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Abstract: Developing cyber security is very necessary and has attracted considerable attention from
academy and industry organizations worldwide. It is also very necessary to provide sustainable
computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the
cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we
develop new feature extraction and selection methods and for the IDS system using the advantages
of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on
the conventional neural networks (CNN). After that, we present an alternative feature selection (FS)
approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess
the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD,
BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization
methods to verify the competitive performance of the developed method. The results show the high
performance of the developed approach using different evaluation indicators.

Keywords: feature selection; cybersecurity; sustainable computing; intrusion detection system;
Aquila optimizer; swarm Intelligence; internet of things (IoT)

1. Introduction

Internet applications help people and society in many fields, including teaching,
electronic commerce (EC), electronic learning, entertainment, electronic communication,
and others [1]. Along with these applications, cybersecurity issues have been raised
due to the vulnerability of the internet applications due to the wide expansion of the
networks and the massive emergence of malicious intrusion [1]. Therefore, building
security systems is very necessary, and many industrial and academic organizations have
developed different systems and solutions. Intrusion detection systems (IDS) are very
important for the cybersecurity of the internet of things (IoT) architecture, including also
cloud and fog computing.
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Previously, different methods have been developed for intrusion detection systems
(IDS) using traditional machine learning methods, such as k-means clustering [2,3], deci-
sion tree (DT) [4,5], k-nearest neighbor (kNN) [6,7], support vector machine (SVM) [8,9],
and other traditional machine learning (ML) approaches. With the wide spread of the
deep learning methods, in recent years thy are also adopted for IDS, such as multi-layered
perceptron neural network [10], convolutional neural networks (CNN) [11], and deep
recurrent neural network (RNN) [12]. However, deep leaning approaches required big size
of features to achieve high classification accuracy rates.

Feature selection (FS) is a necessary preprocessing step in ML applications [13]. In lit-
erature, there are different approaches proposed for IDS by improving new FS methods
that boosted the efficiency of the IDS. For example, grey wolf optimizer (GWO) [14,15],
crow search algorithm (CSA) [16], genetic algorithm (GA) [17–19], whale optimization al-
gorithm [20], random harmony search (RHS) [21], and also the well-known, particle swarm
optimization (PSO) [22]. Although these approaches showed significant performance, they
suffer from certain limitations. For instance, some of them may be stuck at local optima,
which degrades the convergence rate and finally on the quality of find decision.

In the current study, we present an alternative FS approach for IDS using a recently
proposed optimization algorithm called Aquila optimizer (AQU). The AQU was devel-
oped by Abualigah et al. [23], which mimics the behaviors of Aquila in nature. It was
assessed with different engineering and optimization problems, and it illustrated com-
petitive performance compared to traditional optimization algorithms. The AQU also
received wide attention, as it was adopted to solve different problems, such as industrial
engineering optimization problems [24], medical image processing [25], and others [26].
The traditional AQU suffers from slow convergence; thus, we use the binary version to
boost its performance.

In this study, we first apply a light feature extraction approach based on CNN to obtain
features from the used datasets. Thereafter, the developed AQU algorithm is utilized to
select a subset of the optimal features that reflect the characteristics of the datasets. We
use four public benchmark datasets including BoT-IoT, NSL-KDD, CIC2017, and KDD99,
to evaluate the developed approach, which showed significant performance. In short,
the contribution presented in this paper can be summarized as follows:

1. Using the combination of deep learning and Aquila optimizer (AQU) to enhance
IoT security.

2. A feature extractor technique based on CNN is applied to extract relevant features
from the datasets,

3. A binary version of the Aquila optimizer is adopted as an FS technique that is used to
select optimal features and enhance the classification accuracy.

4. Extensive evaluation is carried out with four public datasets and extensive compar-
isons to other methods to confirm the quality of the developed approach.

The remaining parts of this paper are presented as: Section 2 summarizes several
related studies presented in recent years. The basics of the used methods are described
in Section 3, whereas the presented IoT approach is introduced in Section 4. Moreover,
the evaluation experiments and results outcomes are described in Section 5. Section 6
presents the conclusion and future work.

2. Related Works

In this section, we summarize a number of previous approaches proposed for IDS
in IoT and cloud. Shafiq et al. [27] presented an efficient feature selection technique for
IoT malicious traffic identification using the Bot-IoT dataset. They used the objective soft
set for feature extraction, and they developed a new feature selection method called, Cor-
rACC. Haddadpajouh et al. [28] applied gray wolves optimization (GWO) to improve the
multi-kernel SVM for IoT cloud-edge gateway malware detection. GWO is utilized as an
FS method which enhanced the classification accuracy. It was evaluated and compared
to previous methods, and it reached good results. A wrapper-based FS method called,
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CorrAUC was developed by [29] for malicious traffic detection for IoT environments, using
Bot-IoT datasets. This method was tested with four machine learning algorithms, and it
showed significant performance in reducing feature seize and boosting classification accu-
racy. Davahli et al. [30] presented a hybrid FS technique using GWO and GA algorithms.
This method was employed with the SVM classifier to detect anomalies in wireless sensor
networks (WSNs). Mafarja et al. [31] developed a new wrapper feature selection method
using an augmented Whale Optimization Algorithm (WOA) for IoT attacks identification.
The augmented WOA was employed to handle the high dimensionality of the datasets
and to enhance the classification accuracy. They used two transfer functions, S-shaped
and V-shaped, into the WOA to boost its performance. The enhanced WOA showed better
performance compared to the traditional WOA. Sekhar et al. [32] developed an IDS ap-
proach based on Fruitfly optimization with deep Autoencoder. They used fuzzy C-Means
rough parameters for data processing to deal with the missing data from the used datasets.
After that, the robust features can be extracted from Autoencoder with multi-hidden layers.
Then, the extracted features are fed to the BPN (Back Propagation Neural Network) for
attacks classification. The Fruitfly optimization algorithm is used to optimize the neurons
in the Deep Autoencoder hidden layers. This method was evaluated with UNSW-NB15 and
NSL-KDD datasets, and it showed competitive performance. Dwivedi [33] presented an
alternative FS approach depending on the grasshopper optimization algorithm (GOA) for
IDS. The main goal of this approach is to integrate GOA with the integration of ensemble
feature selection (EFS) and creating a new method called EFSGOA. The EFS is used to rank
the features to select the relevant features, and then the GOA is used for identifying the
significant features. This approach was tested with KDD Cup 99 and NSL-KDD datasets,
and it obtained high accuracy rates. Kan et al. [34] used the adaptive PSO and CNN for IDS
in the IoT network. In this method, APSO-CNN is working by optimizing one-dimensional
CNN structure parameters using the PSO algorithm. It was tested with comparison to
other CNN-based methods, and the outcomes showed that the application of PSO has a
significant impact on the performance of the CNN. The PSO was also adopted in other IDS
systems, such as [35–38].

3. Background
Aquila Optimizer (AQU)

This section introduces the basic formulation of the Aquila Optimizer (AQU) [23].
In general, the AQU algorithm mimics Aquila’s social behavior in order to catch its prey.
AQU is a population-based optimization technique, similar to other metaheuristic (MH)
techniques, that begins by forming an initial population X with N agents. The following
equation was used to carry out this procedure.

Xij = r1 × (UBj − LBj) + LBj, i = 1, 2, ....., N j = 1, 2, . . . , Dim (1)

In Equation (1), UBj and LBj represent limits of the search space. r1 ∈ [0, 1] denotes a
random value and Dim is the dimension of agent.

The AQU technique’s next step is to do either exploration or exploitation until the best
solution is found. There are two ways for exploration and exploitation, according to [23].

The best agent Xb and the average of agents (XM) are employed in the exploration,
and its mathematical formulation is given as:

Xi(t + 1) = Xb(t)×
(

1− t
T

)
+ (XM(t)− Xb(t) ∗ rand), (2)

XM(t) =
1
N

N

∑
i=1

X(t), ∀j = 1, 2, . . . , Dim (3)

The search during the exploration phase is controlled by
(

1−t
T

)
in Equation (2).

The maximum number of generations is denoted by T.
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The exploration phase employs the Levy flight (Levy(D) distribution and Xb to update
the solutions, and this is represented as:

Xi(t + 1) = Xb(t)× Levy(D) + XR(t) + (y− x) ∗ rand, (4)

Levy(D) = s× u× σ

|υ|
1
β

, σ =

Γ(1 + β)× sine(πβ
2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

 (5)

In Equation (5), s = 0.01 and β = 1.5. u and υ denotes the random values. XR stands
for randomly chosen agent. In addition, y and x stands for two parameters used to simulate
the spiral shape:

y = r× cos(θ), x = r× sin(θ) (6)

r = r1 + U × D1, θ = −ω× D1 + θ1, θ1 =
3× π

2
(7)

In Equation (7), ω = 0.005 and U = 0.00565. r1 ∈ [0, 20] refers to a random value.
The first technique used in [23] to enhance the agents in the exploitation phase depends

on Xb and XM, similar to exploration, and it is formulated as:

Xi(t + 1) = (Xb(t)− XM(t))× α− rnd + (UB× rnd + LB)× δ (8)

In Equation (8), UB = (UB − LB), α and δ stands for the exploitation adjustment
parameters. rnd ∈ [0, 1] is random value.

The agent can be updated using Xb, Levy, and the quality function QF in the second
exploitation strategy. This strategy’s mathematical definition is as follows:

Xi(t + 1) = QF× Xb(t)− GX− G2 × Levy(D) + rnd× G1 (9)

GX = (G1 × X(t)× rnd)

QF(t) = t
2×rnd()−1
(1−T)2 (10)

In addition, G1 stands for the motions used to track the optimal individual solution,
as seen in the following equation:

G1 = 2× rnd()− 1, G2 = 2× (1− t
T
) (11)

In Equation (11), rnd is a random value. Moreover, G2 stands for parameter which
decreasing from 2 to 0, and it is updated as:

G2 = 2× (1− t
T
) (12)

4. Proposed Model

Figure 1 depicts the structure of an IDS security scheme for IoT systems. The suggested
system is divided into two phases: a feature extraction phase using an efficient CNN
based method and a feature selection phase based on the developed AQU algorithm.
The presented AQU is based on improving the behavior of classical AQU to make it
suitable for the FS problem by implementing its binary version. In the following sections,
a description of each stage of the developed IoT security model is given.
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Figure 1. Structure of presented IoT security model.

4.1. Representation of Collect IoT Dataset

The fundamental representation of IoT traffic data that will be employed as input to
the next stage of the proposed approach is presented in this section. Consider TS, which is
a sample of IoT traffic and is written as:

TS =


t f11 t f12 ... t f1d
t f21 t f22 ... t f2d
... ... ... ...

t fn1 t fn2 ... t fnd

 (13)

In Equation (15), TSi denotes the ith set of features of traffic (i.e., [t f11, t f12m . . . , t f1d]).
d and n are the number of features and samples respectively. Thereafter, the dataset is
normalized based on the min−max approach that defined:

DNij =
t fij −min(TSj)

max(TSj)−min(TSj)
(14)

where t fij stands for the jth feature of sample i.
Therefore, the normalization of TS is formulated as:

NTS =


DN11 DN12 ... DN1d
DN21 DN22 ... DN2d

... ... ... ...
DNn1 DNn2 ... DNnd

 (15)

The next step is to extract the feature using DL model from NTS. The following
process of extracting the feature using DL is given in the following section.

4.2. Convolutional Neural Network for Feature Extraction

Convolutional neural networks are well-known deep learning (DL) models applied
to solve different problems in image classification, text classification, speech recognition,
and object detection. CNN’s are commonly used in computer vision problems. However,
CNN’s can be extended and employed in research fields tackling natural language pro-
cessing [39–41], image processing [42,43], green computing [44,45], remote sensing [46,47],
and others [48]. Unlike traditional machine learning algorithms that rely on handcrafted fea-
ture extraction, CNNs can automatically learn and represent complex features. Meanwhile,
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CNN’s based models can vary in terms of the type and number of convolution layers, kernel
size and its initialization technique, pooling operation, and the fully connected layers.

At this stage, the main objective is to learn meaningful representations from the
raw data, which helps maximize the overall framework’s recognition accuracy. After the
learning phase using the CNN model, the feature selection algorithm is used to filter the
extracted features by selecting the most important features only that maximize the classifi-
cation accuracy. The CNNs are characterized by a core ability that shares weights between
multiple layers to minimize the model complexity [49]. The proposed CNN architecture
is illustrated in Figure 2, and it is composed of the following layers: (2) Convolutional
layers (Conv), (2) Pooling layers, and (4) Fully connected layers (FC). The full network
can be summarized as (Conv1− 1× 3@64) → (Conv2− 1× 3@64) → (FC1− 128) →
(FC2− 128)→ (FC3− 64)→ (BN− 64)→ (FC4− 64) where: (1) Conv1 is the first convo-
lutional layer with 64 filters, kernel of size 3, stride of size 1. Conv1 uses the rectified linear
unit (ReLU) [50] as a non-linear function followed by a dropout regularization with a rate
equal to 0.5 and a max-pooling operation of size 2, (2) Conv2 is the second convolutional
layer similar to Conv1 with the only difference is the usage of an adaptive average pooling
layer [51] instead of max-pooling, (3) FC1, FC2, and FC3 are fully connected layer having
128, 128 and 64 neurons, respectively. FC1, FC2, and FC3 are used as feature extraction lay-
ers to output the learned features from the raw input, (4) BN stands for batch normalization
operation, and (4) FC4 is the final FC layer to output the classification predictions.

Input
1D

convolutional
layer

Max-pooling
1D

convolutional
layer

Adptive average
pooling

Conv1-1x3@64 Conv2-1x3@64

FC1 
128

FC2 
128

FC3 
64

FC4 
64

Batch normalization

Softmax
Feature extraction

layer

ReLU

Figure 2. The feature extraction module based on a proposed CNN architecture.

The network uses a 1D convolution operation in each convolution layer to learn the
raw data activation maps after applying a fixed kernel of size 1× 3 and then uses a max-
pooling operation to extract the most relevant features. The convolution operation can be
represented as:

Xl
j = ∑

i∈Mj

xl−1
j kl

ij + bl
j (16)

where xl−1
j is the output activation map of the previous layer l − 1. kl

ij represents the kernel

weights while bl
j represents the bias value.

To learn complex feature representations from the input data, a non-linear function is
applied in the convolution operation, which can be defined as in the following equation:

xl
j = ReLU(Xl

j) (17)

where the l and j stands for the l layer and the j channel, respectively. The xl
j is the activation

map extracted from the l layer. The ReLU function is introduced in Equation (18).

ReLU(z) = max(0, z) (18)

The final feature representation of each input sample is obtained after pooling together
the generated activation maps. Two types of pooling operations have been employed in
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this architecture to extract the most relevant features and down-sampling the features space
and learning parameters which helps the model train faster.

The final output from Conv2 is fed to a series of fully connected layers where FC3 is
used to extract the features (input samples embeddings). The final output from FC3 is fed
to FC4 which output the classification results. FC4 applies a Softmax function to generate
the probabilities of an input sample to belong to a specific class. Batch normalization (BN)
and dropout regularization techniques are used to overcome the network over-fitting and
improve the training speed and convergence.

4.3. Feature Selection

The steps of the presented FS model (as in Figure 3) that are used to enhance the
security in IoT environment are discussed in this section. In general, the main objective of
these steps is to determine the important features that are chosen based on their quality.
This is accomplished by the usage of a binary version of AQU. The presented FS approach,
named AQU, begins by creating X initial population of N agents; after that, reducing the
training data by selecting only the features that correspond to ones in the Boolean version
of the current solution. The efficiency of the determined feature is then calculated using
the KNN classifier’s error classification. Following that, the best agent with the smallest
fitness value is assigned. The agents in the current population are updated based on this
best agent and the AQU until they find the best solution.

Figure 3. The FS approach using AQU algorithm.

4.3.1. Generation Initial Population

The presented AQU begins by splitting the tested benchmark data into 80% and 20%
training and testing sets, respectively. The beginning population X that consists of N
solutions is formed using Equation (19).

Xi = LB + rand(1, D)× (UB− LB) (19)

In Equation (19), D stands for the number of features. rand(1, D) represents a random
vector with D values. LB and UB stand for the boundaries of the search space.
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4.3.2. Updating Population

This stage starts with Equation (20) turning Xi, i = 1, 2, . . . , N into its Boolean
value BXi.

BXij =

{
1 i f Xij > 0.5
0 otherwise

(20)

Based on the output of Equation (20), the number of feature selection is reduced by
ignoring the irrelevant features that corresponding zeros value in BXi. Then the fitness
value is computed using Equation (21).

Fiti = λ× γi + (1− λ)× (
|BXi|

D
) (21)

where λ ∈ [0, 1] stands for the weights applied to control the balancing between the ratio
of relevant features ( |BXi |

D ) and error of classification γi. In this study, the γi is computed
based on the KNN classifier using the training set.

Thereafter, the best Fit and its corresponding agent Xb (i.e., the best one) are deter-
mined. Then update the current agents with operators of AQU as discussed in Section 4.

4.3.3. Terminal Criteria

The stopping conditions are reviewed at this stage, and the updated stage is conducted
again when these conditions are not met. Otherwise, the learning process is terminated,
and Xb using as the output that is utilized to minimize the testing set in the next stage.

4.3.4. Validation Stage

To evaluate the presented AQU’s efficiency as an FS approach, the features of the
testing set are reduced based on the binary of Xb. Then several performance measures
based on the decreased features are employed to compute the quality of the classification
process. Algorithm 1 presents the whole description of the presented IoT technique to
identify the intrusion.

Algorithm 1 Proposed FS For IoT security.

1: Input: total number of generations (T), and number of agents (N).
2: Use Equation (14) to normalize the collected IoT data.
3: Using proposed CNN technique to extract the features (as in Section 4.2).
4: After extracting the features, divide the data into training and testing sets.
5: Use Equation (19) to generate population X.
6: Put t= 1.
7: while t <= T do
8: Apply Equation (20) to generate the Binary version of Xi.
9: Use Equation (21) to calculate the fitness value Fiti for Xi.

10: Find the best agent Xb.
11: Enhance Xi as in Equations (2)–(9)
12: t=t+1.
13: end while
14: Remove irrelevant features from testing set that corresponding to zeros in Xb.
15: Output: Consider Xb as output and the evaluate the performance.

5. Experiment Results and Discussion

In this section, the quality of the developed IoT security technique is evaluated using
a set of different datasets.
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5.1. Performance Measures

In this study, we used a set of performance metrics to compute the efficiency of the
developed IoT security method. These measures defined using the concept of confusion
matrix (as in Table 1). These measure are given in the following.

Table 1. The basic formulation of the confusion matrix, where TP represents true positive, FN
indicates false negative, false positive is represented by FP, and TN represents true negative.

Predicted Label

Actual Label Positive Negative

Postive TP FN

Negative FP TN

• Average accuracy (AVAcc): The accuracy metric represents the rate of correct detection
of the intrusion, and it is formulated as:

AVAcc =
1

Nr

Nr

∑
k=1

Acck
Best, (22)

AccBest =
TP + TN

TP + FN + FP + TN
in which Nr = 30 refers to the iteration number(number of runs).

• Average Recall (AVSens): (AVSens) or true positive rate (TPR), represents the percentage
of predicting positive intrusion. It can be computed as:

AVSens =
1

Nr

Nr

∑
k=1

Sensk
Best, SensBest =

TP
TP + FN

(23)

• Average Precision (AVPrec): this illustrates the percentage of true positive cases among
all the the positive cases. The (AVPrec) can be calculated as:

AVPrec =
1

Nr

Nr

∑
k=1

Preck
Best, PrecBest =

TP
FP + TP

(24)

• Performance Improvement Rate (PIR): This measure is applied to estimate the im-
provement rates obtained by the proposed technique. it can be computed as:

PIR =
MAQU −MAlg

MAQU
× 100 (25)

where MAQU and MAlg refer to the value of measure (i.e., Precision, Accuracy, Recall,
and F1-measure) of the proposed AQU and other algorithms, respectively.

5.2. Experimental Setup

In our experiments, Adam [52] optimizer is used to update the CNN model weights
using a 0.005 learning rate. The CNN model was trained for 100 epochs using a 2024 batch
size. Concerning the feature selection phase, we compared the proposed FS algorithm
named AQU with existing MH techniques in the literature. The MH algorithms selected for
comparison including Firefly algorithm (FFA) [53], particle swarm optimization (PSO) [54],
whale optimization algorithm (WOA) [55], moth flame optimization (MFO) [56], traditional
TSO, multiverse optimization algorithm (MVO) [57], Bat algorithm [58], and Grey wolf
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optimizer (GWO) [59]. Furthermore, we used the above mentioned MH algorithms with
their default parameters based on the original implementation.

5.3. Dataset Description

In this section, we will illustrate in details the source and statistics of the datasets used
to validate the proposed framework for the network intrusion detection task. We used
four datasets, including KDDCup-99, and its refined version named NSL-KDD, Industrial
IoT (IIoT) traffic data named BoT-IoT, and CICIDS-2017. The task is to detect network
intrusions based on the extracted features using the CNN model as either intrusion, normal,
or the attack type. The datasets are described in the following paragraphs.

1. KDDCup-99 and NSL-KDD: The two datasets are described in Figure 4 with their
detailed statistics. The first dataset is KDDCup-99, collected from the DARPA in-
trusion detection challenge (1998), incorporating 100’s users after monitoring the
network traffic on 1000’s machines using UNIX operating system. The challenge
period lasts for ten weeks by the MIT Lincon laboratory to store the collected traffic
data in TCP dump format. Our experiments used 10% of the collected traffic data
to build the KDDCup-99 dataset, which contains five attack types and 41 features.
The KDDCup-99 dataset features are classified into three categories, including basic,
content, and time-based traffic features. The second dataset is NSL-KDD, a derived
copy from the full KDDCup-99 dataset after performing deduplication of the dupli-
cated traffic records.

Figure 4. The KDDCup-99 and NSL-KDD datasets training and testing sets distribution.

2. BoT-IoT: the Bot-IoT dataset [60] was collected in The center of UNSW Canberra Cyber
using smart home appliances in a laboratory environment (the Cyber Range Lab).
The dataset contains Industrial IoT (IIoT) traffic samples collected for IIoT experiments.
The smart home appliances include weather monitoring systems, thermostats, kitchen
appliances, and freezers and motion-controlled lights to record the traffic data. In our
experiments, we used the 5% of the full Bot-IoT dataset, which consists of 3.6 million
records, where the full dataset contains over 72 million records. The 5% of the entire
dataset contains the best ten features extracted from the raw data and categorized
into five main classes as described in Figure 5.
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Figure 5. The Bot-IoT dataset training and testing sets distribution.

3. CICIDS-2017: The CICIDS-2017 [61] dataset is a collection of network traffic sam-
ples collected in CIC (The Canadian Institute for Cybersecurity at the University
of New Brunswick.) for the intrusion detection task. The dataset consists of more
than 1.5M PCAPs data simulating traffic data transferred in real-world using the
CICFlowMeter software after analyzing 25 user behaviors covering various network
protocols such as HTTP and SSH protocols. The collected data were categorized into
eight main attack classes as described in Figure 6. Our experiments used the follow-
ing collected CSV files: Tuesday-working hours, Friday-WorkingHours-Afternoon-
PortScan, Friday-WorkingHours-Afternoon-DDos, and Thursday-WorkingHours-
Morning-WebAttacks.

Figure 6. The CICIDS-2017 dataset training and testing sets distribution.

5.4. Results and Discussion

The findings of the comparison between the proposed AQU and the other MH ap-
proaches are discussed in this section. The average of the employed measures for all
compared algorithms are shown in Tables 2 and 3. For the multi-classification of the BoT-
IoT, as shown in Table 2, the performance of most optimization approaches is practically
similar during the training period. On the other hand, AQU, delivers excellent perfor-
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mance metrics. Furthermore, the developed AQU has the highest accuracy, specificity,
and sensitivity, as well as the best F1-measure.

Table 2. Results of developed AQUa for the datasets in case of multi-classification.

Training Testing

AVAcc AVSens AVPrec F1 AVAcc AVSens AVPrec F1
K

D
D

99

PSO 90.447 93.458 90.358 90.358 82.783 85.793 84.640 83.109
WOA 92.275 93.126 92.414 97.304 84.375 85.225 82.501 87.351
BAT 98.007 98.247 94.847 97.337 90.347 90.587 89.134 90.093
TSO 95.439 94.919 91.027 97.437 87.536 87.016 80.791 87.479

GWO 95.513 92.383 94.062 98.482 87.618 84.488 84.131 88.533
FFA 91.988 93.368 97.328 91.538 84.318 85.698 91.609 84.285

MVO 99.515 92.835 96.483 94.433 91.615 84.935 86.649 84.480
MFO 96.073 97.123 97.631 98.371 88.175 89.225 87.763 88.420
AQU 99.920 99.917 97.542 99.920 99.919 92.042 89.824 89.987

BI
oT

PSO 99.483 99.483 99.483 99.483 98.942 98.972 98.941 98.940
WOA 99.472 99.472 99.472 99.472 98.956 98.964 98.957 99.005
BAT 99.475 99.475 99.475 99.474 99.019 99.021 98.987 99.012
TSO 99.460 99.460 99.459 99.459 98.986 98.981 98.941 99.005

GWO 99.477 99.477 99.476 99.476 98.990 98.959 98.975 99.019
FFA 99.479 99.479 99.478 99.478 98.954 98.968 99.007 98.949

MVO 99.468 99.468 99.468 99.468 99.031 98.964 99.000 98.980
MFO 99.480 99.480 99.480 99.480 98.998 99.009 99.013 99.020
AQU 98.925 98.925 98.904 98.925 98.926 98.904 98.905 98.904

N
SL

-K
D

D

PSO 90.118 93.128 90.020 90.019 66.092 69.102 68.913 61.940
WOA 91.947 92.797 92.080 96.968 67.951 68.801 71.131 68.907
BAT 97.669 97.909 94.501 96.989 73.671 73.911 73.501 68.905
TSO 95.078 94.558 90.657 97.067 71.330 70.810 71.298 69.697

GWO 95.182 92.052 93.724 98.143 71.066 67.936 72.151 69.948
FFA 91.660 93.040 96.991 91.201 67.437 68.817 75.873 62.944

MVO 99.182 92.502 96.145 94.093 75.224 68.544 75.200 66.098
MFO 95.745 96.795 97.297 98.035 71.626 72.676 76.122 69.844
AQU 99.344 99.344 99.298 99.315 76.002 76.002 81.719 71.602

C
IC

20
17

PSO 99.650 99.370 99.590 99.750 99.380 99.100 99.320 99.480
WOA 99.690 99.690 99.490 99.450 99.430 99.430 99.240 99.190
BAT 99.490 99.640 99.630 99.440 99.230 99.380 99.360 99.180
TSO 99.680 99.710 99.750 99.680 99.420 99.450 99.480 99.420

GWO 99.370 99.560 99.430 99.380 99.110 99.300 99.180 99.120
FFA 99.450 99.740 99.480 99.600 99.200 99.490 99.220 99.350

MVO 99.530 99.370 99.390 99.410 99.270 99.110 99.120 99.150
MFO 99.360 99.430 99.370 99.480 99.100 99.170 99.120 99.220
AQU 99.911 99.909 99.889 99.910 99.911 99.910 99.910 99.888

For the binary case of Bot-IoT, the AQU has better results in both the training and
testing sets. Moreover, the PIR of the proposed AQU method and other optimization
approaches is depicted in Figure 7a,b. For multi-classification variants, PIR ranges from
2.56 to 7.354 based on the value of accuracy, where it ranges from 1.080 to 4.410 based on
the values of recall. Precision and F-measure range from 1.255 to 5.359 and 0.886 to 4.693,
respectively. In binary classification case, the ranges are 2.496 to 0.0946, 0.941 to 4.210,
1.450 to 5.271, and 0.546 to 2.759, respectively.

Also, Table 2 and Figure 7c,d show the comparison results between the AQU and
the compared algorithms using the NSL-KDD dataset; These results demonstrate the high
performance of the proposed AQU over all compared approaches for both multi and
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binary classifications. As can be shown from performance measurements and the test-
ing set results, the developed AQU behaves better in the learning phase than compared
approaches. Furthermore, the developed AQU outperforms MVO with a difference of
about 1.024%, and outperforms PSO with a difference of approximately 13.039%. The de-
veloped AQU outperforms existing models according to the value of recall, precision,
and F-measure, with differences ranging from 2.75%, 6.85%, and 2.310% to 10.61%, 15.67%,
13.49% respectively.

Table 3. Results of developed AQUa for the datasets in case of Binary.

Training Testing

AVAcc AVSens AVPrec F1 AVAcc AVSens AVPrec F1

K
D

D
99

PSO 90.449 93.459 90.359 90.359 82.775 85.785 84.638 92.702
WOA 92.278 93.128 92.418 97.308 84.608 85.458 86.699 92.705
BAT 94.992 98.662 92.922 91.782 87.384 91.055 87.280 92.751
TSO 95.298 94.592 90.825 97.332 87.593 87.090 85.280 92.541

GWO 95.518 92.388 94.068 98.488 87.860 84.730 88.357 92.716
FFA 91.987 93.367 97.327 91.537 84.327 85.707 91.614 92.713

MVO 99.519 92.839 96.489 94.439 91.844 85.164 90.765 92.701
MFO 96.079 97.129 97.639 98.379 88.413 89.463 91.922 92.710
AQU 99.922 99.922 92.256 99.922 99.922 92.256 94.283 92.683

BI
oT

PSO 99.899 99.929 99.898 99.898 99.898 99.928 99.896 99.896
WOA 99.918 99.926 99.919 99.967 99.916 99.924 99.916 99.965
BAT 99.975 99.977 99.943 99.968 99.973 99.975 99.941 99.966
TSO 99.949 99.944 99.905 99.969 99.947 99.942 99.903 99.967

GWO 99.950 99.919 99.935 99.979 99.948 99.917 99.933 99.977
FFA 99.915 99.928 99.968 99.910 99.913 99.927 99.966 99.908

MVO 99.990 99.923 99.959 99.939 99.989 99.922 99.958 99.937
MFO 99.956 99.966 99.971 99.978 99.954 99.964 99.969 99.976
AQU 99.995 99.994 99.993 99.995 99.994 99.993 99.992 99.992

N
SL

-K
D

D

PSO 90.133 93.143 90.043 90.043 67.575 70.585 73.882 67.163
WOA 91.959 92.809 92.099 96.989 69.409 70.259 75.972 74.115
BAT 97.693 97.933 94.533 97.023 75.192 75.432 78.473 74.197
TSO 95.091 94.571 90.681 97.091 72.078 71.558 73.656 73.786

GWO 95.202 92.072 93.753 98.172 72.944 69.814 77.801 75.609
FFA 91.673 93.053 97.013 91.223 69.218 70.598 80.944 68.451

MVO 99.197 92.517 96.167 94.117 76.466 69.786 79.835 71.059
MFO 95.760 96.810 97.320 98.060 73.187 74.237 81.176 75.162
AQU 99.348 99.348 99.350 99.348 77.382 77.382 83.692 77.077

C
IC

20
17

PSO 99.687 99.407 99.627 99.387 99.687 99.407 99.627 99.787
WOA 99.730 99.531 99.537 99.470 99.737 99.737 99.537 99.497
BAT 99.537 99.647 99.667 99.472 99.537 99.687 99.667 99.487
TSO 99.724 99.654 99.744 99.436 99.725 99.755 99.785 99.725

GWO 99.417 99.607 99.477 99.427 99.417 99.607 99.477 99.427
FFA 99.497 99.601 99.517 99.470 99.497 99.787 99.517 99.647

MVO 99.577 99.417 99.427 99.457 99.577 99.417 99.427 99.457
MFO 99.407 99.477 99.417 99.427 99.407 99.477 99.417 99.527
AQU 99.996 99.996 99.996 99.996 99.997 99.997 99.997 99.997
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. PIR for multi-classification of (a) Bot-IoT, (c) NSL-KDD, (e) KDDCup-99, and (g) CICIDS-
2017 and binary classification of (b) Bot-IoT, (d) NSL-KDD, (f) KDDCup-99, (h) CICIDS-2017.

For KDDCup-99, the results of the proposed AQU and all compared algorithms are
shown in Table 2 (Figure 7e) and Table 3 (Figure 7f), respectively. We can see that for the
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multi-classification, the proposed AQU outperforms other approaches in the training stage.
However, the BAT and FFA produce higher F1-measure and Precision values than other
models. While AQU still outperforms MVO according to the value of accuracy, and there is
only a 0.4 difference between the two. Furthermore, the advantage of AQU over binary
KDDCup-99 can be seen in the comparison findings for all evaluation indicators. It achieved
the best results using both training and testing datasets. Figure 8 shows the average of
outcomes of all testing datasets for each algorithm. It can be seen that the AQU has a great
ability to improve intrusion detection in both multi and binary classification instances.

(a) (b)

(c) (d)

Figure 8. The average among the four datasets for (a) Training Binary, (b) Testing Binary, (c) Training
Multi-classification, and (d) Testing Multi-classification.

In addition, the results of the competitive algorithms in case of CICIDS-2017 dataset
are given in Tables 2 and 3. It can be observed that the proposed AQU obtained the best
results, especially in the multi-classification. Moreover, by comparing the results of AQU
with the other model in FS case, it can be noticed that its PIR of accuracy variant from
0.260 to 0.590. However, the PIR of recall, Precision, and F1-Measure is 0.210 to 0.590,
0.212 to 0.580, and 0.210 to 0.570. The same observation can be reached from Figure 7g,h
that illustrate the PIR for each algorithm using CICIDS-2017 dataset. Figure 9 depicts the
confusion matrix of developed method over the tested datasets.



Sensors 2022, 22, 140 16 of 20

Norm
al

Pro
be DoS u2

r r2l

Predicted Class

No
rm

al
Pr

ob
e

Do
S

u2
r

r2
l

Ac
tu

al
 C

la
ss

0.985 0.004 0.011 0 0

0.21 0.749 0.041 0 0

0.028 0 0.972 0 0

0.899 0.066 0 0.018 0.018

0.977 0.023 0 0 0

(a)

Ben
ign DoS

Pro
be r2l u2

r

Predicted Class

Be
ni

gn
Do

S
Pr

ob
e

r2
l

u2
r

Ac
tu

al
 C

la
ss

0.974 0.006 0.02 0 0

0.199 0.796 0.005 0 0

0.291 0.065 0.644 0 0

0.988 0.002 0.005 0.005 0

0.99 0 0.01 0 0

(b)

DDoS DoS
Norm

al

Reco
nn

ais
san

ce
Th

eft

Predicted Class

DD
oS

Do
S

No
rm

al
Re

co
nn

ai
ss

an
ce

Th
ef

t
Ac

tu
al

 C
la

ss

0.989 0.011 0 0 0

0.01 0.99 0 0 0

0.009 0.271 0.607 0.112 0

0.004 0.005 0.001 0.99 0

0 0.071 0.071 0 0.857

(c)

Ben
ign

DDoS

FTP
-Pa

tat
or

Po
rtS

can

SS
H-Pa

tat
or

Web
 Atta

ck 
Brut

e F
orc

e

Web
 Atta

ck 
Sq

l In
jec

tio
n

Web
 Atta

ck 
XSS

Predicted Class

Benign

DDoS

FTP-Patator

PortScan

SSH-Patator

Web Attack Brute Force

Web Attack Sql Injection

Web Attack XSS

Ac
tu

al
 C

la
ss

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0.998 0.001 0.001 0 0 0

0 0 0 0.999 0 0 0 0

0 0 0.001 0.008 0.99 0.002 0 0

0.003 0 0 0.003 0.1 0.893 0 0

0 0 0 0 0.25 0 0.75 0

0 0 0 0.031 0.023 0.915 0.008 0.023

(d)

Figure 9. Confusion Matrix of developed method. (a) KDDCup99, (b) NSL-KDD, (c) BoT-IoT,
(d) CICIDS-2017.

The Friedman test [62] is used to assess if there are significant differences between the
presented technique and others to further analyze the results. There are two hypotheses
in this test: the first, known as the null hypothesis, supposes that there are no differences
between the compared algorithms and is accepted the case of the p-value≥ 0.05. Otherwise,
the alternative hypothesis (second one) is adopted which assume a considerable difference
in techniques. In the two cases, Table 4 displays the mean rank of each algorithm for the four
datasets (i.e., binary and multi-classifications). The proposed AQU obtained the highest
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mean rank for all applied performance indicators in both scenarios of multi-classification,
as can be seen from the results. There is also a substantial distinction between AQU and
other approaches.

Table 4. Results of algorithms using Friedman test.

PSO MVO GWO MFO WOA FFA BAT AQU TSO

Binary classification

Accuracy 1 8 5.33 6.33 3 2 6 9 4.33
Recall 4.66 1.66 1.33 7 3 4.33 8 9 6

Precision 1.33 6 4.33 8 3 7 4.66 9 1.66
F1-Measure 1.66 2.66 7.66 6.33 4.33 3.33 6.33 9 3.66

Multi classification

Accuracy 1 8 4.66 6 3 2 7 9 4.33
Recall 5 2.16 1 7 2.83 4 8 9 6

Precision 2.16 5.66 3.66 7.33 2.33 7.66 5.66 8.66 1.83
F1-Measure 1 3 7.33 7 4.33 2 6.5 8.66 5.16

6. Conclusions

In this paper, a new approach was proposed for the internet of things (IoT) intru-
sion detection system (IDS). We leveraged the advances of swarm intelligence (SI) and
deep learning techniques. The proposed approach works as follows. First, a designed
conventional neural network (CNN) based feature extraction method was applied to ob-
tain the related features from the input datasets. Second, a new variant of the recently
developed Aquila optimizer (AQU) was used to select appropriate features and to reduce
data dimensionality. The main idea of the developed AQU is to use its binary version to
overcome the limitations of the traditional AQU algorithm. To evaluate the developed
approach, we used four well-known public datasets, namely, CIC2017, NSL-KDD, BoT-IoT,
and KDD99. Moreover, extensive comparisons were carried out with several optimization
algorithms, such as WOA, BAT, TSO, GWO, FFA, MVO, and MFO, using several evaluation
measures, such as precision, recall, and F1-Measure. The outcomes have confirmed the
superiority of the developed AQU against all compared methods. There are still some
limitations in the developed method, such as AQU, which can be addressed in future work.
Moreover, different swarm intelligence methods will be considered with different deep
learning architectures for IDS in the IoT environment.
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