021. The block difficulty increases steadily
until 16 October 2017, before a sudden drop due to a difficulty adjusting hard-fork of the
Ethereum network [68]. Another drop is shown at the end of 2019. Despite substantial
reoccurring declines of the block difficulty level, even the reduced values were higher than
the initial level in January 2017. During the steep incline in price in 2021, the difficulty
also increases accordingly. It appears that, in the case of Ethereum, the difficulty is more
closer linked to price than in the case of Bitcoin, where it increased steadily, even through a
period of lower prices.

The overall behaviour is similar to Bitcoin. Hence, the security guarantee evaluation
results are similar to the evaluation of the hypothetical Bitcoin-based Rechained network
assumed in Section 6.1. Network nodes deployed in January 2017 with the bootstrapping
difficulty level and token price are cheaper and easier to create in terms of identity price and
block difficulty. All of the nodes deployed at later points in time provide higher security
guarantees. Identity proofs created briefly before and/or after the Ethereum difficulty ad-
justment, as well as the difficulty drop in early 2019 and late 2019, are less difficult to create
than identities created later on. The same applies for the price of identities both before



Sensors 2021, 21, 3257 20 of 27

and after the price declines of Ether in 2018, as illustrated in Figure 10. Because Ethereum
seems to have sharp drops in difficulty more often than Bitcoin, it seems prudent to choose
the initial minDifficulty significantly lower than the current difficulty, to account for such
drops in the future, unless timely network parameter updates can be guaranteed. With re-
spect to the recent increase in price with the beginning of 2021, the same considerations as
with Bitcoin also apply.

 0

 500

 1000

 1500

 2000

 2500

 3000

2017-02-01

2017-08-01

2018-02-01

2018-08-01

2019-02-01

2019-08-01

2020-02-01

2020-08-01

2021-02-01

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

P
ri

ce
 (

U
S

D
)

D
iffi

cu
lt

y

Date

Difficulty
USD/Ethereum

Figure 10. Average daily price of Ether in USD and block difficulty level between January 2017 and
April 2021—partially based on [5,15], Data Source [69].

Analogously to Table 4, Table 5 analyzes the occurrence of substantial token price
declines for the Ethereum network by calculating, for each potential deployment date of a
hypothetical network, the highest drop in price and, thus, the security level experienced
by the network. The probability of dropping, at any point in time during the evaluation
period, below 10% of the initial security level is 3.3%. Drops below 20% has would have
occurred for 19.6% of possible starting dates. Almost half of the affected dates experience
price drops of 50%. These values are much higher than the values for the Bitcoin network,
as presented in Table 4. Thus, the Bitcoin-based Rechained solution provides more certainty
and more steady security guarantees than the Ethereum-based implementation—at least
based on the analysis of past events, which is, of course, not indicative of future prices
and volatility.

Table 5. Affected starting dates after which the Ethereum price drops below a certain percentage of
the given day’s price between January 2017 and April 2021.

Drop to Affected Start Dates

<10% 2.5%
<20% 14.8%
<30% 25.9%
<40% 31.7%
<50% 40.6%
<60% 45.8%
<70% 54.3%
<80% 60.3%
<90% 71.5%

<100% 89.3%

6.3. Transaction Fee Analysis

Storing data on a PoW-base chain, such as the Bitcoin blockchain, incurs costs that
correlate with the transaction size. A revocation transaction in the Bitcoin network with



Sensors 2021, 21, 3257 21 of 27

a payload of 40 bytes has a size of fewer than 283 bytes, as suggested in [35]. Because
Rechained does not depend on fast transaction processing, it is unnecessary to aim for a
high mining priority by paying high fees. In March 2020, the cost of a transaction averaged
around $0.001751 per byte. As a result, a revocation transaction of 283 bytes on the Bitcoin
platform cost $0.496 [35]. However, the most recent Bitcoin hype increased the transaction
fees heavily. In March 2021, the cost for the same revocation transaction increased to $6.281,
with an average price of $0.022194 per byte [70,71].

Despite the drastic increase in transaction costs, we do not expect any long-term
disadvantages for Rechained for several reasons. First, Rechained does not explicitly rely
on the Bitcoin blockchain. Instead, all of the PoW-based blockchain platforms can be used
as an alternative. Second, we expect the transaction fees to decline in the long run, either
due to an end of the hype or as part of the widespread adoption of Bitcoin as a payment
processing network. Finally, high transaction fees are addressed in various proposals that
aim to reduce the fees, e.g, [72,73].

6.4. CPN State-Space Analysis

Next, we evaluate the Rechained CPN model by performing a state-space analysis,
which we use to derive model properties and explain their implications. A state-space
calculates a directed graph of all reachable states and state changes of a given CPN model.
The nodes of the graph correspond to the set of reachable markings, and the arcs correspond
to occurring binding elements [17]. The properties of the CPN model—and the system
presented by the model—are deduced from the resulting graph. The state-space analysis
used in this work is generated using the built-in functionalities of CPN-Tools. Subsequently,
we calculated the SCC (strongly connected component) of our CPN model based on the
state-space analysis’s previously generated directed graph. The nodes of the SCC are
“obtained by making a disjoint division of the nodes in the state space such that two state-
space nodes are in the same SCC if and only if they are mutually reachable, i.e., there
exists a path in the state space from the first node to the second node and vice versa” [17].
Properties that are derived from the SCC may imply one or more cycles in case the SCC
contains fewer nodes than the state-space graph of the CPN model.

The state-space analysis results and selected properties derived from the analysis of
the Rechained CPN model are presented in Table 6, while the complete state-space analysis
is available in Data Availability Statement.

Table 6. State-space analysis results of the Rechained CPN model.

Loops Home Markings Dead Markings Dead Transitions Live Transitions

No No Yes No No

None of the tested modules contain any loops, as shown in Table 6. Thus, no infi-
nite occurrences of execution paths in the state-space graph exist, which guarantees the
termination of the model. The state-space analysis also shows the absence of any home
markings. A home marking is a marking that can be reached from any other reachable
marking, meaning that it is impossible to have an occurrence of a sequence that cannot
be extended to reach the home marking. The occurring dead markings are caused by cus-
tomized input values that prevent a state-space explosion. “A dead marking is a marking
in which no binding elements are enabled” [17]. The existence of at least one dead marking
guarantees a termination of executable actions at a certain point, thereby preventing infinite
runtime. The existence of a dead marking implies that the CPN model does not have a
live transition. “A transition is live if from any reachable marking we can always find
an occurrence sequence containing the transition” [17]. Finally, the state-space analysis
did not yield any occurrences of dead transitions. A transition is considered to be dead if
there is no reachable marking that enables the transition. Therefore, in the context of the



Sensors 2021, 21, 3257 22 of 27

Rechained CPN model, all transitions of the model can be potentially enabled at a certain
point during the protocol execution [17].

6.5. Proof-of-Concept Implementation

Previous sections evaluated Rechained with regards to the provided security guar-
antees based on the underlying blockchain platform and cryptocurrency. Moreover,
a state-space analysis using a formal CPN model was conducted. However, the real-
world applicability and feasibility within the context of IoT devices have not been cov-
ered yet. Thus, a proof-of-concept implementation of the original Unchained protocol
based on the Bitcoin and Ethereum blockchain was created—the repositories are avail-
able online (https://github.com/bleidingGOE/unchained-cli-btc or https://codeocean.
com/capsule/7153326/tree/v1; https://github.com/bleidingGOE/unchained-cli-eth; or,
https://codeocean.com/capsule/1342035/tree/v1, accessed: 5 May 2021). The implemen-
tations use public/private key pairs instead of DIDs thereby reduce development overhead
and do not yet contain revocation support. However, this does neither affect provided
security guarantees, nor the performance of the proof-of-concept. The implementations are
evaluated using common IoT hardware, i.e., the Raspberry Pi 3 platform.

The size of an identity proof varies depending on the blockchain platform as well as
the size of the block containing the proof transaction. Bitcoin-based proofs require between
10–50 KB of storage and they can be verified in about two seconds using a Python based
implementation. Both runtime and proof size could most likely be optimized further for
actual use in production. The Ethereum proofs consume around 50–150 KB of storage,
but take around 60 s to be verified. The slow verification processing is caused by a deliberate
design choice of the Ethereum hash function Ethash [74], which was designed to achieve
ASICS resistance. Therefore, deploying Rechained on a Bitcoin-like PoW blockchain is
more practical even though other PoW blockchain platforms that do not rely on Ethash or
similar algorithms with the same property are also suitable.

Because the identities are deployed to networks by the network operators or device
manufactures, we assume that the proofs itself are not generated on the actual devices—
hence, we do not conduct any performance benchmarks for creating proofs on the Rasp-
berry Pi 3.

6.6. Discussion

While the integration of DIDs in the context of Rechained allows for an effective
mechanism to disincentivize and accurately price Sybil node attacks, the presented solution
still misses a comprehensive integration into industry-standard implementations, e.g., for
vehicle-specific use cases, the recently presented vehicle identity standard [75]. Integrating
the vehicle identity standard, which uses a DID-structure, with Rechained identity proofs
is desirable.

Evaluation limitations of the Rechained CPN model result from the customized input
statements of the model as well as the modeling process itself, which requires several
simplifications, e.g., neither the Bitcoin nor the Ethereum consensus algorithm and mining
process were implemented in the CPN model. Furthermore, we simplified the data struc-
tures of the Rechained protocol and the blockchain platform, e.g., no Merkle trees, blocks
have no nonce, a simplified calculation of Rechained’s proofID calculation. Further limita-
tions originate from the limited scripting capabilities of CPN-Tools, e.g., the implemented
hashing function does not provide real hashing properties. Similar applies to the symbolic
implementation of public-key cryptographym which only allows for the symbolic signing
of hashed data records.

Because Rechained is a cryptocurrency-based protocol, it suffers from volatile cryp-
tocurrency prices that complicate its everyday use.

Finally, Rechained may allow network operators to determine the cost of a Sybil node
attack, but it neither fully prevents such an attack, nor does it help to actually detect the

https://github.com/bleidingGOE/unchained-cli-btc
https://codeocean.com/capsule/7153326/tree/v1
https://codeocean.com/capsule/7153326/tree/v1
https://github.com/bleidingGOE/unchained-cli-eth
https://codeocean.com/capsule/1342035/tree/v1
https://codeocean.com/capsule/1342035/tree/v1


Sensors 2021, 21, 3257 23 of 27

Sybil nodes. However, depending on the scenario, Blockchain analysis techniques [76]
could be employed to help identify identities created by the same entity.

7. Conclusions and Future Work

Once Sybil nodes have entered a network, detecting them can be an error-prone and
cumbersome process. In this work, we propose Rechained, which introduces a direct and
adjustable per-identity cost and disincentivizes Sybil attacks, even before they start. Our
protocol is fully decentralized and uses public blockchains to offload the proof-of-work
process, while, at the same time, providing offline verification and identity revocation
mechanisms. Rechained is formally evaluated by means of Colored Petri Nets, includes
revocations and support for SSI.

Our analysis shows that circumventing the security mechanisms of Rechained incurs
equivalent or higher costs for an attacker than following the protocol as intended, showing the
suitability of the scheme for disincentivizing the creation of spurious or malicious identities.

Ino order to create new identities, which can even be used in scenarios where eclipse
attacks have to be considered, Rechained binds blockchain-based wallet address (i.e. cryp-
tographic public and private key pairs) to identities. During this process, an identity
proof is generated, which can be verified offline. The identity proof further contains an
unpredictable proof ID. Identity creation has an adjustable price tag and different types
of payment (i.e., to a network operator, to charity, or proof of burn) are described. When
connecting to a network secured by Rechained, nodes exchange identity proofs and ver-
ify them before proceeding to connect. The generation of separate revocation proofs is
also supported.

Cryptocurrencies are somewhat notorious for their highly volatile prices, but our
analysis shows that, even in the worst case, this volatility impacts the security of Rechained
only to a very limited degree. Network parameter update mechanisms allow further
adjustment in case of price or difficulty changes. For networks with at least intermittent
Internet connectivity, we describe different ways of adjusting network parameters to
accomodate a changing environment. At the same time, we detail approaches that can
be used to keep the network’s configuration in working order, even in the complete
absence of Internet connectivity, which makes Rechained suitable for many different
operating environments.

We also formalize the protocol by means of Colored Petri Nets to analyze its properties
and behavior and provide a basic proof-of-concept implementation that shows the suitabil-
ity of Rechained for low powered nodes, such as those that may be found in Internet of
Things applications.

In the future, we plan to investigate the feasibility of implementing our scheme on
blockchains based on other consensus mechanisms than PoW, as it is often criticized for its
high energy consumption. We also plan to evaluate further IoT use-cases for Rechained in
the real world. Finally, employing blockchain analysis techniques should be investigated,
as it could be a promising approach for identifying possible attacks that occur, despite the
economic disincentivization.

Author Contributions: Both authors contributed equally to the original research idea, evaluation,
production of figures and writing the paper. All authors have read and agreed to the published
version of the manuscript

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this work are openly available in IEEE DataPort
at http://dx.doi.org/10.21227/e5tk-3y77.

Acknowledgments: The authors would like to thank Simon Schuler for his work on the proof-of-
concept implementation.

http://dx.doi.org/10.21227/e5tk-3y77


Sensors 2021, 21, 3257 24 of 27

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Van der Meulen, R. Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, up 31 Percent from 2016. 2017. Available

online: https://www.gartner.com/newsroom/id/3598917 (accessed on 13 February 2021).
2. Nordrum, A. Popular Internet of Things Forecast of 50 Billion Devices by 2020 Is Outdated. 2016. Available online: https://

spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
(accessed on 13 February 2021).

3. Horst, H.A.; Miller, D. Digital Anthropology; A&C Black: London, UK, 2013.
4. Su, K.; Li, J.; Fu, H. Smart City and the Applications. In Proceedings of the 2011 International Conference on Electronics,

Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 1028–1031.
5. Leiding, B. The M2X Economy—Concepts for Business Interactions, Transactions and Collaborations Among Autonomous Smart

Devices. Ph.D. Thesis, University of Göttingen, Göttingen, Germany, 2020.
6. Macker, J. Mobile Ad-Hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations, RFC 2501.

1999. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.374.8291 (accessed on 8 May 2021)
7. Raza, N.; Aftab, M.U.; Akbar, M.Q.; Ashraf, O.; Irfan, M. Mobile Ad-Hoc Networks Applications and Its Challenges. Commun.

Netw. 2016, 8, 131–136. [CrossRef]
8. Barro, P.A.; Zennaro, M.; Pietrosemoli, E. TLTN–The Local Things Network: On the Design of a LoRaWAN Gateway with

Autonomous Servers for Disconnected Communities. In Proceedings of the 2019 Wireless Days (WD), Manchester, UK,
24–26 April 2019; pp. 1–4.

9. Laso, S.; Flores-Martín, D.; Herrera, J.L.; Canal, C.; Murillo, J.M.; Berrocal, J. Providing Support to IoT Devices Deployed
in Disconnected Rural Environment. In Proceedings of the International Workshop on Gerontechnology, Cáceres, Spain,
4–5 September 2019; pp. 140–150.

10. Douceur, J.R. The Sybil Attack. In Proceedings of the International Workshop on Peer-to-Peer Systems, Cambridge, MA, USA,
7–8 March 2002; pp. 251–260.

11. Dhamodharan, U.S.R.K.; Vayanaperumal, R. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message
Authentication and Passing Method. Sci. World J. 2015, 2015, 841267. [CrossRef] [PubMed]

12. John, R.; Cherian, J.P.; Kizhakkethottam, J.J. A Survey of Techniques to Prevent Sybil Attacks. In Proceedings of the 2015
International Conference on Soft-Computing and Networks Security (ICSNS), Coimbatore, India, 25–27 February 2015; pp. 1–6.

13. Abbas, S.; Merabti, M.; Llewellyn-Jones, D.; Kifayat, K. Lightweight Sybil Attack Detection in MANETs. IEEE Syst. J. 2013,
7, 236–248. [CrossRef]

14. Rajadurai, H.; Gandhi, U.D. Fuzzy Based Collaborative Verification System for Sybil Attack Detection in MANET. Wirel. Pers.
Commun. 2020, 110, 2179–2193. [CrossRef]

15. Bochem, A.; Leiding, B.; Hogrefe, D. Unchained Identities: Putting a Price on Sybil Nodes in Mobile Ad hoc Networks. In Proceedings
of the International Conference on Security and Privacy in Communication Systems, Orlando, VA, USA, 23–25 October 2018;
pp. 358–374.

16. Jensen, K. Coloured Petri Nets. In Proceedings of the IEE Colloquium on ‘Discrete Event Systems: A New Challenge for Intelligent
Control Systems’, London, UK, 4 June 1993; p. 5.

17. Jensen, K.; Kristensen, L.M.; Wells, L. Coloured Petri Nets and CPN Tools for Modelling and Validation of Concurrent Systems.
Int. J. Softw. Tools Technol. Transf. 2007, 9, 213–254. [CrossRef]

18. Permpoontanalarp, Y.; Changkhanak, A. Security Analysis of the TMN Protocol by Using Coloured Petri Nets: On-the-fly Trace
Generation Method and Homomorphic Property. In Proceedings of the 2011 Eighth International Joint Conference on Computer
Science and Software Engineering (JCSSE), Nakhonpathom, Thailand, 11–13 May 2011; pp. 63–68.

19. Drummond, R.; Sporny, M.; Longley, D.; Allen, C.; Grant, R.; Sabadello, M.; Holt, J. Decentralized Identifiers (DIDs) v1.0—Core Archi-
tecture, Data Model, and Representations. 2020. Available online: https://w3c.github.io/did-core/ (accessed on 13 February 2021).

20. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bit7coin.org/bitcoin.pdf (accessed
on 15 December 2020).

21. Wood, G. Ethereum: A Secure Decentralized Generalised Transaction Ledger. 2014. Available online: http://gavwood.com/
paper.pdf (accessed on 13 February 2021).

22. Back, A. Hashcash—A Denial of Service Counter-Measure. 2002. Available online: ftp://sunsite.icm.edu.pl/site/replay.old/
programs/hashcash/hashcash.pdf (accessed on 13 February 2021).

23. Yu, H.; Kaminsky, M.; Gibbons, P.B.; Flaxman, A. Sybilguard: Defending Against Sybil Attacks Via Social Networks. ACM SIG-
COMM Comput. Commun. Rev. ACM 2006, 36, 267–278. [CrossRef]

24. Yu, H.; Gibbons, P.B.; Kaminsky, M.; Xiao, F. Sybillimit: A Near-Optimal Social Network Defense Against Sybil Attacks. In
Proceedings of the 2008 IEEE Symposium on Security and Privacy (SP 2008), Oakland, CA, USA, 18–22 May 2008; pp. 3–17.

25. Yao, Y.; Xiao, B.; Wu, G.; Liu, X.; Yu, Z.; Zhang, K.; Zhou, X. Multi-Channel based Sybil Attack Detection in Vehicular Ad Hoc
Networks Using RSSI. IEEE Trans. Mob. Comput. 2018, 18, 362–375. [CrossRef]

26. Jamshidi, M.; Zangeneh, E.; Esnaashari, M.; Meybodi, M.R. A Lightweight Algorithm for Detecting Mobile Sybil Nodes in Mobile
Wireless Sensor Networks. Comput. Electr. Eng. 2017, 64, 220–232. [CrossRef]

https://www.gartner.com/newsroom/id/3598917
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.374.8291
http://dx.doi.org/10.4236/cn.2016.83013
http://dx.doi.org/10.1155/2015/841267
http://www.ncbi.nlm.nih.gov/pubmed/26236773
http://dx.doi.org/10.1109/JSYST.2012.2221912
http://dx.doi.org/10.1007/s11277-019-06836-7
http://dx.doi.org/10.1007/s10009-007-0038-x
https://w3c.github.io/did-core/
https://bit7coin.org/bitcoin.pdf
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf
http://dx.doi.org/10.1145/1151659.1159945
http://dx.doi.org/10.1109/TMC.2018.2833849
http://dx.doi.org/10.1016/j.compeleceng.2016.12.011


Sensors 2021, 21, 3257 25 of 27

27. Jan, M.A.; Nanda, P.; He, X.; Liu, R.P. A Sybil Attack Detection Scheme for a Forest Wildfire Monitoring Application. Future Gener.
Comput. Syst. 2018, 80, 613–626. [CrossRef]

28. Asfia, U.; Kamuni, V.; Sutavani, S.; Sheikh, A.; Wagh, S.; Singh, N. A Blockchain Construct for Energy Trading Against
Sybil Attacks. In Proceedings of the 2019 27th Mediterranean Conference on Control and Automation (MED), Akko, Israel,
1–4 July 2019; pp. 422–427.

29. Prünster, B.; Ziegler, D.; Kollmann, C.; Suzic, B. A Holistic Approach Towards Peer-to-Peer Security and Why Proof of Work
Won’t Do. In Proceedings of the International Conference on Security and Privacy in Communication Systems, Singapore,
8–10 August 2018; pp. 122–138.

30. Huh, S.; Cho, S.; Kim, S. Managing IoT Devices Using Blockchain Platform. In Proceedings of the 19th International Conference
on Advanced Communication Technology (ICACT), PyeongChang, Korea, 19–22 February 2017; pp. 464–467.

31. Zhang, Y.; Wen, J. The IoT Electric Business Model: Using Blockchain Technology for the Internet of Things. Peer Netw. Appl.
2017, 10, 983–994. [CrossRef]

32. Leiding, B.; Memarmoshrefi, P.; Hogrefe, D. Self-Managed and Blockchain-Based Vehicular Ad-Hoc Networks. In Proceedings
of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany,
12–16 September 2016; pp. 137–140. [CrossRef]

33. Lin, J.; Shen, Z.; Zhang, A.; Chai, Y. Blockchain and IoT based Food Traceability for Smart Agriculture. In Proceedings of the 3rd
International Conference on Crowd Science and Engineering, Singapore, 28–31 July 2018; pp. 1–6.

34. Li, X.; Wu, X.; Pei, X.; Yao, Z. Tokenization: Open Asset Protocol on Blockchain. In Proceedings of the 2019 IEEE 2nd International
Conference on Information and Computer Technologies (ICICT), Kahului, HI, USA, 14–17 March 2019; pp. 204–209.

35. Garba, A.; Bochem, A.; Leiding, B. BlockVoke—Fast, Blockchain-Based Certificate Revocation for PKIs and the Web of Trust. In
Proceedings of the International Conference on Information Security, Bali, Indonesia, 16–18 December 2020; pp. 315–333.

36. Bonneau, J.; Miller, A.; Clark, J.; Narayanan, A.; Kroll, J.A.; Felten, E.W. SoK: Research Perspectives and Challenges for Bitcoin
and Cryptocurrencies. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–20 May 2015;
pp. 104–121. [CrossRef]

37. Todd, P. BIP 65—OP_CHECKLOCKTIMEVERIFY. 2014. Available online: https://github.com/bitcoin/bips/blob/6295c1a095a1
fa33f38d334227fa4222d8e0a523/bip-0009.mediawiki (accessed on 11 December 2020).

38. Bitcoincharts. Bitcoincharts API, Price Data (MtGox, BTC-e, BitStamp, Coinbase). Available online: https://api.bitcoincharts.
com/v1/csv/ (accessed on 11 April 2020).

39. Blockchain.info. Bitcoin Charts and Graphs. Available online: https://www.blockchain.com/charts (accessed on 11 April 2020).
40. Cam-Winget, N.; Housley, R.; Wagner, D.; Walker, J. Security Flaws in 802.11 Data Link Protocols. Commun. ACM 2003, 46, 35–39.

[CrossRef]
41. Carlsen, U. Cryptographic Protocol Flaws: Know Your Enemy. In Proceedings of the Computer Security Foundations Workshop

VII, Franconia, NH, USA, 14–16 June 1994; pp. 192–200.
42. Fábrega, F.J.T.; Herzog, J.C.; Guttman, J.D. Strand Spaces: Why is a Security Protocol Correct? In Proceedings of the 1998 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, 6 May 1998; pp. 160–171.
43. Vaudenay, S. Security Flaws Induced by CBC Padding—Applications to SSL, IPSEC, WTLS... In Proceedings of the International

Conference on the Theory and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, 28 April–2 May 2002;
pp. 534–545.

44. Stubblefield, A.; Ioannidis, J.; Rubin, A.D. A Key Recovery Attack on the 802.11b Wired Equivalent Privacy Protocol (WEP). ACM
Trans. Inf. Syst. Secur. (TISSEC) 2004, 7, 319–332. [CrossRef]

45. Brook, C. Nuclear Power Plant Disrupted by Cyber Attack. 2016. Available online: https://threatpost.com/nuclear-power-plant-
disrupted-by-cyber-attack/121216/ (accessed on 6 December 2020).

46. Petri, C.A. Kommunikation mit Automaten. Ph.D. Thesis, Technical University of Darmstadt, Darmstadt, Germany, 1962.
47. Milner, R.; Parrow, J.; Walker, D. A Calculus of Mobile Processes—I. Inf. Comput. 1992, 100, 1–40. [CrossRef]
48. Hoare, C.A.R. Communicating Sequential Processes. In The Origin of Concurrent Programming; Springer: New York, NY, USA,

1978; pp. 413–443.
49. Abadi, M.; Gordon, A.D. A Calculus for Cryptographic Protocols: The Spi Calculus. In Proceedings of the 4th ACM Conference

on Computer and Communications Security, Zurich, Switzerland, 1–4 April 1997; pp. 36–47.
50. Crazzolara, F.; Winskel, G. Events in Security Protocols. In Proceedings of the 8th ACM Conference on Computer and Communi-

cations Security, Philadelphia, PA, USA, 6–8 November 2001; pp. 96–105.
51. Aly, S.; Mustafa, K. Protocol Verification and Analysis Using Colored Petri Nets. 2003. Available online: http://facweb.cs.depaul.

edu/research/techreports/tr04-003.pdf (accessed on 13 February 2021).
52. Edwards, K. Cryptographic Protocol Specification and Analysis Using Coloured Petri Nets and Java. Ph.D. Thesis, Queen’s

University, Kingston, ON, Canada, 1999.
53. Norta, A.; Kutvonen, L. Safeguarding Trusted eBusiness Transactions of Lifecycles for Cross-Enterprise Collaboration; Technical Report;

University of Helsinki: Helsinki, Finland, 2012.
54. Giorgini, P.; Mylopoulos, J.; Sebastiani, R. Goal-oriented Requirements Analysis and Reasoning in the Tropos Methodology.

Eng. Appl. Artif. Intell. 2005, 18, 159–171. [CrossRef]

http://dx.doi.org/10.1016/j.future.2016.05.034
http://dx.doi.org/10.1007/s12083-016-0456-1
http://dx.doi.org/10.1145/2968219.2971409
http://dx.doi.org/10.1109/SP.2015.14
https://github.com/bitcoin/bips/blob/6295c1a095a1fa33f38d334227fa4222d8e0a523/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/6295c1a095a1fa33f38d334227fa4222d8e0a523/bip-0009.mediawiki
https://api.bitcoincharts.com/v1/csv/
https://api.bitcoincharts.com/v1/csv/
https://www.blockchain.com/charts
http://dx.doi.org/10.1145/769800.769823
http://dx.doi.org/10.1145/996943.996948
https://threatpost.com/nuclear-power-plant-disrupted-by-cyber-attack/121216/
https://threatpost.com/nuclear-power-plant-disrupted-by-cyber-attack/121216/
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://facweb.cs.depaul.edu/research/techreports/tr04-003.pdf
http://facweb.cs.depaul.edu/research/techreports/tr04-003.pdf
http://dx.doi.org/10.1016/j.engappai.2004.11.017


Sensors 2021, 21, 3257 26 of 27

55. Wooldridge, M.; Jennings, N.R.; Kinny, D. The Gaia Methodology for Agent-oriented Analysis and Design. Auton. Agents
Multi-Agent Syst. 2000, 3, 285–312. [CrossRef]

56. Padgham, L.; Winikoff, M. Prometheus: A Methodology for Developing Intelligent Agents. In Proceedings of the International
Workshop on Agent-Oriented Software Engineering, Bologna, Italy, 15 July 2002; pp. 174–185.

57. Moulin, B.; Cloutier, L. Collaborative Work Based on Multiagent Architectures: A Methodological Perspective. In Soft Computing;
Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1994; pp. 261–296.

58. Moulin, B.; Brassard, M. A Scenario-based Design Method and an Environment for the Development of Multiagent Systems.
In Proceedings of the Australian Workshop on Distributed Artificial Intelligence, Canberra, Australia, 13 November 1995;
pp. 216–232.

59. DeLoach, S.A. Analysis and Design Using MaSE and agentTool; Technical Report, DTIC Document; DTIC: Fort Belvoir, VA,
USA, 2001.

60. Mahunnah, M.; Norta, A.; Ma, L.; Taveter, K. Heuristics for Designing and Evaluating Socio-technical Agent-Oriented Behaviour
Models with Coloured Petri Nets. In Proceedings of the 2014 IEEE 38th International Computer Software and Applications
Conference Workshops (COMPSACW), Vasteras, Sweden, 21–25 July 2014; pp. 438–443.

61. Sterling, L.; Taveter, K. The Art of Agent-Oriented Modeling; MIT Press: Cambridge, MA, USA, 2009.
62. Davis, A.M. Software Requirements: Objects, Functions, and States; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1993.
63. IEEE Computer Society; Software Engineering Technology Committee and Institute of Electrical and Electronics Engineers. IEEE

Recommended Practice for Software Requirements Specifications; IEEE Std; Institute of Electrical and Electronics Engineers: Piscataway,
NJ, USA, 1994.

64. Norta, A.; Grefen, P.; Narendra, N.C. A Reference Architecture for Managing Dynamic Inter-Organizational Business Processes.
Data Knowl. Eng. 2014, 91, 52–89. [CrossRef]

65. Marshall, J. Agent-Based Modelling of Emotional Goals in Digital Media Design Projects. Int. J. People-Oriented Program. (IJPOP)
2014, 3, 44–59. [CrossRef]

66. Leiding, B.; Norta, A. Mapping Requirements Specifications Into a Formalized Blockchain-Enabled Authentication Protocol
for Secured Personal Identity Assurance. In Proceedings of the 4th International Conference on Future Data and Security
Engineering—FDSE 2017, Ho Chi Minh City, Vietnam, 29 November–1 December 2017; pp. 181–196.

67. Leiding, B. Securing the Authcoin Protocol Using Security Risk-Oriented Patterns. Master’s Thesis, University of Göttingen,
Göttingen, Germany, 2017.

68. Ethereum Team. Byzantium HF Announcement. 2017. Available online: https://blog.ethereum.org/2017/10/12/byzantium-hf-
announcement/ (accessed on 28 November 2020).

69. Etherscan. Ethereum Charts and Statistics. 2017. Available online: https://etherscan.io/charts (accessed on 22 June 2020).
70. Privacy Pros. Bitcoin Transaction Fee Estimator & Calculator. 2021. Available online: https://privacypros.io/tools/bitcoin-fee-

estimator/ (accessed on 22 April 2021).
71. CoinMarketCap. Historical Data for Bitcoin. 2021. Available online: https://coinmarketcap.com/currencies/bitcoin/historical-

data/ (accessed on 22 April 2021).
72. Lombrozo, E.; Lau, J.; Wuille, P. BIP: 141—Segregated Witness (Consensus Layer). 2021. Available online: https://github.com/

bitcoin/bips/blob/master/bip-0141.mediawiki (accessed on 22 April 2021).
73. Wuille, P.; Maxwell, G. BIP: 173—Base32 Address Format for Native v0-16 Witness Outputs. 2021. Available online: https:

//github.com/bitcoin/bips/blob/master/bip-0173.mediawiki (accessed on 22 April 2021).
74. Ethereum Foundation. Ethash Design Rationale. Available online: https://eth.wiki/concepts/ethash/design-rationale (accessed

on 5 May 2021).
75. Mobility Open Blockchain Initiative—VID Working Group. MOBI Vehicle Identity Standard—Version 1.0 Preview. 2019.

Available online: https://dlt.mobi/wp-content/uploads/2020/04/Preview-MOBI-Vehicle-Identity-Standard-v1.0.pdf (accessed
on 28 November 2020).

76. Fleder, M.; Kester, M.S.; Pillai, S. Bitcoin Transaction Graph Analysis. arXiv 2015, arXiv:1502.01657.

Short Biography of Authors
Arne Bochem was born in Bad Mergentheim, Germany. He received the B.Sc. and M.Sc. degrees in
applied computer science from the University of Goettingen and is currently working towards a Ph.D.
degree at the same university. His main fields of research include secure localization for wireless
sensor networks and the Internet of Things as well as blockchain technology.

http://dx.doi.org/10.1023/A:1010071910869
http://dx.doi.org/10.1016/j.datak.2014.04.001
http://dx.doi.org/10.4018/ijpop.2014010103
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://etherscan.io/charts
https://privacypros.io/tools/bitcoin-fee-estimator/
https://privacypros.io/tools/bitcoin-fee-estimator/
https://coinmarketcap.com/currencies/bitcoin/historical-data/
https://coinmarketcap.com/currencies/bitcoin/historical-data/
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://eth.wiki/concepts/ethash/design-rationale
https://dlt.mobi/wp-content/uploads/2020/04/Preview-MOBI-Vehicle-Identity-Standard-v1.0.pdf


Sensors 2021, 21, 3257 27 of 27

Benjamin Leiding was born in Rostock, Germany. He received his B.Sc. degree in computer science
in 2015 from the University of Rostock, Germany. Subsequently, he received the M.Sc. degree in
Internet Technologies and Information Systems in 2017 as well as the Ph.D. degree in computer science
in 2020 from the University of Goettingen, Germany. He is currently a Post Doctoral Research Fellow
at the Clausthal University of Technology. His research interests include the machine-to-everything
economy (M2X Economy), the Circular Economy, distributed systems, and digital identities.


	Introduction
	Supplementary Literature and Related Work
	Self-Sovereign Identities and Decentralized Identifiers
	Blockchain Technology
	Related Work

	Protocol Specification
	Creating Identities
	Verifying Identities
	Revoking Identities
	Distributed Identities

	Parameter Choices and Updates
	Network Parameters
	Starting Block Height
	Deposit Address
	Deposit Amount
	Minimum Difficulty

	Price Considerations
	Blockchain-Based 51% Attacks

	Updating Parameters
	Maximum Seen Difficulty
	Bundled Updates
	Majority Vote


	Protocol Formalization
	Colored Petri Nets
	Modeling Strategy
	AOM Model
	Mapping AOM Models to CPN Models
	Protocol Semantics

	Evaluation and Discussion
	Bitcoin Price and Difficulty Analysis
	Ethereum Price and Difficulty Analysis
	Transaction Fee Analysis
	CPN State-Space Analysis
	Proof-of-Concept Implementation
	Discussion

	Conclusions and Future Work
	References

