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Abstract: Heart rate (HR) and heart rate variability (HRV) can be monitored with wearable devices
throughout the day. Resting HRV in particular, reflecting cardiac parasympathetic activity, has
been proposed to be a useful marker in the monitoring of health and recovery from training. This
study examined the validity of the wrist-based photoplethysmography (PPG) method to measure
HR and HRV at rest. Recreationally endurance-trained participants recorded pulse-to-pulse (PP)
and RR intervals simultaneously with a PPG-based watch and reference heart rate sensor (HRS)
at a laboratory in a supine position (n = 39; 5-min recording) and at home during sleep (n = 29;
4-h recording). In addition, analyses were performed from pooled laboratory data (n = 11344 PP
and RR intervals). Differences and correlations were analyzed between the HRS- and PPG-derived
HR and LnRMSSD (the natural logarithm of the root mean square of successive differences). A
very good agreement was found between pooled PP and RR intervals with a mean bias of 0.17 ms
and a correlation coefficient of 0.993 (p < 0.001). In the laboratory, HR did not differ between the
devices (mean bias 0.0 bpm), but PPG slightly underestimated the nocturnal recordings (mean bias
−0.7 bpm, p < 0.001). PPG overestimated LnRMSSD both in the laboratory (mean bias 0.20 ms,
p < 0.001) and nocturnal recordings (mean bias 0.17 ms, p < 0.001). However, very strong intraclass
correlations in the nocturnal recordings were found between the devices (HR: 0.998, p < 0.001;
LnRMSSD: 0.931, p < 0.001). In conclusion, PPG was able to measure HR and HRV with adequate
accuracy in recreational athletes. However, when strict absolute values are of importance, systematic
overestimation, which seemed to especially concern participants with low LnRMSSD, should be
acknowledged.

Keywords: photoplethysmography; heart rate monitor; wearables

1. Introduction

Wearable technology has been ranked in the top three fitness trends in the ACSM
annual survey for fitness professionals since 2016 [1]. Wearables include fitness trackers,
smartwatches, heart rate monitors, and GPS tracking devices [1] that may provide informa-
tion on functions, such as steps, estimated energy expenditure, and heart rate (HR) [2,3]. It
has been suggested that data collected via wearables may be useful in a variety of popula-
tions. For example, HR and heart rate variability (HRV) provides information on autonomic
nervous system (ANS) regulation, and HRV could be used as an indirect marker of cardiac
parasympathetic nervous system activity [4]. Recently, Altini and Plews [5] illustrated
how resting HRV may provide additional insights compared to HR only on responses
to different types of stressors. Furthermore, monitoring of resting HR [6] or heart rate
variability (HRV) [7,8] could be beneficial for predicting the risk of cardiovascular events,
such as acute coronary syndromes or strokes. In the training context, daily resting HRV
recordings have been used in the endurance training prescription of untrained [9], recre-
ationally trained [10], and well-trained [11] participants, inducing greater improvements in
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endurance performance compared to predefined training. While there are more wearables
available that claim to measure meaningful results, their validity should also be critically
studied [2,12] and sources of inaccuracies acknowledged [13,14].

HR monitors have typically demanded a strap for accurate results, but several alter-
native innovations have been introduced lately. Resting HR and HRV can nowadays be
measured with reasonable accuracy from a fingertip via a mobile app [15], from a ring [16],
wrist-worn watches [17,18], and sensors placed under a mattress [19]. An additional benefit
in terms of feasibility is that many of these devices collect the data automatically during
the night [16,18,19], allowing data collection to occur without extra effort compared to
traditional morning HR recordings.

Most of the alternative HR, or actual pulse rate, methods are based on photoplethys-
mography (PPG) [15–18]. The rationale behind the technology is that when the skin is
exposed to LED-emitted light, the change in blood volume can be estimated through the
intensity of the reflected light [15,18]. After systole, higher blood volume, and reduced
intensity of the reflected light can be observed, while during diastole, blood volume de-
creases, and the intensity of the reflected light increases [15,18]. Based on these observations,
pulse-to-pulse intervals (PP intervals) can be calculated. While pulse rate variability (PRV)
may potentially be affected by factors not strictly related to HRV, it could even be argued
that PRV should not illustrate exactly similar results compared to HRV [14]. However, PRV
and HRV seem to agree quite well at least at resting conditions [20], and previous studies
comparing PPG- and electrocardiography-derived HRV during sleep have shown decent
agreement between the methods [16,18].

The validity of PPG-based wearables has been previously assessed mainly during
exercise [21–24] and regarding HR only, but the capability of the current method (Polar
Precision PrimeTM) to measure HRV in general, and either HR or HRV during sleep has not
yet been examined. Since resting HR, and especially HRV assessments, provide relevant
information that could be used to monitor health-related aspects and recovery from training
if measured accurately, the purpose of this study was to analyze the validity of the Polar
Vantage V2 wrist-based method to measure HR and HRV at rest and during sleep.

2. Materials and Methods
2.1. Participants

A total of 41 participants were recruited for a larger study project, during which
the current validation protocol was executed. Participants were healthy, recreationally
endurance-trained, 36 ± 7 year-old males (n = 21) and females (n = 20). Laboratory
recordings were successfully conducted by 39 participants. One recording failed due to the
early termination of the PPG recording, which was not noticed before analyzing the raw
data. In addition, data from one participant were excluded due to poor data quality (more
than 20% of the recorded data points missing after the applied proprietary filter). Nocturnal
recordings were successfully performed by 29 participants. Data were unavailable due to
missing the raw PPG-data (n = 5) or the raw reference data (n = 4), failing of the download
process (n = 2), and dropping out from the study before performing the recording (n = 1).

The study protocol was approved by the ethics committee of the University of
Jyväskylä.

2.2. Experimental Overview

The validity of the Polar Vantage V2 (Polar Electro Oy, Kempele, Finland) wrist-
based PPG-method (PPG) to measure HR and HRV was assessed at rest in two different
conditions: (1) Awake in a controlled laboratory setting, and (2) During the night sleep at
home (Figure 1). On both occasions, PPG-derived values were compared to the Polar H10
(Polar Electro Oy) heart rate sensor (HRS), which has been reported to be highly accurate in
the detection of RR-intervals at rest and during exercise [25]. Average HR and LnRMSSD
(the natural logarithm of the root mean square of successive differences) were analyzed in
both conditions and from both devices. Concerning variables were used since 4-h average
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HR and RMSSD are provided by the watch for the actual user in the “Nightly Recharge”
feature. In addition, RMSSD [26] and its log-transformed version, LnRMSSD [27], have
been suggested to be the most suitable markers for monitoring HRV in the context of
training and recovery.

1 
 

 
Figure 1. Segments used in the analysis of laboratory and nocturnal recordings.

In the laboratory recordings, PPG and HRS were used simultaneously in a supine po-
sition during spontaneous breathing. The firmware update, provided by the manufacturer,
allowed recording the data with both devices at the same time. The heart rate strap was
moistened and attached tightly around the torso at the level of the xiphoid process. The
watch was attached to the wrist according to the instructions provided by the manufacturer.
The participants were advised to lie at rest without moving during the 7-min data collection,
and the last 5-min period was used in the further analysis.

In the nocturnal recordings, PPG and HRS data were collected simultaneously with a
watch and strap that was either connected to the Polar sensor logger-application (n = 24) or
another Vantage V2 watch (n = 5). The participants were advised to attach the strap and the
watch with the same instructions as during the laboratory visit. HRS recording was started
manually when the participants went to sleep, while PPG recording started automatically
after detected sleep onset. The 4-h analysis period started 30 min after detected sleep onset,
in accordance with the “Nightly Recharge” feature in the watch.

2.3. HRV Analysis

The test app (for recording raw data) and software (Debugtool for extracting data from
the watch; OHR log decoder for opening the packed data) that were specifically provided by
the manufacturer for the research purpose allowed the collection and extraction of raw PP
intervals from the watch. In the laboratory recordings, PPG-derived PP intervals and HRS-
derived RR intervals were exported to Excel. The data were visually inspected to confirm
the matching of the data points between the devices. Furthermore, reference data were
critically evaluated for possible artifacts. The cardiologist confirmed two physiologically
unlikely RR-interval lengths, and respective data points were removed from PPG and HRS
to avoid distorting the results. While artifact correction is a crucial part of the HRV analysis,
a similar proprietary filter that is used in the “Nightly Recharge” feature was applied for
the PPG data to analyze results as they would have been provided by the watch. The exact
algorithm behind the filter is not available, but it may remove data points that are estimated
to represent insufficient data quality. The percentage of missing data points after applying
the filter is reported in the results section. Average HR and LnRMSSD were calculated for
PPG and HRS. In addition, similar to the work of Hernando et al. [17], pooled results were
used for comparison between the PP and RR intervals.

The same tools were used for the extraction of nocturnal PP intervals, while RR
data from HRS were exported via the Polar sensor logger-application or from Polar Flow.
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Data were first matched based on timestamps, and further synchronized according to the
offset-values to induce the best signal fit. The “Nightly Recharge” algorithm, which uses a
proprietary filter and averages data to 5-min segments, was applied to the HRS and PPG
data after the synchronization. The final analysis period for nocturnal recordings consisted
of an average 4-h time period (48 consecutive 5-min segments) starting 30 min after sleep
onset. Sleep onset was automatically detected by the watch, and the accuracy of the method
has been reported previously [28].

The exact algorithm behind the pulse wave detection of the current PPG method is not
published by the manufacturer. However, based on the white paper [29] available on the
company’s website, certain aspects regarding the method are possible to clarify. The watch
basically calculates the time between high and low light intensities, which varies between
systolic and diastolic phases due to changes in the blood volume in the arteries. The watch
contains multiple LEDs (a total of 10 in Vantage V2) using several wavelengths of light.
All paths provide their own signals, and these can be compared to confirm the origin
of the signal (pumping heart, not movement). Another feature that is used to overcome
issues related to data quality involves a 3D acceleration sensor that allows differentiating
volumetric changes caused by the pumping heart from the changes caused by movements.
Based on information combined from these sources, interbeat intervals could be obtained.

2.4. Statistical Analysis

All values are expressed as mean and standard deviation (SD). The normal distribution
of the data was verified with the Shapiro–Wilk test. To assess differences between HRS-
and PPG-derived results, paired-samples t-test, mean absolute error (MAE), and mean
absolute percentage error (MAPE) were analyzed separately for 5-min and 4-h segments.
Relationships between the methods were examined with the Pearson, intraclass (ICC),
and Lin’s concordance (CCC) correlation coefficients, and the Bland–Altman plot was
used to examine agreement between the HRS and PPG methods. Since pooled PP and
RR interval data were not normally distributed, Wilcoxon signed-rank test was used for
comparison between methods and Spearman correlation for regression analysis. The
statistical significance level was set to p < 0.05. Analyses were performed with Microsoft
Excel 2010 (Microsoft Corporation, Redmond, WA, USA) and IBM SPSS Statistics v.26-
programs (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Laboratory Recordings

No differences were observed between the pooled PPG-derived PP intervals and
HRS-derived RR intervals (mean bias 0.2 ± 2.2%) (Table 1). In addition, a very strong
correlation (Figure 2) and high agreement (Figure 3) were observed between the methods.

Table 1. Comparison between the mean (±SD) pooled PPG-derived PP-intervals and HRS-derived
RR-intervals.

Pooled 5-min Results
(n = 11344)

PPG, PP interval (ms) 1022.9 ± 181.1
HRS, RR interval (ms) 1022.7 ± 179.8

Bias (ms) 0.2 ± 22.8
MAE (ms) 10.7 ± 20.2
MAPE (%) 1.1 ± 2.0

PPG, photoplethysmography; HRS, heart rate sensor; MAE, mean absolute error, MAPE, mean absolute percentage
error.
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Figure 3. Bland-Altman plot presenting the mean bias and limits of agreement in the laboratory
recordings.

When individual 5-min segments were compared, HR did not differ between the
methods (mean bias 0.0 ± 0.1%), but LnRMSSD was overestimated (mean bias 5.4 ± 6.3%,
p < 0.001) by PPG (Table 2). After the Polar proprietary filter was applied to the data,
0.66 ± 1.85% of the data points were excluded. In Figure 4, two case examples are presented,
illustrating good agreement and the most typical type of error causing a difference between
the measurements.
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Table 2. Comparison between the mean (±SD) PPG and HRS in the laboratory (5-min segment) and
nocturnal (4-h segment) recordings.

PPG Mean HRS Mean Bias MAE MAPE ICC CCC

5-min segment
(n = 39)

HR (bpm) 58.6 ± 9.5 58.6 ± 9.5 0.0 ± 0.1 0.0 ± 0.1 0.04 ± 0.08 1.000 *** 1.000

LnRMSSD (ms) 4.01 ± 0.48 3.82 ± 0.51 0.19 ± 0.21 *** 0.20 ± 0.20 5.57 ± 6.14 0.913 *** 0.849

4-h segment
(n = 29)

HR (bpm) 53.8 ± 9.2 54.5 ± 9.0 −0.7 ± 0.6 *** 0.8 ± 0.5 1.49 ± 1.01 0.998 *** 0.995

LnRMSSD (ms) 4.06 ± 0.47 3.90 ± 0.61 0.17 ± 0.20 *** 0.17 ± 0.20 5.23 ± 7.36 0.931 *** 0.890

PPG, photoplethysmography; HRS, heart rate sensor; MAE, mean absolute error, MAPE, mean absolute percentage
error; ICC, intraclass correlation coefficient; CCC, Lin’s concordance correlation coefficient. *** p < 0.001.
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Figure 4. (a) Participant with an erroneous extra beat and missed beat, (b) Participant with a good
agreement between the PP and RR intervals

3.2. Nocturnal Recordings

In the nocturnal recordings, small but significant underestimation was observed by
PPG in HR (mean bias −1.3 ± 1.2%, p < 0.001), and overestimation in LnRMSSD (mean bias
5.1 ± 7.3%, p < 0.001) (Table 2). However, a very strong correlation was found between the
methods in HR and LnRMSSD (Figure 5). After applying the proprietary filter, 0.22 ± 0.85%
of the 5-min data points was excluded, equal to three 5-min segments in total.

Figure 6 illustrates the Bland–Altman plot for nocturnal HR and LnRMSSD. Limits of
agreement were defined as mean bias ± 1.96 × SD of differences between PPG and HRS
(−0.69 ± 1.21 bpm for HR and 0.17 ± 0.40 ms for LnRMSSD).
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4. Discussion

The main findings of the study were that the PPG method was able to measure PP
intervals in the laboratory conditions with very good accuracy as compared to the HRS-
derived RR intervals. In the nocturnal recordings, HR was slightly underestimated (bias
−0.7 bpm) and LnRMSSD was overestimated (bias 0.17 ms) by PPG. Based on the Bland–
Altman plot, overestimation in the LnRMSSD seemed to especially concern participants
with low HRV. Correlation analysis illustrated strong correlations between the devices
in both markers. Based on the results, the current PPG method could be regarded as
sufficiently accurate to monitor nocturnal HR and HRV in recreational athletes.

While HR and HRV could be monitored with an increasing number of wearables, it
is surprising how poorly their validity has been examined in many cases. One certain
challenge is that the data given by the wearables (actually measured data vs. developed
own metrics), as well as the analysis methods (measurement duration, time of the day),
vary quite a lot between manufacturers. In addition, new manufacturers and products are
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continuously emerging [3], making it challenging to maintain updated research. Recently,
Stone et al. [12] compared several PPG-based methods in the assessment of resting HR and
RMSSD. In HR, MAPE compared to reference-ECG varied between 1.2% and 17.3%, while
for RMSSD it varied between 4.1% and 112.4%. Compared to those results, current errors
were smaller or at the lower end of the spectrum. However, none of the applied methods
were wrist-based, and when setting current results into the perspective of wrist-based
wearables somewhat comparable validation studies have been performed using Whoop’s
wrist-strap during slow-wave-sleep [18] and the Apple Watch during relax and stress
situations [17]. Bellenger et al. [18] found that Whoop’s PPG method accurately measured
HR (bias ≤ 0.39%), but a larger error was observed between the devices in LnRMSSD
(bias ≥ 1.66%). In turn, Hernando et al. [18] found no difference between the reference
device and Apple Watch in the HR or RMSSD during relaxation. Possible explanations for
the lower error values compared to the current study may relate to the different time-period
used in the nocturnal analysis [18] and filters applied to the artifact correction [17,18]. It
should also be acknowledged that Bellenger et al. [18] had only six participants, which
makes it hard to draw broader conclusions, as in the present study it was observed that the
agreement between devices may also vary between participants. Furthermore, Hernando
et al. [17] reported only pooled results, leaving individual results and between-individual
variability in the accuracy speculative.

In the ICC analysis, it has been suggested that values above 0.90 indicate excellent relia-
bility [30]. The current PPG method fulfilled this criterion in the lab and sleep recordings of
HR and LnRMSSD. On the other hand, in CCC, which is suggested to illustrate concordance
between methods better than other correlation coefficients [20], values were slightly lower
and below 0.90 in LnRMSSD, while in HR almost perfect relationships were found (r > 0.99)
despite the correlation method being used. In previous studies measuring HR and HRV
by PPG during the night, comparable ICC values have been observed [18,31] in HR, but
in LnRMSSD higher values have also been found [18]. Some studies have reported only
linear correlation values, and they have been both slightly higher using the PPG-based
method [16] and lower with the ballistocardiography-based method [19] as compared to
the present results. Regarding MAE and MAPE, desirable values depend highly on the
context and the marker being used, and exact target values are therefore hard to define.
Bellenger et al. [18] suggested that the accuracy of the wearables should be examined in the
light of the smallest worthwhile change (SWC) of the parameter. In the HR and vagally
mediated HRV parameters, Buchheit [26] proposed SWC of ~2 and ~3%, respectively. In
the present study, MAPE of HR was lower than this, but LnRMSSD exceeded the value.
However, it should be noticed that in 19 out of 29 participants, MAPE was below 3%, and
few participants with poor agreement significantly affected the mean results. In addition,
Plews et al. [32] have reported that recreational athletes may have higher day-to-day varia-
tion as compared to well-trained athletes (CV 10.1% vs. 6.8%), also increasing SWC. In the
studies where HRV results have been used in the training prescription, SWC have varied
between 1 × SD [9] and 0.5 × SD [11] of the preceding 10–28-day results. However, it is
clear that for recovery-monitoring purposes, only sufficiently accurate methods should be
used. If the method itself is the most significant source of error affecting the within-day
variability, it makes it excessively challenging to find meaningful changes.

When thinking about the inaccuracies in wrist-worn wearables, Bent et al. [13] listed
skin type, motion artifacts, and signal crossover as possible sources of error. Since in the
current study, participants measured HR and HRV in a supine position, motion artifacts or
signal crossover would be expected to be negligible. Although movement artifacts are not a
similar problem in the resting measurements as they might be during exercise, movements
during sleep may be a slight issue in restless sleepers. The current PPG recording started
0.5 h after detected sleep onset and continued for 4 h in line with protocols used in previous
studies [33,34]. Since the first hours of sleep typically have the highest proportion of
slow-wave sleep, representing the most restful and stable period of the night [35], the
4-h analysis period may speculatively have some benefits compared to the whole night
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recordings in terms of data quality. Another aspect possibly affecting the measurement
accuracy of the nocturnal recordings in the current study is that they were performed at
home without supervision, thus attachment of the watch (placement, tightness) was not
strictly controlled. However, participants were instructed in detail during the laboratory
measurement on how to wear the watch correctly. The current setting also presented a
natural user environment, making the assessment more realistic compared to the laboratory
setting. Because, slightly surprisingly, MAPE was even smaller and ICC and CCC were
higher in the nocturnal recordings as compared to the controlled laboratory settings, it is
unlikely that improper attachment of the watch would have affected the results, in general.

While precise determination of the PP intervals is critical for accurate HR and HRV
results, artifact correction and treatment/filtering of the data once abnormal intervals
have been found also play a crucial role, especially in the HRV recordings [36]. Detection
of abnormal interbeat intervals is typically based on differences between consecutive or
multiple previous RR/PP intervals [15,16]. If the measured RR/PP interval differs from the
reference value more than a particular threshold, it would be corrected or excluded from
the data. This represents a challenge when over-correcting should be avoided but false data
points should still be excluded, distorting the results. In the present study, the proprietary
filter applied by the watch was more permissible compared to previous studies reporting
the amount of missing data being as high as ~10% [17] while resting awake (in the current
study ~0.7%) or ~30% [19] during sleep (in the current study ~0.2%). As illustrated in
Figure 4, a too permissible filter may ignore quite clear artifacts and may be one of the
major reasons behind the inaccuracies. Since most of the manufacturers will not allow
consumers to access the raw data in the PPG recordings, these aspects are in most cases
hard to examine in detail.

After considering possible sources of inaccuracies in PPG, it is also important to ac-
knowledge that differences in the results may not be related only to possible sources of
errors, but also to different method variables are being produced. While traditional HRV,
which can be obtained, e.g., via ECG or HR strap, reflects the variation in the RR-intervals
that are detected based on the changes in the electrical polarity of the heart [25], PPG-based
HRV, or basically PRV, is based on measured variability in the pulse-waves [20]. Yuda
et al. [14] listed several transformation phases that may contribute to the potential differ-
ences in HRV and PRV: cardiac contraction after R wave causes pressure impulse in the
aorta, leading to pulse wave conduction through the arterial wall, and upon reaching the
target site, causes changes in blood volume that are finally detected by PPG. Because the
aforementioned steps could be affected, e.g., by respiration and blood pressure, the same
authors even suggested that HRV and PRV should be taken as separate biomarkers of
the ANS function [14]. Schäfer and Vagedes [20] proposed that the relationship between
these two methods may be altered especially during physical or mental stress, and in-
terestingly PRV responses may also be affected by the location where the PPG signal is
being recorded [37]. Regardless, as has been observed in previous studies examining PPG-
and ECG-derived HRV at rest, only minor differences were observed [16,18,31], having
hardly any significant effect on the interpretation of the results in settings comparable to
the present study.

Current comparisons were performed with a heart rate sensor as a reference instead
of a golden standard electrocardiography due to practical reasons. However, the H10
sensor has been examined to be very accurate in the detection of RR-intervals, and previous
generation sensors from the same manufacturer (H7) have also been used as a reference in
previous studies. The high number of failed recordings decreased the number of partici-
pants in the nocturnal measurements. Nevertheless, the current number of participants
was most likely sufficient to study the accuracy of the method in the target population of
recreationally trained athletes.
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5. Conclusions

In conclusion, the current PPG method seems accurate in the measurement of PP inter-
vals. In addition, despite nocturnal HR being slightly underestimated by PPG, an almost
perfect relationship was observed between the methods. LnRMSSD was overestimated
by PPG in the laboratory and nocturnal recordings, and more variation was observed
between participants in MAE and MAPE as compared to HR. Overestimation seemed
to especially concern participants with low HRV, suggesting that further validation may
be recommended for such populations. However, current accuracy could be regarded as
sufficient in athletic and healthy populations for the long-term monitoring of HR and HRV,
provided that results are interpreted appropriately.
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