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Abstract: Due to the wide availability and usage of connected devices in Internet of Things (IoT)
networks, the number of attacks on these networks is continually increasing. A particularly serious
and dangerous type of attack in the IoT environment is the botnet attack, where the attackers can
control the IoT systems to generate enormous networks of “bot” devices for generating malicious
activities. To detect this type of attack, several Intrusion Detection Systems (IDSs) have been proposed
for IoT networks based on machine learning and deep learning methods. As the main characteristics
of IoT systems include their limited battery power and processor capacity, maximizing the efficiency
of intrusion detection systems for IoT networks is still a research challenge. It is important to provide
efficient and effective methods that use lower computational time and have high detection rates. This
paper proposes an aggregated mutual information-based feature selection approach with machine
learning methods to enhance detection of IoT botnet attacks. In this study, the N-BaIoT benchmark
dataset was used to detect botnet attack types using real traffic data gathered from nine commercial
IoT devices. The dataset includes binary and multi-class classifications. The feature selection method
incorporates Mutual Information (MI) technique, Principal Component Analysis (PCA) and ANOVA
f-test at finely-granulated detection level to select the relevant features for improving the performance
of IoT Botnet classifiers. In the classification step, several ensemble and individual classifiers were
used, including Random Forest (RF), XGBoost (XGB), Gaussian Naïve Bayes (GNB), k-Nearest
Neighbor (k-NN), Logistic Regression (LR) and Support Vector Machine (SVM). The experimental
results showed the efficiency and effectiveness of the proposed approach, which outperformed other
techniques using various evaluation metrics.

Keywords: intrusion detection systems; Internet of Things; botnet attack detection; feature selection;
machine learning; ensemble methods

1. Introduction

Internet of Things (IoT) networks are becoming essential components for different ad-
vanced applications such as smart cities and smart homes. They provide wide connectivity
between the connected devices, with the number of networks growing exponentially every
day [1]. The IoT improves the quality of life by providing different types of smart services
and applications in several domains, including health care, automation, industrial processes
and smart environments [2]. According to Greengard [3], it is predicted that 21.5 billion IoT
devices will be used by 2025. This huge number of devices will be vulnerable to different
types of attacks that raise several security and privacy issues.
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With this rapid development in the internet and its smart connected devices, the
number of attacks that affect individuals and businesses has already increased [4]. One of
the main applications to improve information security is the use of what are called Intrusion
Detection Systems (IDSs), which help to provide a secure environment by identifying and
classifying security threats within the internet. Because of the special characteristics of IoT
systems, including the dynamics of their networks, and limited battery power and processor
capacity, intrusion detection for IoT networks is considered a major challenge, as it needs
to consider the trade-off between accuracy of detection and performance overheads [5].
Thus, according to Arshad et al. [5], the main features of IDSs should be: (1) efficient
computational and communication overhead, and (2) high detection accuracy.

One of the dangerous threats in IoT networks is what are known as botnets, which can
be described as a collection of different bots that are controlled by the Botmaster (behind-
the-scenes attacker) using the Command and Control (C&C) channel [6]. The IoT botnet
attack works to recruit vulnerable IoT devices in order to generate enormous networks
of “bot” devices to generate large numbers of malicious activities that can be controlled
remotely by the Botmaster [7]. The attackers can use botnets for stealing data, granting
access to devices and performing Distributed Denial-of-Service attacks (DDoS). This attack
uses a series of connected devices in order to take down a website or networks for the
purpose of disrupting operations in these environments or stopping the main services of
the target application [7]. Therefore, detecting and preventing the botnets is very important
in computer security and has attracted several researchers to improve the IoT botnet attack
detection rate.

Recently, different methods have been proposed and applied to detect IoT botnet
attacks. For instance, Popoola et al. [8] proposed a deep learning-based botnet attack
detection method to deal with imbalanced traffic data in networks. They utilized a recurrent
neural network method for learning hierarchical feature representations of the balanced
data to carry out the classification. The authors found that this imbalanced data affected
the detection performance, using evaluation measures such as precision, recall and F1 score.
The proposed method obtained 99.50%, 99.75% and 99.62% for precision, recall and F1
scores, respectively. In addition, Soe et al. [9] proposed a botnet attack detection method
based on Machine Learning (ML) and Sequential Architecture. In this work, the authors
adopted a Feature Selection (FS) method to produce a high-performance and lightweight
detection system. This system obtained an accuracy of 99% for detecting the botnet attacks
using an artificial neural network, J48 decision tree and naïve Bayes. To compare the
many machine learning methods that have been applied for botnet attack detection, Tuan
et al. [10] conducted experiments for performance evaluation of several machine learning
methods for botnet DDoS attack detection using two datasets. The experiments included
the use of Support Vector Machine (SVM), Artificial Neural Network (ANN), Naïve Bayes
(NB), Decision Tree (DT) and Unsupervised Learning (UL). The outcomes of this research
showed that the unsupervised learning methods obtained better detection rates compared
to the other machine learning methods.

As the main features of IDSs for IoT networks are the efficiency of the computational
and communication overhead and the high detection accuracy [5], the high dimensionality
of IoT traffic data affects the efficiency of the detection systems. This paper proposed an
aggregated mutual information-based feature selection approach with machine learning
methods to enhance the efficiency and performance of IoT botnet attack detection. A freely
available benchmark dataset was used to show the benefit of the proposed aggregated
feature selection method. Based on an intensively review of the existing available datasets,
the N-BaIoT dataset (http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_
attacks_N_BaIoT (last accessed on: 6 December 2021; 23:00 GMT)) was chosen to be used
in this research.

The main contributions of this research paper can be summarized as follows:

http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
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• The IoT Botnet attack detection is explored as a multiclass classification problem using
a dataset with more than 6.2 M instances. The description of the dataset is presented
in Section 3.1.

• A feature selection-based method is proposed that incorporates Mutual Information
(MI) technique, Principal Component Analysis (PCA) and an ANOVA f-test at finely
granulated detection level.

• A fine-granulated aggregated mutual information is proposed and tested on the
benchmark dataset. The proposed technique effectively selects the relevant features
for increasing the performance of IoT Botnet classifiers.

• A comprehensive and practical approach is proposed that investigates the performance
of the proposed technique using two ensemble-based machine learning methods,
namely Random Forest (RF) and XGBoost (XGB), and four standalone classifiers,
namely, Gaussian Naïve Bayes (GNB), k-Nearest Neighbor (k-NN), Logistic Regression
(LR) and Support Vector Machine (SVM).

• Finally, the proposed approach outperforms other techniques using various evalua-
tion metrics.

The rest of the paper is organized as follows: Section 2 reviews the recent studies
on IoT botnet attack detection. Section 3 presents the materials and methods used in the
present study, while Section 4 highlights and discusses the main results of the proposed
approach. Finally, Section 5 concludes the whole paper.

2. Related Works

Although the increased usage and growth of information and computer technology
makes life easier, it also leads to many security issues as the number of attackers has
increased rapidly. One of the important security mechanisms proposed to support infor-
mation security and protect businesses from dangerous network attacks is known as the
intrusion detection system [11]. Several intrusion detection systems based on machine
learning and deep learning methods have been proposed for IoT Environments. For in-
stance, Kiran et al. [12] applied NB, SVM, DT and Adaboost methods to detect the attacks
(sniffing and poisoning) on IoT networks. They used IoT-based normal and attack data in
order to build the model. The applied methods obtained high accuracy rates (0.9895, 0.9895
and 1.00 for SVM, Adaboost and DT respectively). However, these authors indicate that
challenges still exist in generating high quality datasets using diverse IoT devices in order
to enhance the robustness of the used machine learning models.

Pacheco et al. [13] proposed an artificial neural network-based method for imple-
menting an adaptive IDS to detect attacks on fog nodes in IoT applications and ensure the
availability of communication, allowing the nodes to continuously deliver the important
information to the end users. The proposed method was able to detect the normal behavior
of fog nodes and was able to detect anomalies due to different sources, such as misuses,
cyber-attacks, with a high detection rate and low false alarms. In addition, Ferrag et al. [14]
proposed an IDS for IoT networks called RDTIDS, which combines REP Tree, JRip algo-
rithm and Random Forest methods. The proposed system used a BoT-IoT dataset and
obtained high accuracy in the detection rate compared to the previous studies.

In another study, Amouri et al. [15] proposed an IDS for mobile IoT networks, which
involved two stages: (1) Collecting data from dedicated sniffers and generating correctly
classified instances that are sent to super node, (2) linear regression performed by the super
node to detect the benign and malicious nodes. The proposed system was able to detect
the malicious activities (blackhole and DDoS) attacks with detection rates of more than
98% for the high power/node velocity case and 90% for the low power/node velocity
case. Similarly, Verma and Ranga [16] used different machine learning methods to detect
Denial-of-Service (DoS) attacks on IoT networks. They used different popular datasets and
applied statistical methods to evaluate the significant differences between the methods
used. They discussed how to select the best classification method based on the application
requirements and recommended using ensemble methods to develop IDSs. In addition,
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Hindy et al. [17] investigated six machine learning methods for an IoT intrusion detection
system to detect one type of IoT attack, known as a Message Queuing Telemetry Transport
(MQTT) attack. The results showed the effectiveness of the machine learning methods
used and emphasized the importance of using flow-based features to detect MQTT-based
attacks.

Lv et al. [18] proposed a misuse IDS that depends on specific attack signatures to
detect normal and malicious activities, based on an extreme learning machine with a hybrid
kernel function. They used the Kernel Principal Component Analysis (KPCA) method for
feature selection and feature extraction of the intrusion detection data. The experimental
results showed high detection rates and time-saving when using the proposed method. For
IoT networks, Gad, Nashat and Barkat [19] used a chi-square feature selection method with
different machine learning methods (using binary and multi-class data) on a dataset from a
large-scale and diverse IoT network. The experiment showed that the XGBoost classifier
outperformed other methods.

Feature selection methods were also used to enhance the detection of IoT botnet
attacks. For instance, Alqahtani, Mathkour and Ben Ismail [20] concluded that it is still
a challenge to develop an efficient IDS for IoT devices. To address this, they proposed a
feature selection method (using a Fisher-score) with a genetic-based XGBoost classifier to
obtain a subset of features for detecting IoT botnet attacks. They conducted experiments
on a public botnet dataset and it was found that high detection rates were obtained by
using only three features. Similarly, Bahşi, Nõmm and La Torre [21] investigated the
importance of improved feature selection for reducing the number of features to detect
the IoT bots. They showed that a small number of features can obtain high detection rates
using a multi-class classifier such as a decision tree. In addition, Panda, Abd Allah and
Hassanien [22] developed an efficient feature engineering model with machine learning and
deep learning methods for detecting IoT-botnet attacks. To provide efficient detection, two
feature engineering methods, K-Medoid sampling and scatter search-based, were applied
to obtain optimal feature subsets for the representative dataset. The experimental results
showed that the proposed method combined a high detection rate with low computational
cost (4.7 s for training and 0.61 s for testing).

Feature selection methods were used in different research disciplines to enhance the
proposed machine learning models, for instance IDS for vehicular ad hoc networks [23],
drone intrusion detection [24], clickbait detection on social media [25], detection of diseases
in health informatics [26] and virtual screening for molecular similarity searching [27].
In addition to machine learning methods for IDS in IoT, several deep learning methods
were applied for intrusion detection systems in IoT, which are discussed in [28]. Although
there are several studies in the literature addressing the IoT intrusion detection, more
research efforts are needed to consider the special characteristics and challenges of IoT
systems, which including the limited battery power and processor capacity. According
to [5], it is needed to consider the trade-off between accuracy of detection and performance
overheads to provide efficient computational and communication overhead, and high
detection accuracy. Therefore, this paper proposes a feature selection-based method with
several machine learning methods to enhance the performance of IoT Botnet classifiers. The
feature selection methods include Mutual Information (MI), Principal Component Analysis
(PCA) and ANOVA f-test at fine-granulated detection level.

3. Materials and Methods

In this section, the N-BaIoT benchmark dataset is presented and discussed briefly. The
data preprocessing and label encoding processes are then explained. Then, the well-known
One-versus-the-Rest (OvR) classification technique was used for dealing with multiclass
classification problems. Finally, this section describes the methodology used, including
details of the choice of classifiers, feature selection methods and the evaluation criteria.

The methodology followed in this research is presented in Figure 1, that includes:
data collection, data preparation, feature selection and classifier selection, which is trained
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and tested on the benchmark dataset with hyper-parameter tuning of the ML models. To
evaluate these models, the classifiers were trained and tested without applying any feature
selection method. This step helped to measure the efficiency of the used feature selection
techniques and investigate their influence on the performance of the ML model. In addition,
two data preprocessing techniques were applied: standardization and minimum-maximum
normalization (which is known as min–max normalization). Each attack type was then fed
into the feature selection methods to obtain a set of reduced features. Subsequently, the set
with reduced features was used for training the ML classifiers, using the OvR strategy. The
hyper-parameter of the winner ML classifier was then tuned using k-fold cross. In the last
phase, the performance of ML classifiers was reported.
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3.1. Used Dataset

The N-BaIoT data set that is used in this paper is designed to detect botnet attack
types, using nine IoT devices that provided the real traffic data [29]. The IoT devices
were attacked by two botnet attack families, namely Bashlite and Mirai. In total, there are
about five million items of data, grouped in separate files. Each file contains 115 features
and a class label. The dataset has also been constructed to server binary classification as
well as multi-class classification, where the target class labels take values of “benign” or
“TCP attack” for binary classification and “Bashlite” or “Miria” attack types for multi-class
classification.
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Table 1 below and Table A1 (see Appendix A) show the detailed statistics of the N-
BaIoT dataset and the complete list of extracted features. The data records are encoded as
L0.01, L0.1, L1, L3 and L5 with respect to the network stream time windows. In addition,
the socket and channel category are enriched with additional information about the packet
size. For each category, the packet count, mean, packet size and variance are calculated
From Table 1. it is obvious that the dataset is organized in a way that allows both binary
classification and multi-class classification to be addressed. In this study, as mentioned
earlier, the multi-class classification will be investigated, where the number of instances for
benign and different attack subclass types is presented in Table 2.

Table 1. Statistics of N-BaIoT dataset.

Feature Name Number of Instances, %

IoT device types

Security cameras 1
Webcam 1

Smart baby monitor 1
Thermostat 1

Smart door-bell devices 2

General Features
Total number of Instances 6,273,053

# of features in dataset 115
Time windows 100 ms, 500 ms, 1.5 s, 10 s and 1 min

Distribution of data (2 classes)
# of “Benign” records 555,932 (7.23%)
# of “attack” records 7,134,943 (92,77%)

Distribution of data (3 classes)
# of “Bengin” records 555,932 (7.23%)
# of “Bashlite” records 2,838,272 (36,90%)

# of “Mirai” records 4,296,671 (55,87%)

Table 2. The sampling of normal and attack classes in multi-class dataset.

Statistical Feature Reference Number of Records

“Benign” C1 555,932 (7.23%)

“Bashlite” attack type,
% out of all instances

C2 COMBO: 515,156 (6.698 %)
C3 Junk: 261,789 (3.403 %)
C4 Scan: 255,111 (3.317%)
C5 TCP: 859,850 (11.180%)
C6 UDP: 946,366 (12.305%)

“Mirai” attack type,
% out of all instances

C7 Ack: 865,646 (11.255%)
C8 Scan: 650,414 (8.457%)
C9 Syn: 790,227 (10.275%)
C10 UDP: 1,285,683 (16.717%)
C11 UDPplain: 704,701 (9.163%)

As the distribution of data records is obviously not balanced, the pseudocode pre-
sented in Algorithm 1 was used to sample the instances of “Bashlite” attack types and
“Mirai” attack types.
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Algorithm 1 Pseudocode of Dataset Sampling

Input: A list of N − BaIoT files F

Output: Balanced dataset
DF ← an empty list
s← size of data frame
for each file f ∈ F do:

Import the file f as data frame d f
Count the size sd f of the d f
Append data frame to d f ∈ DF

End for
threshold θ ← the smallest data frame size s(d f )
For all d f ∈ DF AND s(d f ) > θ do:

p← percent of data %

Sample dataset as d fi ←
(

θ
d f

)
∗ 100%

End For
Return d fi as csv format
End

3.2. Data Preprocessing

Although data preprocessing is tedious and time consuming [30,31], its necessity is
proven not only for simplifying the machine learning training process but also for im-
proving the effectiveness of the overall processes. Consequently, this study proposes the
following pre-preprocessing steps: label encoding, min–max normalization and standard-
ization.

3.2.1. Label Encoding

As the class label contains 11 different categorical values (including one “Benign”
class and 10 attack type subclasses), it is not acceptable to feed these values directly to the
ML classifiers. Therefore, these features are encoded into numerical values before using
the models. In the literature, there are several approaches for encoding the categorical
values: one-hot encoding [32], ordinal encoding [33], similarity encoding [34], entity em-
bedding [35] and multi-hot encoding [36]. Among of these, the most used approaches are
one-hot and ordinal encoding [37]. For encoding the categorical values found in the class
label, this study applies the one-hot encoding approach and transforms each categorical
value into a vector of binary variables. It should be noted that applying a one-hot encoding
approach leads to increasing the dimensionality by up to 10 more dimensions.

3.2.2. Normalization and Standardization

The performance of regression, as well as the classification models, is seriously af-
fected if the dataset columns contain values with different ranges. Mahfouz et al. [37]
discussed how this problem leads to the performance of ML models deteriorating when
various imbalanced scales of features have occurred in the dataset. Therefore, to deal
with such problems, it is necessary to obtain the acceptable range for the negligible and
dominant values. The two most popular techniques are min-max normalization and z-score
standardization:

• Min–max normalization is used for transforming values of the dataset features into
the range of [0, 1] according to the following equation:

Xnormalized =
X− Xmin_value

Xmax_value − Xmin_value
(1)

where Xnormalized represents the normalized value, Xmin_value and Xmax_value are the
border range of the desired interval, which is in this study [0, 1], and X is the original
value that would be transformed within these ranges.
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• Z-score standardization is used for rescaling dataset features so that they will have the
properties of a standard normal distribution with mean µ = 0 and standard deviation
σ = 1.

Xnormalized =
X− µ

σ
(2)

Algorithm 2 shows the pseudocode of the one-hot encoding approach, minimum–
maximum normalization and standardization techniques used in this study.

Algorithm 2 Pseudocode of One-hot encoding, Min–Max Normalization and Z-score
Standardization

Input: dataset features F, class label C
Output: Pre-processed dataset
MinMaxScaler (D, F, i):

Xnormalized = 0
max←maximum value among all values of column i ∈ F in D
min←minimum value among all values of column i ∈ F in D
Xnormalized ←

X−Xmin_value
Xmax_value−Xmin_value

// Equation (1)
Return Xnormalized

Standardize (D, F, i):
Xnormalized = 0
µ ← mean value of column i ∈ F in D
σ ← standard deviation value of column i ∈ F in D
Xnormalized

X−µ
σ // Equation (2)

Return Xnormalized
Begin:
D′← [ ] // Normalized/ Standardized dataset
F← Hot-encoding dataset D
For each item i ∈ F in (D) do:

D′←MinMaxScaler (D, F, i) // both min-max and z-score method is
D′← Standardize (D, F, i) // executed separately

End For
End

3.3. Feature Selection Techniques

As mentioned earlier, the N-BaIoT dataset consists of 115 features and 10 class labels,
plus the “Benign” class that was added after encoding the target class. Passing this high
dimensional vector into the ML model might cause a delay in the training and testing
time of ML models. Consequently, any proposed attack detection system built with this
issue usually consumes the processing resource very rapidly, which is not appropriate for
the real-time systems. Therefore, the proposed approach first investigates how various
filter-based feature selection techniques can be helpful for overcoming this issue. The
impact of PCA, MI and the ANOVA f-test on the performance of ML models is explored. As
presented in Section 4.1, the experimental results show that the MI filter-based technique
yields the highest accuracy score when the binary dataset is used. An aggregated MI with
different rank aggregation function is proposed and tested on the multi-class dataset (see
Section 4.2). The idea behind the aggregated MI is described as follows:

Compute the mutual information score for each feature, fi, in dataset D with respect
to class type c ∈ C. The features are then ranked based on the aggregator functions listed
in Table 3. Only p% of features are retained and fed later to the classifiers listed in Table 3
and the overall performance is measured.
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Table 3. Rank aggregation methods.

Aggregators Formula Description

Min ( ) min{Rc1 ( f1...n), Rc2 ( f1...n), . . . Rcm ( f1...n)}
Selects the minimum of the relevance scores
produced when class type ci is used as a
target class

Max ( ) max{Rc1 ( f1...n), Rc2 ( f1...n), . . . Rcm ( f1...n)}
Selects the maximum of the relevance scores
produced when class type ci is used as a
target class

Mean ( ) mean(
(

m
∑

i=1
Rci ( f1...n)

)
× 1

m )

Selects the mean of the relevance scores
produced when class type ci is used as a
target class

3.4. Classification Algorithms

In this work, two types of ML classifiers are used: (i) two ensemble-based classifiers:
Random Forest (RF), XGBoost (XGB) and (ii) four standalone classifiers, namely: Gaussian
Naïve Bayes (GNB), k-Nearest Neighbor (k-NN), Logistic Regression (LR) and Support
Vector Machine (SVM). For tuning the hyper-parameters of these classifiers, the optimal
values are estimated by using cross validation [38]. Typically, there are several hyper-
parameter optimization techniques, among which the grid search, random search, Bayesian
optimization and evolutionary-based optimization are commonly used techniques. In this
work, the grid search was applied, and the results of the optimized process are shown in
Table 4.

Table 4. Classification Algorithms.

Classification Algorithms Adjusted Parameters Best Tuned Hyper-Parameter

RF

Criterion: [‘entropy’, ‘gini’]
max_depth: [10–1200] + [None]
max_features: [‘auto’, ‘sqrt’,’log2′, None]
min_samples_leaf: [4–12]
min_samples_split: [5–10]
n_estimators’: [150–1200]

Criterion: ‘gini’, max_depth: 150,
max_features: ‘auto’.
min_samples_leaf: 4, min_samples_split: 7,
n_estimators’: 150

XGB

n_estimators: [100–1200]
max_depth: [1–11],
learning_rate: [1 × 10−3, 1 × 10−2, 0.1, 0.5, 1.]
subsample: [0.05–1.01]
min_child_weight: [1–21]

n_estimators: 150, max_depth: 4,
learning_rate: 1 × 10−2, subsample: 0.25.
min_child_weight: 5

k-NN

leaf_size = [3–15],
distance = [‘minkowski’, ‘Euclidian’,
‘Manhattan’]
#neighbors = [3–45], p = 2,
weights = ‘uniform’

leaf_size = 7, distance = ‘Manhattan’,
#neighbors = 23, p = 2, weights = ‘uniform’

LR

C= [−4.0–4.0], intercept_scaling = 1,
max_iter = [100–500],
penalty = [‘l1′, ‘l2’],
solver = [‘liblinear’, ‘lbfgs’],
tol = 0.0001, verbose = 0

C= 1.0, intercept_scaling = 1,
max_iter = 100, penalty = ‘l2’,
solver = ‘lbfgs’, tol = 0.0001,
verbose = 0

SVM
C = [0.1, 1, 10, 100, 1000]
gamma = [1, 0.1, 0.01, 0.001, 0.0001]
kernel = [‘rbf’, ‘kernel’]

C = 10
gamma = 0.001
kernel = ‘rbf’

3.5. Model Evaluation Metrics

The most commonly used evaluation metrics were used to evaluate the performance
of the ML classifiers, which are: Accuracy (Acc.), Precision (P), Recall (R) and F1 score. In
addition to these metrics, the training time, prediction time and execution time of each
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classifier were computed. The full description of these metrics and how they are computed
is presented in Table 5.

Table 5. Evaluation metrics.

Measure Metric Formula Explanation

Accuracy (Acc.) TP+TN
TP+TN+FP+FN TP—Correctly classified instances as the right type of attack.

TN—Correctly classified instances as benign.
FN—Wrongly classified attack instances as benign.

FP—Wrongly classified benign instances as an attack

Precision (P) TP
TP+FP

Recall (R) TP
TP+FP

F1 score (2×Pre×R)
Pre+R F1 score is the harmonic mean of precision and recall

Execution time te te = t1 + tp t1—Training time; tp—Prediction time

4. Results and Discussion
4.1. Preliminary Exploration Setup: Binary Dataset

To conduct the experiment, the script was written in Python 3.7 using the Google
Colab environment on the 64-bit Windows 10 operating system. The N-BaIoT dataset was
organized in a way such that both “Bashlite” and “Mirai” classes were grouped together
and formed one class, “attacked”. As shown in Figure 2, the number of the instances
classified as “attacked” is much larger than the number of “benign” instances. Therefore,
an under-sampling algorithm was applied on the class “attacked” to obtain a more balanced
dataset. A balanced sample of the dataset was then used. Later, the obtained dataset was
split into a training set and a testing set, using the train_test_split function found in the
sklearn package, where 80% of data was used as the training dataset and the remaining data
(20%) as the testing dataset. Table 6 presents the statistical outline of the balanced binary
dataset used.
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Figure 2. The distribution of attack and benign classes’ instances.

Table 6. Number of samples for normal and attack classes in the training and testing dataset.

Class Training Set Testing Set

Benign 190,313 22,824
Attacked 191,927 72,736

Total Number of Records 382,240 95,560

4.1.1. Performance Exploration of Machine Learning Algorithm

Table 7 presents the performance of the used ML classifiers. The idea here is to
investigate how the feature selection technique performs on the proposed binary dataset.
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Firstly, the ML-model is applied without using any FS technique. Then, different FS
techniques are used. Table 7 shows the summarized performance of the ML classifiers in
terms of accuracy.

Table 7. Exploration Investigation: Accuracy of ML models.

FS Technique RF XGB k-NN LR GNB SVM

Without 94.031% 99.382% 99.861% 82.631% 74.785% 89.189%
PCA 93.058% 99.290% 99.819% 82.053% 68.869% 89.928%
MI 94.391% 99.462% 99.903% 77.253% 84.819% 89.526%

ANOVA F-test 94.287% 99.294% 99.811% 80.157% 60.260% 88.645%

4.1.2. Discussion

Based on the results presented in Table 7, the following findings are observed and can
be summarized as follows:

• k-NN and XGB classifiers yield the highest scores in terms of accuracy, which confirms
the results reported in [20,21]. The k-NN exceeds all classifiers when all features
are used.

• The performance of the classifiers is degraded when the PCA technique is used. The
only exception is noted when SVM is used, when the number of components of PCA
is 21, as shown in Figure 3 and Table A2.

• Most ML models benefit more when the MI feature selection technique is applied. The
performance of ML classifiers in terms of accuracy exceeds the baseline, except LR, in
which the performance decreased. As a result, the following section presents how MI
can be beneficial for detecting attack types where the multi-class dataset is used. The
proposed aggregated MI feature selection approach is highlighted.
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Figure 3. Accuracy of the ML model with respect to different PCA components.

4.2. N-BaIoT Dataset as a Multi-Class Dataset

To conduct the experiment fairly, the OvR strategy was applied. The reason behind this
selection is its computational efficiency and interpretability. The OvR strategy represents
each class by only one classifier, which allows knowledge to be gained about the class by
inspecting its corresponding classifier.

To obtain the MI score of the features in the multi-class dataset, as mentioned earlier,
each feature in the dataset is computed with respect to each class type, c ∈ C, which
means the target class is fixed using multiclass classification strategy (OvR) and the MI of
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the feature is computed with respect to this class type. As a result, each feature obtained
10 different MI scores. The features are then ranked based on the aggregator functions
listed in Table 3. Figures 4–6 show the mutual information scores of all features with respect
to the MAX, MIN and AVERAGE aggregation functions.
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As shown in the Figures 4–6 above, each ranker search method ranks the attributes
differently. The main issue with such methods, as with all filter-based FS methods, is that
specifying the number of attributes that have to be retained is a subjective choice. In this
work, only the top 10% of features were used that have the highest MI scores. Table 8 shows
the names of the top 10% of features with respect to the aggregation functions.
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Table 8. Top 10% of Selected Features: The features are sorted in descending order with respect to
MI score.

Aggregation Function Feature Name

MAX

MI_dir_L0.01_mean
H_L0.01_mean
H_L0.1_mean
MI_dir_L0.1_mean
H_L0.01_variance
MI_dir_L0.01_variance
H_L1_mean
MI_dir_L1_mean
MI_dir_L3_mean
H_L3_mean
MI_dir_L5_mean
H_L5_mean
H_L0.1_variance
MI_dir_L0.1_variance
H_L0.01_weight

MIN

HH_jit_L0.1_mean
H_L0.01_mean
H_L0.1_mean
H_L0.1_variance
MI_dir_L0.01_mean
MI_dir_L0.01_variance
H_L0.01_variance
MI_dir_L0.1_variance
MI_dir_L0.1_mean
HH_jit_L0.01_mean
H_L1_weight
MI_dir_L1_weight
MI_dir_L1_mean
H_L1_mean
MI_dir_L3_mean

AVERAGE

MI_dir_L0.01_mean
H_L0.01_mean
MI_dir_L0.01_variance
H_L0.01_variance
H_L0.1_mean
MI_dir_L0.1_mean
MI_dir_L0.1_variance
H_L0.1_variance
H_L0.1_weight
MI_dir_L0.1_weight
H_L1_mean
MI_dir_L1_mean
HH_jit_L0.01_mean
HH_jit_L0.1_mean
HH_L0.01_magnitude

Comparison of MI Feature Selection using Different Aggregation Functions

Based on these selected features, the performance of ML classifiers was now measured
per each class type in terms of accuracy, precision, recall and F1score. In addition, the
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training time, prediction time and execution time were computed. Table 9 presents the
accuracy of ML classifiers when features were selected based on different aggregation
functions. Tables 10–15 present the precision, recall and F1 score of these classifiers.

Table 9. Accuracy of classifiers with MI feature selection on the test dataset.

Classifier
Aggregation Function

MAX MIN AVERAGE

RF 0.9427 0.9414 0.9417
XGB 0.9386 0.9897 0.9919

k-NN 0.9305 0.9784 0.9827
LR 0.5896 0.6071 0.7513

GNB 0.7585 0.8464 0.8496
SVM 0.7612 0.8673 0.8201

Table 10. Performance analysis for N-BaIoT with RF and MI feature selection on the test dataset.

Precision Recall F1score

Class Name MAX MIN AVE. MAX MIN AVE. MAX MIN AVE.

C1 0.9994 0.9994 0.9978 1.0000 0.9998 0.9998 0.9997 0.9996 0.9988
C2 1.0000 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000
C3 1.0000 1.0000 1.0000 0.9997 0.9992 0.9989 0.9999 0.9996 0.9995
C4 1.0000 1.0000 0.9997 0.9997 1.0000 0.9994 0.9998 1.0000 0.9995
C5 1.0000 0.8000 1.0000 0.0015 0.0014 0.0003 0.0029 0.0029 0.0007
C6 0.5397 0.5390 0.5390 0.9997 0.9991 0.9985 0.7010 0.7002 0.7001
C7 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000
C8 1.0000 1.0000 1.0000 1.0000 0.9997 1.0000 1.0000 0.9998 1.0000
C9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
C10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
C11 1.0000 1.0000 1.0000 1.0000 0.9995 1.0000 1.0000 0.9998 1.0000

Table 11. Performance analysis for N-BaIoT with XGB and MI feature selection on the test dataset.

Precision Recall F1score

Class Name MAX MIN AVE. MAX MIN AVE. MAX MIN AVE.

C1 0.9891 0.9727 0.9910 1.0000 0.9996 1.0000 0.9945 0.9859 0.9955
C2 0.9988 0.9985 0.9995 0.9712 0.9689 0.9728 0.9848 0.9835 0.9859
C3 0.9650 0.9724 0.9657 0.9934 0.9835 0.9971 0.9790 0.9779 0.9811
C4 1.0000 1.0000 1.0000 0.9997 1.0000 0.9994 0.9998 1.0000 0.9997
C5 1.0000 0.9234 0.9309 0.0015 1.0000 1.0000 0.0029 0.9602 0.9642
C6 0.5397 0.9993 1.0000 0.9994 0.9281 0.9351 0.7009 0.9624 0.9665
C7 1.0000 0.9998 1.0000 1.0000 0.9998 1.0000 1.0000 0.9998 1.0000
C8 1.0000 1.0000 1.0000 1.0000 0.9997 1.0000 1.0000 0.9998 1.0000
C9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
C10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
C11 1.0000 1.0000 1.0000 1.0000 0.9995 1.0000 1.0000 0.9998 1.0000
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Table 12. Performance analysis for N-BaIoT with k-NN and MI feature selection on the test dataset.

Precision Recall F1score

Class Name MAX MIN AVE. MAX MIN AVE. MAX MIN AVE.

C1 0.9988 0.9982 0.9986 0.9998 0.9990 0.9998 0.9993 0.9986 0.9992
C2 0.9963 0.9353 0.9431 0.9862 0.8959 0.9199 0.9912 0.9152 0.9313
C3 0.9793 0.8471 0.8773 0.9940 0.9018 0.9114 0.9866 0.8736 0.8940
C4 0.9988 0.9972 1.0000 0.9991 0.9988 0.9994 0.9989 0.9980 0.9997
C5 0.4604 0.9993 0.9996 0.9985 0.9996 1.0000 0.6302 0.9995 0.9998
C6 0.5000 0.9994 0.9997 0.0003 0.9991 0.9985 0.0006 0.9992 0.9991
C7 1.0000 1.0000 1.0000 1.0000 0.9996 0.9996 1.0000 0.9998 0.9998
C8 1.0000 1.0000 0.9997 0.9997 0.9994 1.0000 0.9998 0.9997 0.9998
C9 1.0000 0.9997 1.0000 1.0000 0.9997 1.0000 1.0000 0.9997 1.0000
C10 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
C11 0.9993 0.9998 1.0000 1.0000 0.9995 1.0000 0.9997 0.9997 1.0000

Table 13. Performance analysis for N-BaIoT with LR and MI feature selection on the test dataset.

Precision Recall F1score

Class Name MAX MIN AVE. MAX MIN AVE. MAX MIN AVE.

C1 0.2392 0.2747 0.3811 1.0000 0.9990 0.9998 0.3861 0.43091 0.5518
C2 0.0000 0.4962 0.7715 0.0000 0.4478 0.5823 0.0000 0.47075 0.6637
C3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000
C4 0.0000 0.9964 1.0000 0.0000 0.4268 0.4633 0.0000 0.59762 0.6332
C5 0.0000 0.0000 1.0000 0.0000 0.0000 0.0004 0.0000 0.00000 0.0007
C6 0.5397 0.5389 0.5390 0.9994 0.9991 0.9985 0.7009 0.70012 0.7000
C7 1.0000 0.9992 1.0000 1.0000 0.9996 0.9994 1.0000 0.99939 0.9997
C8 1.0000 0.9871 1.0000 0.7999 0.5693 0.9928 0.8889 0.72215 0.9964
C9 0.8204 0.9990 1.0000 0.6615 0.1691 0.9015 0.7324 0.28920 0.9480
C10 1.0000 1.0000 1.0000 0.7714 0.9079 0.9117 0.8710 0.95172 0.9538
C11 1.0000 0.9998 1.0000 1.0000 0.9988 1.0000 1.0000 0.99931 1.0000

Table 14. Performance analysis for N-BaIoT with GNB and MI feature selection on the test dataset.

Precision Recall F1score

Class Name MAX MIN AVE. MAX MIN AVE. MAX MIN AVE.

C1 0.9722 0.9644 0.9687 1.0000 0.9996 0.9998 0.9859 0.9817 0.9840
C2 0.5980 0.6103 0.6152 0.9934 0.9955 0.9973 0.7466 0.7567 0.7610
C3 0.2727 0.4516 0.5833 0.0039 0.0036 0.0018 0.0078 0.0072 0.0037
C4 0.9967 0.9920 1.0000 0.9243 0.9895 0.9911 0.9591 0.9907 0.9955
C5 0.4603 0.4608 0.4609 0.9985 0.9986 0.9996 0.6301 0.6306 0.6309
C6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C7 0.5519 1.0000 0.9943 1.0000 0.9996 0.9998 0.7112 0.9998 0.9971
C8 1.0000 1.0000 1.0000 0.9972 0.9981 0.9991 0.9986 0.9991 0.9995
C9 1.0000 1.0000 1.0000 0.9885 0.9857 0.9865 0.9942 0.9928 0.9932
C10 1.0000 1.0000 1.0000 0.1190 0.9961 0.9927 0.2126 0.9981 0.9963
C11 1.0000 1.0000 1.0000 1.0000 0.9958 0.9993 1.0000 0.9979 0.9997
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Table 15. Performance analysis for N-BaIoT with SVM and MI feature selection on the test dataset.

Precision Recall F1score

Class Name MAX MIN AVE. MAX MIN AVE. MAX MIN AVE.

C1 0.3892 0.9038 0.5414 1.0000 0.9970 0.9996 0.5603 0.9481 0.7023
C2 0.8252 0.6629 0.7140 0.6243 0.9608 0.6679 0.7108 0.7845 0.6902
C3 0.2500 0.9718 1.0000 0.0003 0.1780 0.0005 0.0005 0.3009 0.0011
C4 1.0000 0.9925 0.9994 0.9277 0.9781 0.9862 0.9625 0.9852 0.9928
C5 1.0000 0.7500 0.5000 0.0011 0.0011 0.0004 0.0022 0.0022 0.0007
C6. 0.5396 0.5387 0.5390 0.9994 0.9991 0.9985 0.7008 0.7000 0.7000
C7 0.9998 1.0000 1.0000 1.0000 0.9996 0.9998 0.9999 0.9998 0999
C8 1.0000 0.9985 1.0000 0.9997 0.9988 0.9991 0.9998 0.9986 0.9995
C9 1.0000 0.9993 0.9995 0.6181 0.9970 1.0000 0.7640 0.9982 0.9998
C10 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000
C11 1.0000 1.0000 1.0000 1.0000 0.9995 1.0000 1.0000 0.9998 1.0000

4.3. Discussion

This section meticulously analyzes the results listed in Tables 9–15. It also measures
the performance of the employed classifiers in terms of time consumption. As shown in
Table 9, the classifiers benefited differently when different aggregation operators were
applied. The findings are summarized as follows:

• When the “MIN” and “AVERAGE” functions were used, the most of classifiers per-
formed well and XGB, k-NN, GNB, LR and SVM achieved notable results compared
to their results when the “MAX” operator was used. Among these methods, XGB
obtained the best accuracy (99.19%).

• In most cases of the experiments, all classifiers showed good results when the “AVER-
AGE” operator was used as aggregation function, except RF and SVM.

• It is notable that RF benefited more only when the “MAX” operator was used as an
aggregation function. The performance of RF was degraded a little.

• In terms of accuracy, XGB and k-NN classifiers achieved 99.19% and 98.28% respec-
tively, which means that they are quite close. However, when their performances were
measured in terms of time consumption, the preference tends to favor k-NN, since it
consumes less time, as shown in Table 16.

• The prediction time is also a very important factor for employing an ML classifier for
real-time applications. Thus, in the case that the ML classifier is used for preventing
attacks on IoT devices in real-time and sensitive intrusion detection systems, the favor
tends toward XGB.

Table 16. Classifiers’ Time Consumption with respect to Aggregation Functions.

Classifier
Training Time (s) Prediction Time (s) Execution Time (s)

MAX MIN AVERAGE MAX MIN AVERAGE MAX MIN AVERAGE

RF 181.343 192.288 178.371 2.998 3.059 3.06 184.495 195.497 181.578
XGB 239.309 229.42 227.967 0.670 0.758 0.722 240.138 230.357 228.852
K-nn 20.928 10.732 20.622 68.744 30.085 24.474 89.820 40.977 45.242
LR 18.285 24.574 23.204 0.034 0.04 0.037 18.516 24.815 23.445

GNB 0.874 0.95 0.916 0.210 0.223 0.202 1.232 1.333 1.267
SVM 3144.112 4235.9 3308.709 266.762 229.278 218.782 3411.02 4465.33 3527.637

Tables 11 and 12 show the performance of the classifiers according to class types. The
findings are summarized as follows:

• Among all attack types, the XGB and k-NN classifiers were capable of detecting the
“Mirai” attack type perfectly.
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• Among the “Bashlite” attack types that XGB was able to detect, the “TCP” and “UDP”
attack types were poorly detected, whilst the k-NN classifier performed poorly with
“TCP” and “UDP” attack types, and also with “COMBO” and “Junk” attack types.

• Interestingly, RF records the best performance with F1score of 100% for the “COMBO”
attack type when the “AVERAGE” aggregation function was used. In addition, it
achieved F1 score of 99.95% with the “Junk” type.

5. Conclusions

This paper has proposed an aggregated mutual information-based feature selection
with machine learning methods for enhancing IoT botnet attack detection. The main phases
of this method include data collection, data preparation, feature selection and classification
using the N-BaIoT benchmark dataset. Each attack type was fed into the feature selection
methods to obtain a set of reduced features. The set with reduced features was then used
for training the ML classifiers using the OvR strategy. Finally, the ML model was evaluated
and the overall performance was reported. The proposed method was applied for the
binary (attack and benign) and multi-class (10 different attacks and benign) classification
problems. The effect of PCA, MI and ANOVA f-test feature selection methods on the
performance of ML models was investigated. Two ensemble-based classifiers: RF and
XGB, and four individual classifiers: GNB, k-NN, LR and SVM methods with applying
hyper-parameter methods were used in the conducted experiments. The evaluation of
ML classifiers was performed by computing the accuracy, precision, recall and F1score.
In addition to these metrics, the training time, prediction time and execution time of
each classifier were computed. The experimental results showed that the MI filter-based
technique yielded the highest accuracy score when the dataset of binary dataset was used.
For the multi-class dataset, an aggregated MI with different rank aggregation functions
was proposed and tested. The findings showed that, in terms of accuracy, XGB and k-NN
classifiers achieved 99.19% and 98.28% respectively, while k-NN performed better for
time consumption measure. Future works can apply the proposed method on different
IoT botnet datasets. In addition, deep learning-based methods can be proposed and
investigated to enhance IoT botnet attack detection.
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Appendix A

Table A1. The full names of features in the N-BaIoT dataset.

F. No Feature Name F. No Feature Name F. No Feature Name F. No Feature Name

f MI
1

MI_dir_L5_weight f H
8 H_L1_mean f HH

15 HH_L1_weight f HH
37 HH_jit_L5_mean

f MI
2 MI_dir_L5_mean f H

9 H_L1_variance f HH
16 HH_L1_mean f HH

38 HH_jit_L5_variance

f MI
3 MI_dir_L5_variance f H

10 H_L0.1_weight f HH
17 HH_L1_std f HH

39 HH_jit_L3_weight

f MI
4

MI_dir_L3_weight f H
11 H_L0.1_mean f HH

18 HH_L1_magnitude f HH
40 HH_jit_L3_mean

f MI
5 MI_dir_L3_mean f H

12 H_L0.1_variance f HH
19 HH_L1_radius f HH

41 HH_jit_L3_variance

f MI
6 MI_dir_L3_variance f H

13 H_L0.01_weight f HH
20 HH_L1_covariance f HH

42 HH_jit_L1_weight

f MI
7 MI_dir_L1_weight f H

14 H_L0.01_mean f HH
21 HH_L1_pcc f HH

43 HH_jit_L1_mean

f MI
8 MI_dir_L1_mean f H

15 H_L0.01_variance f HH
22 HH_L0.1_weight f HH

44 HH_jit_L1_variance

f MI
9 MI_dir_L1_variance f HH

1 HH_L5_weight f HH
23 HH_L0.1_mean f HH

45 HH_jit_L0.1_weight

f MI
10

MI_dir_L0.1_weight f HH
2 HH_L5_mean f HH

24 HH_L0.1_std f HH
46 HH_jit_L0.1_mean

f MI
11

MI_dir_L0.1_mean f HH
3 HH_L5_std f HH

25 HH_L0.1_magnitude f HH
47 HH_jit_L0.1_variance

f MI
12

MI_dir_L0.1_variance f HH
4 HH_L5_magnitude f HH

26 HH_L0.1_radius f HH
48 HH_jit_L0.01_weight

f MI
13

MI_dir_L0.01_weight f HH
5 HH_L5_radius f HH

27 HH_L0.1_covariance f HH
49 HH_jit_L0.01_mean

f MI
14

MI_dir_L0.01_mean f HH
6 HH_L5_covariance f HH

28 HH_L0.1_pcc f HH
50 HH_jit_L0.01_variance

f MI
15

MI_dir_L0.01_variance f HH
7 HH_L5_pcc f HH

29 HH_L0.01_weight f Hp
1

HpHp_L5_weight

f H
1 H_L5_weight f HH

8 HH_L3_weight f HH
30 HH_L0.01_mean f Hp

2
HpHp_L5_mean

f H
2 H_L5_mean f HH

9 HH_L3_mean f HH
31 HH_L0.01_std f Hp

3
HpHp_L5_std

f H
3 H_L5_variance f HH

10 HH_L3_std f HH
32 HH_L0.01_magnitude f Hp

4
HpHp_L5_magnitude

f H
4 H_L3_weight f HH

11 HH_L3_magnitude f HH
33 HH_L0.01_radius f Hp

5
HpHp_L5_radius

f H
5 H_L3_mean f HH

12 HH_L3_radius f HH
34 HH_L0.01_covariance f Hp

6
HpHp_L5_covariance

f H
6 H_L3_variance f HH

13 HH_L3_covariance f HH
35 HH_L0.01_pcc f Hp

7
HpHp_L5_pcc

f H
7 H_L1_weight f HH

14 HH_L3_pcc f HH
36 HH_jit_L5_weight f Hp

8
HpHp_L3_weight

f Hp
9

HpHp_L3_magnitude f Hp
10

HpHp_L3_radius f Hp
11

HpHp_L3_covariance f Hp
12

HpHp_L3_pcc

f Hp
13

HpHp_L1_weight f Hp
14

HpHp_L1_mean f Hp
15

HpHp_L1_std f Hp
16

HpHp_L1_magnitude

f Hp
17

HpHp_L1_radius f Hp
18

HpHp_L1_covariance f Hp
19

HpHp_L1_pcc f Hp
20

HpHp_L0.1_weight

f Hp
21

HpHp_L0.1_mean f Hp
22

HpHp_L0.1_std f Hp
23

HpHp_L0.1_magnitude f Hp
24

HpHp_L0.1_radius

f Hp
25

HpHp_L0.1_covariance f Hp
26

HpHp_L0.1_pcc f Hp
27

HpHp_L0.01_weight f Hp
28

HpHp_L0.01_mean

f Hp
29

HpHp_L0.01_std f Hp
30

HpHpL0.01_magnitude f Hp
31

HpHp_L0.01_radius f Hp
32

HpHp_L0.01_covariance

f Hp
33

HpHp_L0.01_pcc f Hp
34

HpHp_L3_mean f Hp
35

HpHp_L3_std

Table A2. Accuracies of Machine learning model with respect to different PCA components.

No. of Components RF XGB k-NN LR GNB SVM

1 65.605% 63.072% 70.231% 16.720% 24.553% 61.430%
11 93.011% 97.711% 99.765% 78.314% 68.009% 88.621%
21 93.058% 98.657% 99.802% 82.053% 68.871% 89.350%
31 92.066% 98.871% 99.819% 82.822% 68.179% 89.928%
41 91.145% 98.897% 99.817% 82.831% 67.753% 89.506%
51 92.055% 98.920% 99.817% 82.833% 66.803% 89.521%
61 92.043% 98.869% 99.817% 82.904% 62.286% 89.521%
71 92.051% 99.290% 99.817% 82.890% 56.603% 89.521%
81 92.049% 99.327% 99.817% 82.843% 50.457% 89.521%
91 92.043% 99.306% 99.817% 82.818% 44.553% 89.521%
101 92.055% 99.292% 99.817% 82.776% 44.333% 89.521%
111 92.051% 99.187% 99.817% 82.759% 44.333% 89.521%
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