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Abstract: Cloud computing has become integral lately due to the ever-expanding Internet-of-things
(IoT) network. It still is and continues to be the best practice for implementing complex computational
applications, emphasizing the massive processing of data. However, the cloud falls short due to
the critical constraints of novel IoT applications generating vast data, which entails a swift response
time with improved privacy. The newest drift is moving computational and storage resources to
the edge of the network, involving a decentralized distributed architecture. The data processing
and analytics perform at proximity to end-users, and overcome the bottleneck of cloud computing.
The trend of deploying machine learning (ML) at the network edge to enhance computing applications
and services has gained momentum lately, specifically to reduce latency and energy consumed while
optimizing the security and management of resources. There is a need for rigorous research efforts
oriented towards developing and implementing machine learning algorithms that deliver the best
results in terms of speed, accuracy, storage, and security, with low power consumption. This
extensive survey presented on the prominent computing paradigms in practice highlights the latest
innovations resulting from the fusion between ML and the evolving computing paradigms and
discusses the underlying open research challenges and future prospects.

Keywords: cloud computing; edge computing; fog computing; internet-of-things; machine learning

1. Introduction

There has been a significant progression of computing paradigms during recent
decades. Cloud computing is perhaps the most well-established, which emerged from
the requirement of harnessing “computing as a utility”, enabling the rapid growth of new
internet services [1]. The arrival of the Internet of Things (IoT) paved the way for vast data
generation, eventually leading to big data [2]. Cloud computing was a hot research area
until the widespread use of the Internet of Things disclosed all of the centralized paradigm’s
flaws [1]. With cloud-based deployment, cloud data centers manage the analyzing, storing,
and decision-making of data. As the data volume along with the velocity surged, trans-
ferring the big data brought forth by IoT devices to the cloud became inefficient, owing
to bandwidth constraints, and would not meet the time-sensitive and ultra-low latency
demands of applications and could raise privacy concerns as well.

The scope of IoT has broadened since its advent and specifies a digital interconnection
of devices and objects, capable of procuring and sharing information across platforms for
added value [3]. The proliferation of IoT is consorted by an increased capacity, reduced
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communication cost, and astounding technological development. IoT warrants not just
device data management, but also information exchange among multidisciplinary plat-
forms. The huge data procured from numerous smart devices entails sharing to add value
and a comprehensive understanding of the concerned domain. With collaborative IoT,
heterogeneous domains and settings enable sensors, gateways, and services to collaborate
at various levels, enriching the quality of human life while improving business processes.

The IoT ecosystem extends in scale and complexity, encompassing a range of heteroge-
neous devices that stretch over several layers of IoT architecture. As IoT systems partake
in critical infrastructures, they necessitate resilient service operability [4]. IoT applications
are disparate, deployed in healthcare, industries, domotics, smart homes, smart cities,
smart transportation, etc. The IoT devices are constituted of small, resource-constrained
smart objects, ineffective at handling complex tasks, which entails task offloading to distant
cloud servers [5]. The limited storage and computing potential forces IoT devices to rely
on cloud data centers [6]. This ensues an increased latency, and the intermittent internet
connectivity renders IoT devices inept at managing time-critical real-time applications.

Thus, the IoT revolution has steered new research into decentralized models. In this
context, edge computing emerged, intending to bring cloud computing capability to the net-
work edge, addressing unfolding issues that cannot be fixed by cloud computing solely,
such as latency, bandwidth, and connectivity challenges [7]. Correspondingly, numerous
edge computing solutions have been suggested, including Mobile Cloud Computing (MCC)
and Mobile Edge Computing (MEC) [8,9]. Fog computing surfaced as one of the highly
evolved Edge computing concepts. Fog computing aspires to represent a comprehensive
framework, allocating resources in sequence along the cloud to the smart devices [10].
Thus, it is not a mere cloud extension, as it actively engages in synergizing the cloud with
IoT. In addition, the requisite for sustainable/green computing that aids in conserving
energy is crucial to IoT devices. As IoT devices have energy limitations, it is vital to de-
vise energy-aware solutions into the future [11]. In parallel with technological progress,
it is imperative to cut back on the carbon footprint to limit environmental deterioration
alongside global warming [12]. The exploration of edge paradigms is at its budding phase,
and innovative viewpoints pertaining to these paradigms that arise in literature regularly
warrant extensive research [13].

Table 1 shows the list of acronyms used in this manuscript. Figure 1 shows the structure
of this survey.

Table 1. List of acronyms used in the manuscript and their expansion.

Acronym Full Form

AI Artificial Intelligence
AR Augmented Reality
CoT Cloud of Things
CC Cloud Computing

CCTV Closed-Circuit Television
CPU Central Processing Unit
CR Cloud Robotics

DDoS Distributed Denial of Service
DL Deep Learning
EC Edge Computing

ETSI European Telecommunications Standard Institute
FaaS Function-as-a-Service
FC Fog Computing

IaaS Infrastructure-as-a-Service
ICT Information and Communications Technology
IDC International Data Corporation
IoT Internet-of-Things
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Table 1. Cont.

Acronym Full Form

IT Information Technology
ITS Intelligent Transport System
ITU International Telecommunication Union

MACC Mobile Ad hoc Cloud Computing
MEC Multi-access Edge Computing
MC Mobile Computing

MCC Mobile Cloud Computing
MDC Micro Data Center
mist Mist Computing
ML Machine Learning

MMA Man-in-the-Middle Attack
MIT Massachusetts Institute of Technology
NIST National Institute of Standards and Technology
OP Operational Technology

PaaS Platform-as-a-Service

PRISMA Preferred Reporting Items for Systematic Reviews and
Meta-Analyses

QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RAS Reliability Availability Serviceability
SaaS Software-as-a-Service
SDN Software-Defined Networking
SLA Service-Level Agreement
VM Virtual Machine
VR Virtual Reality

WSN Wireless Sensor Network
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2. Contribution of This Survey

The contribution of this survey is outlined as follows:
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• A comprehensive account of computing paradigms is rendered, especially cloud
computing, fog computing, edge computing, and how they are related to other similar
paradigms such as mist, cloudlet, MEC, etc.

• A detailed illustration of the motives that instigated the evolution of edge/fog com-
puting and related paradigms is furnished.

• A comparison of cloud, edge, and fog computing paradigms are presented and ML
convergence’s significance with fog/edge is discussed.

• A list of challenges and future research directions concerning computing paradigms is
devised.

2.1. Survey Methodology

We harnessed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) procedure to systematically choose the articles used in this survey.

2.1.1. Search Strategy and Literature Sources

For this review, articles pertaining to Evolving Computing Paradigms were searched
in Google Scholar, ScienceDirect, IEEE Xplore, ACM Digital Library, Wiley Online Library,
and Springer databases from January 2009 to January 2022.

The search string used in this study was (“Cloud computing” or “Edge computing”, or
“Fog computing” or “Internet-of-Things” or “Machine learning”) and collected 2360 articles.

2.1.2. Inclusion Criteria

The articles written and published in English between January 2009 and January
2022 on Evolving Computing Paradigms were included. This review includes relatively
new research.

2.1.3. Elimination Criteria

The articles published in languages other than English, from January 2009, including
case reports/case series, opinions, letters to the editor, commentaries, conference abstracts,
theses, and dissertations, were excluded from this review.

2.1.4. Results

Initially, from 2360 articles, duplicates found were removed and, after reviewing
the abstracts of these papers, 874 of them were selected for a full-text review. This study
included both journal and conference articles. After reviewing the full-text of these papers,
693 papers were excluded, as they used duplicate methods or were published earlier.
Finally, 181 papers were studied in this research. Figure 2 illustrates the selection procedure
of the articles for this study using a PRISMA diagram.
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The 181 articles studied in this research from 2009 to 2020 are depicted in Figure 3.
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The review/survey papers analyzed in this study is elucidated in Table 2.
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Author and
Year A

rt
ic

le
s

R
ef

er
en

ce
d

Time Span

Sy
st

em
at

ic
St

ud
y

Survey/Review Outline

Computing
Paradigms

Fu
tu

re
D

ir
ec

ti
on

s

C
lo

ud
C

om
pu

ti
ng

Fo
g

C
om

pu
ti

ng

Ed
ge

C
om

pu
ti

ng

Atzori et al.
[14], 2016 119

1999
–

2016
×

The survey examines the prospect of Internet-of-Things
from the evolutionary perspective, the role of IoT
in modern society and ensuing challenges.

X × X ×

Hu et al. [15],
2017 123

2001
–

2017
×

The review presents fog computing features, architecture,
compares with other computing paradigms, and
summarizes key technologies that aid in application and
deployment.

X X X X
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Mahmud et al.
[16], 2017 47

2012
–

2016
×

The work presents a taxonomy from a comprehensive
analysis of fog features and challenges pertaining to
the structure, service, and security and identifies research
gaps.

X X X X

Lin et al. [17],
2017 167

2001
–

2017
×

The article offers a comprehensive overview of
state-of-the-art IoT-enabling technologies, system
architecture, privacy, security issues, and concerns of IoT
and fog/edge computing integration during real-world
deployment.

× X X X

Mao et al. [18],
2017 242

2003
–

2017
×

An exhaustive outline of state-of-the-art MEC from
a communication viewpoint, resource management,
comparison with MCC is presented.

X × X X

Naha et al.
[19], 2018 142

2001
–

2018
×

The survey article presents fog computing overview,
architecture, related technologies, taxonomy by analyzing
fog requirement and reviewing challenges, research issues,
and trends.

X X X X

Mouradian
et al. [20], 2018 168

2006
–

2017
X

An exhaustive survey is tendered on fog computing
architectures, algorithms, affiliated concepts, and their
dissimilarities; additionally, challenges and research
directions were discussed.

× X × X

Mukherjee
et al. [21], 2018 225

1997
–

2017
×

The survey extends an overview of fog computing basics,
architecture and highlights the approach for service and
allocation of resources to overcome latency, bandwidth,
and energy consumption.

× X × X

Elazhary [22],
2018 412

1991
–

2018
×

The exhaustive review researches arenas such as IoT, cloud
computing, mobile computing, and related
concepts and attempts to disambiguate emerging
paradigms as well as technologies.

X X X X

Atlam et al.
[23], 2018 63

2012
–

2017
×

This work reviews fog computing state-of-the-art,
including fog features, architecture, and merits, and insists
on fog being an IoT enabler.

× X × X

Bangui et al.
[24], 2018 114

2012
–

2018
×

The review outlines edge computing technology and
the challenges and concerns that accompany
Distributed environments while shifting services from
cloud’s centralized to edge’s decentralized platforms.

× X X X

Yousefpour
et al. [2], 2019 450

2001
–

2018
×

A comprehensive survey is furnished that emphasizes fog
computing, associated computing
paradigms, and presents a taxonomy of research subjects,
underlying challenges, and future leanings of fog.

X X X X

Abdulkareem
et al. [25], 2019 95

2011
–

2019
×

This review highlights recent advancements of ML
techniques related to the accuracy, resource management
and security of fog computing and its role in edge
computing.

× X X X

Donno et al.
[9], 2019 71

2004
–

2019
×

The review article offers clarification for beginners into
research on cloud computing, edge computing, and fog
computing by illustrating features and architecture of each
paradigm and concludes by stating fog computing’s
relevance as fog binds cloud, edge computing, and IoT
together.

X X X X

Khan et al.
[26], 2019 101

2009
–

2019
×

The study focuses on cloud and state-of-the-art edge
computing concepts, critical requirements, limitations and
identified unaddressed issues.

X X X X

Cao et al. [27],
2020 62

2005
–

2020
×

The article reviews research related to edge
computing, summarizes key concepts, technologies,
architecture, privacy, and security.

X × X X

Habibi et al.
[28], 2020 191

2002
–

2019
×

The survey covers existing computing paradigms and
emphasizes fog computing research areas by presenting
a taxonomy and analyses from fog’s architectural
viewpoint.

X X X X

Moura et al.
[29], 2020 194

1999
–

2020
×

This work surveys state-of-the-art fog computing systems,
offers insights into designing and managing resilient fog
systems and illustrates research issues and upcoming
future trends.

× X × X

Aslanpour
et al. [30], 2020 50

2010
–

2020
×

The study offers a taxonomy of real-world
performance metrics to assess the computing paradigms of
cloud, fog, and edge.

X X X X

Alli et al. [31],
2020 102

2009
–

2020
×

The article delves into the ecosystems of IoT–fog–cloud,
analyzing concepts, architecture, standards, tools of fog
Cloud-of-Things, and presents a taxonomy on emerging
issues. It concludes that ML and AI in fog ecosystems
would be appropriate for latency-sensitive and
resource-constrained systems.

X X X X

(X: Yes, ×: No).
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3. Evolving Computing Paradigms and Related Concepts
3.1. Cloud Computing

Cloud computing pertains to extending applications via the internet as services, as well
as the software and technology that underpins the data centers furnishing these services [1].
NIST formalizes cloud computing [32] as “a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) which can be rapidly provisioned and
released with minimal management effort or service provider interaction”. The essential
characteristics of the cloud model include on-demand self-service, broad network access, re-
source pooling, rapid elasticity, and measured service. A cloud infrastructure encompasses
software and hardware, extending vital features of the cloud model.

The cloud solutions are procurable through the following service models [33]:

• Software as a service (SaaS)—the cloud provider presents consumers with applications
accessible via the program interface or web browser, and the consumer has limited
control over user-specific applications.

• Platform as a service (PaaS)—On the cloud infrastructure, the consumers are allowed to
build and distribute applications. They can exercise control on applications deployed
but not on the cloud infrastructure.

• Infrastructure as a service (IaaS)—The customer is furnished with essential computing
resources vital to processing, storing, and networking. The user exercises control upon
storage, applications, and operating systems, but not cloud infrastructure. The cloud
service models and deployment models are depicted in Figure 4.
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The cloud solutions are deployable as [33]:

• Private cloud—a particular organization that can also be a third party exclusively
owns and controls the private cloud, which can be available on or off-premises.

• Community cloud—the specific community comprises of organizations that share
common concerns may provide cloud infrastructure for exclusive usage available on
or off-premises, managed by organizations within the community or by a third party.
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• Public cloud—the public cloud available on the cloud provider’s premises can be
owned or managed by any enterprise and is open to the use of the general public.

• Hybrid cloud—it may be composed of two or more cloud models (private, community,
or public); although they are distinct entities, they are bound by technology permitting
the portability of application as well as data.

3.2. Internet-of-Things

Kevin Ashton, co-creator and executive director of the Auto-ID Center at the Mas-
sachusetts Institute of Technology (MIT), in 1999 introduced the phrase “Internet of
Things” [34]. The Internet of Things (IoT) [35] characterizes an extensive environment
connecting heterogeneous physical objects to the internet to fine-tune the efficiency of
real-time ubiquitous applications. As per the International Telecommunication Union
(ITU), the Internet of Things (IoT) is a universal framework that connects things which
may be physical as well as virtual, distinguished, and incorporated within communi-
cation networks, depending on prevailing and emerging collaborative information and
communication technologies (ICT) to facilitate enhanced services [36].

3.2.1. Essential Features

The fundamental characteristics of the Internet of Things include [37–40]:

• Interconnectivity—the IoT may be connected to global communication infrastructure.
• Things-related services—IoT is adept at offering physical/virtual things, privacy, as

well as semantic consistency services within the limits of things.
• Heterogeneity—the IoT devices pertain to diverse hardware platforms and networks.
• Constrained resources—the IoT devices encounter computational and energy restric-

tions.
• Dynamic change—the state of devices and the related environment are subject to

dynamic change.
• Uncontrolled environment—the IoT devices are deployed in an uncontrolled setting.
• Massive scale—the devices to be monitored and those that connect with one another

are enormous and will continue to surge exponentially into the future.

3.2.2. New Challenges in IoT

As billions of devices are connected globally, data expands exponentially and accumu-
lates 24/7, driving big data to become the current buzzword [41]. The International Data
Corporation (IDC) estimates that by 2025, IoT devices may reach 41.6 billion and create
79.4 zettabytes of data [42]. The five Vs of big data [43], namely, volume, variety, velocity,
veracity, and value, pose distinct challenges. In the current scenario, the majority of data
resulting from IoT devices are managed by the cloud. The resulting cloud IoT synergy
poses demands that cannot be tackled by the existing cloud computing model alone [44].
A concise outline of challenges that IoT encounters [13,45–48] drives the need for edge and
fog computing as a solution to manage demands [36] and is outlined as follows:

• Low latency—IoT applications [44] and industrial control systems [49] demand low
latency within a few milliseconds that can hardly be met by the existing cloud model.

• High network bandwidth—The escalating amount of IoT devices produce sizable
data [50], which may be rendered useless due to high bandwidth usage to transfer it
to the cloud or denied due to privacy concerns; hence, entails to be dealt with locally.

• Limited resources—numerous IoT-connected devices possess limited resources to
interact directly with the cloud, demanding intensive computation and complex
protocols.

• IT and OT convergence—In industrial systems, the confluence of information technol-
ogy (IT) and operational technology (OT) creates new needs. As offline systems may
cause business loss or consumer annoyance, contemporary cyber-physical systems
demand continual and safe operation. Thus, the upgradation of the system software
and hardware causes concern.
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• Intermittent connectivity—When IoT devices have intermittent network connectivity,
it is difficult to provide uninterrupted cloud services to those devices.

• Geographical distribution—the majority of IoT devices entail services of comput-
ing and storage that are dispersed across large geographic areas, and it is highly
challenging to position them at a location that meets IoT demands [51].

• Context-awareness—Local contextual data must be accessed and processed by IoT
applications (vehicular networks and augmented reality), for which the physical
distance between IoT devices and the centralized cloud is a hindrance.

• Security and privacy—The existing cybersecurity solutions prove to be unsatisfactory
to manage IoT applications due to the evolving security challenges [52,53].

3.3. Mobile Computing

The computation carried out through mobile phones, tablets, or laptops is noted as
mobile computing. The mobile devices offer substantial benefits to mobile users but still
encounter limitations due to a low processing capability, battery, memory due to their
portable size, and operate at on-and-off network connectivity [2]. Along with resource
constraints, mobile computing encounters communication latency, demand adaptability
of mobile clients, etc. Thus, these drawbacks cause mobile computing to be inept for
applications with demands for low latency, robustness, and when huge data generated
from mobile devices need to be processed and stored on it. Moreover, the escalation
in mobile device utilization increased the data flow, causing network congestion. Data
offloading is a viable solution to mitigate the strain on the cellular network [54]. The existing
demerits of mobile computing can be overcome by integrating it with cloud computing [55].
The expansion of mobile computing set the stage for and impacted the cloud and fog
computing evolution.

3.4. Mobile Cloud Computing

NIST states that the cloud computing alliance with IoT devices and mobile devices fa-
cilitates data and CPU-intensive applications suitable for the IoT environment [56]. The con-
cept of Mobile Cloud Computing (MCC) is that it combines cloud computing and mobile
applications with sophisticated computing modules processed on the cloud [57]. It enables
data processing and storage away from mobile devices, benefitting not just smartphones
and a wide range of mobile subscribers. Major computational tasks are moved to the cloud
with MCC, improving mobile devices’ battery life [2]. With MCC being grounded on
the notion of mobile offloading, mobile devices entrust storage as well as processing to
remote units to achieve workload mitigation and optimization in terms of energy, cost, and
longevity [45].

The mobile devices’ proliferation entails the efficient management of constrained
resources with MCC, as it operates on the synergy between cloud computing and mobile
computing. It is capable of operating data-intensive mobile applications as it prevails over
battery, memory, and computation power restrictions from the user viewpoint. However,
with cellular communication, long-distance data transmission to/from a core network
results in higher latency, jitter, and network overhead. This can be overcome if the computa-
tion, analysis, and filtering of data occurs at the proximity of the data source, facilitating Fog
Computing (FC) and MEC [58]. The limited bandwidth, flexibility, and control, along with
an unreliable latency, security, and privacy issues are some challenges faced by MCC [28].
The partitioning of mobile applications by adaptive offloading during runtime allows
the management of computer-intensive units of the application [59].

3.5. Mobile Ad hoc Cloud Computing

Mobile Ad hoc Cloud Computing (MACC) is an edge computing paradigm involving
mobile devices that share resources in a dynamic and temporary network facilitated by
transport and routing protocols [2,58,60]. It offers a decentralized network [61] with
dynamic mobile devices, accommodating devices joining or leaving the network continually.
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It favors environments that lack uninterrupted internet connectivity. MACC is the most
decentralized, as it comprises mobile devices only.

3.6. Cloud of Things

The two concepts of cloud computing and IoT have evolved independently through
the years in terms of hardware and software. With IoT facing challenges due to the process-
ing, battery, and storage capacity, these issues can be solved by combining cloud computing
and IoT [62]. Cloud computing is capable of filling the gaps in IoT regarding computing,
networking, and storage capabilities due to the cloud’s virtually unlimited capabilities and
resources. It can assist in implementing numerous IoT applications [63,64]. In the Cloud-
of-Things (CoT), IoT devices constitute a virtualized cloud structure. Here, computing is
performed over the cloud of pooled resources consisting of IoT devices in contrast to mist
computing, where computing is carried out on IoT devices [65].

3.7. Mist Computing

Mist computing is initiated to include endpoint connected devices at the extreme edge
suitable for self-aware autonomic systems in the near future [2,66]. In the IoT-fog-cloud
continuum, mist computing is the first computing point to allow computation, storage,
and networking across fog to things. Mist computing forms the superset of MACC, as
mist, devices, and networking are not restricted to mobile devices and ad hoc, respectively.
It allows utilizing the peripheral component (sensors or actuators) capacity to pre-process
data before sending them to the fog or cloud layer [67]. Mist computing aids in large-scale
IoT systems development and enriches computational efficiency at the edge of the IoT
architecture [68].

3.8. Edge Computing

Despite the fact that edge computing has been mentioned in the literature before
cloud computing, its significance grew dramatically with the introduction of IoT and
the ensuing demands. Edge computing places cloud computing’s services close to the end-
user, distinguished by a rapid processing and response time [26]. Edge computing denotes
technologies that enable computation to be accomplished at the network’s edge, upon
downstream data for cloud services, and upstream data for IoT services [69]. It unfolds
the cloud’s network by extending the computation, storage, and resources to the edge
of the network, close to the data source, with the resolve to accomplish critical needs of
real-time servicing, application intelligence, security, and privacy, along with the network’s
requirements for low latency and high bandwidth [13,27].

The significant aspects of cloud computing are its ability to grasp the big picture,
process vast amounts of data, perform in-depth analyses, process data in non-real-time,
and determine business decisions. Being centralized, entire data must be transferred to
the cloud with underlying risks of data loss and data leakage, as security and privacy
cannot be ensured, and sensitive information is at threat of disclosure [27]. Edge computing
is an extension to cloud computing, which considerably minimizes the volume of data
transmitted across nodes, lowering transmission costs and the network bandwidth usage.
It leads to utilization and computing efficiency along with energy consumption. Edge
computing can be more effective in small-scale, intelligent, real-time analyses. It eliminates
the risk associated with the network transmission, ensuring data security. If data become
compromised, it impacts only local data. The edge computing architecture is federated,
wherein edge devices are positioned between the cloud and terminal devices to tender
cloud services to the network’s edge [24,70]. As edge computing shifts service provisioning
from the cloud to the edge, it favors IoT application demands, enabling IoT devices to
be more scalable and energy-efficient [71]. The cloud–edge alliance involves a typical
three-layer model distinguished as the terminal (sensors, cameras, and smartphones), edge
(base stations, access points, routers, switches, and gateways), and cloud [27]. In terms of



Sensors 2022, 22, 196 11 of 38

device types, communication protocols, and services, edge computing can be implemented
in various ways [9,13,26].

3.9. Multi-Access Edge Computing (MEC)

The Mobile Edge Computing standard has been constituted by the European Telecom-
munications Standards Institute (ETSI) [72], which offers cloud computing and IT function-
alities within the Radio Access Network (RAN) in the vicinity of mobile subscribers [71].
As of 2017, ETSI renamed “Mobile Edge Computing” to “Multi-Access Edge Computing”
due to increasing interest in MEC by non-cellular operators [73,74]. MEC is a continuation
of mobile computing via edge computing, delivering computation and storage to energy
and resource-constrained mobile devices [2].

With Multi-Access Edge Computing, a cloud server is deployed at the cellular net-
work’s base stations. It executes tasks such as enhancing the application’s performance and
minimizing network congestion, bandwidth use, and latency for subscribers that cannot
be achieved with a conventional network architecture [75–77]. Even though the process-
ing and memory capabilities of mobile devices improve, they are still not sufficient to
handle compute-intensive tasks, which has led to MCC and MEC models [78]. The MEC
architecture is portrayed in Figure 5. MEC considerably reduces the process duration
and energy demands of mobile devices by setting up computational and other resources
close to the base stations [79]. As base stations serve as crucial access points to several
IoT devices, end devices could be directly serviced with just one hop through MEC [80].
MEC showcases a low latency, proximity to the user, location awareness, and geographical
distribution. However, it restraints the need to install a dedicated MEC server for MEC
services. With the rise in the demand for resources over time, scaling is another major
challenge [81]. MEC exhibits the reliability, energy efficiency, and a low latency suitable to
diverse applications [82] and outperforms MCC comparably [83].
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3.10. Cloudlet

A cloudlet has been envisioned by researchers at Carnegie Mellon University, which
is a small cluster or data centers capable of computation and storage, positioned close
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to mobile devices [84,85]. Cloudlet computing shares MCC and MEC particularities,
further contending with the demerits of MCC. A cloudlet may be referred to as a mini-
cloud [86], offering a secured cloud infrastructure for computing and delivering results to
mobile devices and works alongside the cloud. It is positioned at the network edge and
is accessible to adjacent mobile units [87,88]. The notion is computational offloading to
the virtual machine (VM)-based cloudlets at the network edge from mobile devices [89].

The cloudlet is featured as the middle layer in the three-tier architecture comprising of
mobile devices, the cloudlet, and the cloud [84,85] shown in Figure 6. It further possesses
connectivity, security, virtualization features, and closeness to mobile users enabling a low
latency. Cloudlets are similar to mobile clouds and nearer to mobile devices befitting
real-time scenarios. They focus on servicing time-sensitive applications operating under
restricted bandwidth conditions and interactive mobile applications with a large resource
demand and offer resources at a minimum latency [83]. Cloudlets back mobile clients’ local
services by splitting tasks within cloudlet nodes that are nearer to mobile devices. While
the cloudlet suits the mobile–cloudlet–cloud structure [90], fog computing is an alternative,
supporting huge data traffic with resources located at anyplace within the thing-to-cloud
continuum [2]. Cloudlets are alluded to as micro data centers (MDC) at times [91], mirroring
conventional data centers of cloud computing. The MDC may be a cloudlet or edge node
implemented in between IoT devices and the cloud [2].

Sensors 2022, 22, x FOR PEER REVIEW 13 of 41 
 

 

centers (MDC) at times [91], mirroring conventional data centers of cloud computing. The 
MDC may be a cloudlet or edge node implemented in between IoT devices and the cloud 
[2]. 

 

Figure 6. Mobile device–cloudlet–cloud model. 

3.11. Cloud Robotics 
Robotics engineering is becoming a vital part of everyday life, with diverse sensors 

generating big data demanding complex computations [92]. Cloud robotics is a branch of 
IoT that evolved from the fusion of cloud computing and networked robots [93]. The 
massive storage capacity of a centralized cloud and broad library of skills can be leveraged 
by robots to learn with experience. The cloud robotics architecture comprises two levels: 
machine-to-machine and machine-to-cloud. At the machine-to-machine level, robots 
determine decisions through a wireless collaboration. The machine-to-cloud level offers a 
shared pool of storage and computation resources to be allocated as per demands. Cloud 
robotics capitalizes on the elasticity feature of cloud computing besides others. 
Additionally, robots-as-a-service (RaaS) stems from considering robots as resources, 
providing resource sharing services to other robots [94–97]. The sharing of resources and 
data between robots through the cloud is integral to CR, along with robots themselves 
being shared as resources. These systems require standards for enabling coherent, 
semantic, data sharing, and service provisioning among the robots [93]. Cloud computing 
delegates fast and robust processing and storage capabilities to robots, along with 
collaborative learning capabilities through the sharing of knowledge. Recent 
advancement in this field have incited cloud robotics architecture development and its 
application in several domains [98]. 

3.12. Fog Computing 
The idea of processing at the edge has been around since the 2000s [99,100]. A related 

concept of cloudlets has been presented in 2009 [101]. The phrase ‘Fog Computing’ has 
been propounded by Cisco researchers in 2012 [42,102]. Fog computing and cloudlets are 
related concepts operating at the edge level, with cloudlets deployed at mobile networks 
and fog computing dealing with connected things [103]. 

Figure 6. Mobile device–cloudlet–cloud model.

3.11. Cloud Robotics

Robotics engineering is becoming a vital part of everyday life, with diverse sensors
generating big data demanding complex computations [92]. Cloud robotics is a branch of
IoT that evolved from the fusion of cloud computing and networked robots [93]. The mas-
sive storage capacity of a centralized cloud and broad library of skills can be leveraged
by robots to learn with experience. The cloud robotics architecture comprises two lev-
els: machine-to-machine and machine-to-cloud. At the machine-to-machine level, robots
determine decisions through a wireless collaboration. The machine-to-cloud level offers
a shared pool of storage and computation resources to be allocated as per demands. Cloud
robotics capitalizes on the elasticity feature of cloud computing besides others. Additionally,
robots-as-a-service (RaaS) stems from considering robots as resources, providing resource
sharing services to other robots [94–97]. The sharing of resources and data between robots
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through the cloud is integral to CR, along with robots themselves being shared as resources.
These systems require standards for enabling coherent, semantic, data sharing, and service
provisioning among the robots [93]. Cloud computing delegates fast and robust processing
and storage capabilities to robots, along with collaborative learning capabilities through
the sharing of knowledge. Recent advancement in this field have incited cloud robotics
architecture development and its application in several domains [98].

3.12. Fog Computing

The idea of processing at the edge has been around since the 2000s [99,100]. A related
concept of cloudlets has been presented in 2009 [101]. The phrase ‘Fog Computing’ has
been propounded by Cisco researchers in 2012 [42,102]. Fog computing and cloudlets are
related concepts operating at the edge level, with cloudlets deployed at mobile networks
and fog computing dealing with connected things [103].

Fog computing is frequently deliberated as a form of edge computing [7,8,104]. Fog
computing literally delivers distributed processing, networking, and storage potential
nearer to the user [105]. Fog computing is more than a mere deployment of the edge
computing concept; it is the pinnacle of reinforcing edge computing concepts [9]. It is
not an extension or replacement of the Cloud; instead, it is a new paradigm operating
in between IoT and the cloud, with the intent of supporting and enhancing Interaction and
integration of the cloud, edge, and IoT.

Cisco describes fog computing [44] as a highly virtualized setup that caters to services
of computing, storage, and networking between conventional cloud data centers and end
devices, generally but not solely deployed at the network’s edge. According to the OpenFog
Consortium [10], fog computing is delineated as “a system-level horizontal architecture that
distributes resources and services of computing, storage, control and networking anywhere
along the continuum from Cloud to Things, thereby accelerating the velocity of decision-
making”. Fog computing adopts a distributed tactic originating from the edge computing
model to outdo the limitations of the centralized cloud computing approach [25], with fog
nodes positioned anyplace between cloud and end devices. The computing paradigms
associated with fog computing are depicted in Figure 7.
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3.12.1. Essential Features

The significant trait of fog computing is that the computation, communication, and
storage tasks are accomplished close to end-users by capitalizing on the key attribute of
fog’s proximity to the edge. The additional characteristics of fog computing [15,106] are
outlined as follows:

• Low latency: The proximity of fog nodes to end devices that generate data, such as
sensors and actuators, entails a significantly faster reaction and analysis than from
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the centralized cloud data center. This feature considerably minimizes the data transfer
across the internet and enables a low latency to manage real-time applications, notably
sensitive to latency and time.

• Save bandwidth: As the fog model allows data computation and storage between
conventional cloud and end nodes, less complex pre-processing tasks are handled
locally. It dramatically minimizes data transfer across the internet, with endpoints
offering fast and premium localized computer and storage services. Transferring only
appropriate data to the cloud substantially reduces the network transmission and
bandwidth usage, befitting the big data era.

• Multi-tenancy: On account of the vastly virtualized and distributed infrastructure,
multi-tenancy in a constrained environment is possible.

• Support for mobility: Due to the direct interaction between fog applications and
mobile devices, more control over mobile devices is maintained. Thus, the fog model
facilitates better control of users along with mobile devices to administrators and
satisfies mobility demands that are location-based and the way information is accessed,
resulting in enhanced system performance and service quality.

• Interaction in real-time: Contrary to the cloud, fog applications deliver services in real-
time because of their low-latency feature.

• Context-awareness: the nodes and end devices in the fog setting are aware of the con-
textual location.

• Geographically wide distribution: The fog model’s decentralized architecture facili-
tates geographically distributed deployment with a large number of widely dispersed
nodes. It imparts closer data analysis, rapid big data processing, improved decision-
making potential in real-time and location-based services to consumers.

• Wireless access networking: Though fog is deployed in wired environments, it is also
suitable for IoT wireless networks.

• Support for heterogeneity: The fog infrastructure encompasses high-speed lines to
the data center and wireless access methods to the edge devices. Fog nodes are avail-
able physically or virtually, and service interfaces are incredibly dynamic, operating
in wired and wireless settings coming from different hardware and software ven-
dors and heterogeneous to cater to the low latency demand of globally distributed
applications.

• Seamless interoperability and federation: Owing to its heterogeneous nature, fog
nodes and devices originate from various vendors and are generally deployed in di-
verse settings. For the effective interaction of devices from different providers, fog
computing must enable interoperability with federated services across domains. Thus,
to allow interoperability and cooperation across diverse resources and devices, fog
computing employs policies for resource management.

• Real-time analytics: With data collected and processed close to the sources, real-time
analytics is possible.

• Scalability: Fog computing exhibits scalability and adaptability to varying conditions
with the data load, resource pooling, network demands, and flexible computing.

• Support for industrial applications: As computing and analyses are conducted in real-
time, industrial applications widely benefit.

• Security and privacy: Fog computing brings facilities nearer to end consumers while
ensuring privacy and security of sensitive and private data using integrity checking,
access control, and encryption methods by fog nodes. Moreover, it can mitigate
the vulnerabilities associated with system upgrades and limit updates at the fog end.

• Low energy consumption: as fog nodes are spatially distributed and do not require
a cooling system, fog computing is more ecologically friendly; communication within
a short-range as well as energy management rules obviously minimize the communi-
cation energy use.

In addition, fog nodes are expected to possess features such as autonomy, heterogene-
ity, hierarchical clustering, manageability, and programmability to fog implementation.
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3.12.2. Architecture

The illustration of the fog architectural model has recently been a prominent area
of research. Extensive related research alluded to the architecture comprising of three-
layer [15,17,107–109]. Moreover, the N-Tier architecture recommended by the OpenFog
Consortium may be regarded as an enhancement of this three-layer model [10].

1. Three-Layer Architecture

The basic three-layer model portrayed in Figure 8 stems from the fog computing
concept being an essential extension to the cloud computing model, with the fog layer
posing as an intermediate layer between the cloud and IoT devices [15].
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a. IoT Layer

It is nearest to the end-user’s physical setting. Sensors, smart cars, drones, smart-
phones, tablets, and other devices compose this layer. Even though some of these devices
possess computational capabilities, they are used as mere smart sensing devices at this
layer. Overall, these devices are widely distributed geographically to sense and transfer
data to the next higher layer for the sake of storage and computation.

b. Fog Layer

This layer comprises numerous fog nodes and forms the basis for the fog computing
architecture. As per the OpenFog Consortium [10], fog nodes may be a physical or logical
network element that enforces fog services. Thus, fog nodes have a direct connection
to extend services to end devices. On the other end, fog nodes are linked to the cloud
infrastructure to deliver and receive its services and benefits.

c. Cloud Layer

The centralized cloud infrastructure composes the majority of this tier. It comprises
several servers with advanced computational and storage capabilities offering a variety
of services. Dissimilar to typical cloud computing architectures, the fog model can ease
the burden on cloud resources by efficiently transferring computational services from
the cloud layer to fog and enhancing productivity.
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2. OpenFog N-Tier Architecture

The OpenFog Consortium’s recommended N-tier architecture [10] is rendered in Figure 9.
Its primary intent is to offer a standard guideline for implementing fog computing in a given
circumstance. Though fog systems are deployed in a scenario-specific manner, the core
elements of the architecture are apparent to every fog deployment. Endpoints (or things),
fog nodes, and the cloud are the three main components of the idea. In addition, multiple
layers of fog nodes (N-tiers) may constitute the fog layer; when the nodes are more distant
from the end devices, improving computing potential and intelligence are acquired.
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The higher levels of the fog layer refine and collect more pertinent data; therefore,
enhancing intelligence. The scenario-specific needs ascertain the number of tiers in a partic-
ular implementation. Furthermore, fog nodes connected in a mesh on each layer are adept
at providing added characteristics such as fault tolerance, elasticity, load balancing, etc.
Thus, the fog nodes may interact both vertically and horizontally.

Fog nodes may be categorized based on their closeness to the cloud and endpoints:

• Lowest tier: with the primary focus on the acquisition, normalization, and collection
of data obtained at the sensors, and the actuators are managed by fog nodes.

• Intermediate tier: filtering, compressing, and altering data received from the bottom
layer is the responsibility of fog nodes in the intermediate tier; on average, these nodes
are better at analyzing data.

• Highest tier: aggregating data and eliciting knowledge from it is the intent of fog
nodes at this tier.

3. Seven-Layer Architecture

A fog computing model positioned between the cloud layer, and edge devices extend
services of processing, network, and storage to IoT devices, with the primary intent of
minimizing latency for time-critical applications. The services offered by the fog model
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are limited compared to the sophisticated cloud data centers. In line with various fog
architectures presented by researchers [110,111] with diverse layers, a reference architecture
comprising distinct layers with designated tasks is featured here and depicted in Figure 10.
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a. Physical layer

The sensors are the devices that serve as the primary data source producing diverse
data in a fog setting. The data may be from smart devices and homes, autonomous vehicles,
closed-circuit television (CCTV) monitoring, traffic systems, sensors tracking temperature
and humidity, etc. Alongside physical sensors, the physical layer also comprises virtual
sensors, which also produce data as well.

b. Fog device, server, and gateway layer

An individual device or IoT could be a fog device, server, or gateway. The fog server
entails configuration, computation, and storage capabilities, higher comparably in order to
handle the fog device and gateway. It further pertains to hardware configuration, devices
it can handle, network connectivity, etc., with its role defining it to be distinct or an IoT
fragment. A set of virtual and physical sensors are attached to the fog device. In the same
manner, a set of fog devices could be attached to a fog server. A specific group of fog devices
connected to a particular fog server can interact as and when required. The processing has to
be performed at multiple fog servers and devices to determine a proper decision. The level
of fog devices and servers is in charge of handling and servicing data on storage and
hardware configuration and connectivity for the fog servers and devices. The processing
demands of different applications are addressed at this layer.

c. Monitoring layer

The system operation, services, resources, and responses are tracked by the monitoring
layer, which facilitates identifying appropriate resources in the midst of the operation. If
a possibility arises for the fog device as well as the fog server where resource availability
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becomes negative for processing or storage, assistance from peers may be sought. The sys-
tem monitoring unit aids in efficient decision making in such unforeseen scenarios and
resource failure by tracking the present resource consumption, usage and then estimating
resource demands into the future. The performance prediction component tracks and
forecasts the performance of the fog system depending on the resource availability and
system load. This unit is necessary to keep up with the relevant Quality of Service (QoS)
demands in SLA (service level agreements). The occurrence of repeated SLA violations may
increase system costs due to penalties for the provider. Even though this issue cannot be
completely ruled out, SLA violations can be greatly reduced if the performance prediction
component foresees the system’s performance and usage.

d. Pre- and post-processing layer

The multiple components of this layer are distinctly concerned with the data analysis
at the basic as well as advanced levels. The data accumulated are subjected to analysis and
filtering with trimming alongside a reconstruction performed when needed. Once data
processing is accomplished, the component called data flow finalizes the process if the data
have to be stored locally or in the cloud. Fog computing insists on stream processing,
which processes and stores minimum relevant data at the edge, as all data generated may
not be useful. As per the application, requisite data trimming can be performed where
the mean value of the data within a minute or hour could be stored if the sensor produces
data every second. In instances where data values do not differ significantly over time
but tend to affect performance, the number of readings taken can be reduced. Though
perfect accuracy would not be achievable, application requisites may be attained. The data
reconstruction module reconstructs the data as per the pattern in which data is generated
in times of incomplete and faulty data produced by sensors to avoid application failure or
an interruption.

e. Storage layer

The storage module is accountable for data storage by storage virtualization. The unit
referred to as the data backup affirms data availability and minimizes data loss caused by
system failure by creating a backup of critical data. It also periodically customizes schemes
of data backups. By storage virtualization, a collection of storage devices functions as
a single device, enabling manageability and maintainability; thus, offering an enterprise-
level operation, at low-cost hardware and storage.

f. Resource management layer

The resource management layer addresses resource allocation, resource scheduling,
and energy saving. The reliability unit at this layer ensures the application of scheduling
reliability, system reliability, and the allocation of resources. Maintaining reliability is
critical, as a complex fog system encompasses IoT and fog devices alongside the cloud
with many failure possibilities. The scalability component assures that the fog resources
are scalable when resource demand surges at peak hours. The fog model aspires to offer
horizontal as well as vertical scalability, while the cloud platform ensures horizontal scal-
ability. With distributed resources for processing, networking, and storage, the resource
allocation unit allocates, deallocates, and reallocates resources. As multiple applications
are run concurrently in fog systems, the scheduling of applications is managed by the ap-
plication scheduling component. The energy-efficient resource management is handled by
an energy-saving component at this layer, which reduces operational costs.

g. Security layer

The security layer deals with all issues that relate to security, such as encrypting
communication, securing stored data, preserving fog users’ privacy, etc. Similar to cloud
computing, fog computing is deliberated as a utility model. As users connect to the cloud
for availing services, users also connect to the fog system for services; however, the fog
middleware manages interactions with the cloud. The provider must authorize the user
attempting the service connection, and the authentication unit authenticates the user’s
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request to avail fog service. To ensure security and evade security breaches by intruders,
every interaction has to be encrypted. The component of encryption encrypts the connection
between IoT devices and the cloud. The majority of fog components is connected wirelessly,
and ensures security is critical. Fog systems acting on users’ private data should not reveal
those without proper user approval. At times where users accept a provider’s security
policy without reading it, it is critical to assure that user privacy is upheld.

h. Application Layer

Despite the fact that fog computing emerged to handle IoT, various applications
pertaining to the Wireless Sensor Network (WSN) back fog computing. The majority of
latency-sensitive applications leverage fog’s utility model that delivers a cost-effective and
enhanced service quality. The systems deploying the augmented reality (AR) and virtual
reality (VR) concepts can harness the fog computing attribute of processing in real-time.
Augmented reality adds virtual content into a user’s real-life experience. Virtual reality, on
the other hand, produces a computer-generated simulation of a virtual world. With AR
and VR reckoned to transform the world in the near future, association with fog will ensure
a continued refinement.

3.12.3. Fog Computing Applications

Numerous applications, such as smart homes, smart cities, smart grids, smart water
management, smart transportation, smart agriculture, augmented reality, virtual reality,
smart healthcare, and smart vehicles, compel the fog framework’s efficient services. The fog
computing applications described here are depicted in Figure 11.

a. Smart grid

A smart grid extends the reliable, efficient, automated electricity distribution model
aiming to cut down operation costs, enhance transmission efficiency, and offer to smoothly
integrate with systems involving renewable energy [112]. It further enables service providers
and consumers to track and regulate the real-time price, output, and consumption of
power [113]. The fog systems play a key part in favoring smart grids within smart cities,
minimizing electricity bills. Here, the data produced by the fog devices can be locally
analyzed and filtered by fog collectors deployed at the edge and transmitted to the cloud
for complex analysis, visualization, and long-term storage [114]. As per varying demands,
such as a low-cost and energy, smart grids allow switching over to any other supplies
of energy, such as solar or wind, with edge/fog devices gathering local data to decide
in real-time [115].
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b. Smart traffic lights and transportation systems

In smart traffic light applications, smart traffic lights aid in lowering traffic congestion,
noise, fuel consumption and avert accidents thus, improving the driving experience. These
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connected lights functioning as fog devices are adept at detecting the ambulance’s flashing
lights and changing the traffic signal to open lanes for the ambulance to travel through [116].
It recognizes pedestrians and cyclists and figures out the speed and distance of vehicles
approaching and collaborates to provide warning messages to adjacent vehicles. Moreover,
smart lighting is switched on when movement is detected and turned off automatically
when traffic passes. This system comes handy in averting accidents, maintaining low
and steady traffic, and collecting pertinent data to enhance performance. With huge data
produced by intelligent transportation systems (ITS), processing using centralized model
results in large delays. In this sense, fog nodes at particular intersections could be utilized
to analyze data locally and brief people on current situations, substantially lessening
the delay [117].

c. Augmented reality (AR) and virtual reality (VR)

Augmented reality overlays digital and virtual content into a physical environment. It
is highly time-critical, warranting responses in real-time. Moreover, it is extremely latency-
intolerant, as even a minor delay may impact user experience, effectuating a negative
response [116]. For this reason, fog computing has the potential to become a key player
in the augmented reality domain, as computer-intensive jobs can be offloaded to nearby
fog devices. This also holds true for the virtual reality (VR) field, which offers real-world
experience through a simulated environment and is generated by computer technology.

d. Smart healthcare system

When distant cloud servers are used to process and store enormous healthcare data
generated from sensors, the huge data transmission, defining of location, and access latency
pose critical challenges [118,119]. As healthcare datasets increase, there is a higher possi-
bility of error occurrence during processing as well as transmission. Even a minute data
analysis error may instigate the administering of an inappropriate treatment that could cost
a human life. The patient health data is sensitive; hence, security and privacy preservation
are vital. The integration of fog computing into healthcare enhances efficiency and quality
as the computer and storage are provided nearer to end devices, which permits aggregation,
processing, local storage, and real-time analytics. It further displayed a low latency, mobil-
ity support, privacy, and location awareness, and experiments demonstrated an enhanced
system response time along with an improvement in energy consumption [120].

e. Smart agriculture

As agriculture caters to the food supply chain, it plays a prime role in smart city
schemes [121]. With smart agriculture, sensors installed in field vehicles gather data
on plant growth and field climate conditions. Moreover, the field can be sensed from
the sky using air balloons. These sensing activities can be effectively accomplished by fog
computing, and agricultural lands can be managed and tracked through sensor nodes’
alarm notifications.

f. Smart water management

As far as sustainable smart cities are concerned, smart water management is crucial. It
supervises the quantity of water consumed, transported and anticipates the use of water
in the future. Above all, it enhances the water system of the city to be more reliable,
sustainable, and efficient, as it assists in mitigating water loss using sensors that collect and
analyze data of the water system [121].

4. Challenges and Opportunities

Despite the fact that cloud computing has been around for a long time, it still confronts
problems. Cloud security, privacy, confidentiality, availability [122], and sustainability [123]
are among them. The dependability of cloud services is an issue as well; when a limited
number of data centers offer critical functions, it might be disastrous if one of the data
centers goes down [124]. Cloud data centers require immense energy to operate, which
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requires mitigating energy usage by resource provision optimization policies. The cloud
networking infrastructure faces challenges pertaining to network utilization, data conges-
tion, cloud federation [125], etc. As the IoT devices arrived, an emphasis was placed on
reducing energy and resource usage, and critical difficulties included increasing the battery
life or optimizing the energy utilization of smart devices [126]. The security of IoT devices
and withholding the privacy of sensitive data collected by the connected devices pose
unique challenges [127]. The availability, reliability, scalability, and interoperability of IoT
networks are labelled to be challenging.

Edge computing, which moves computation to the network’s edge, poses a number of
complications, such as focusing on the programmability of edge devices, naming schemes
for a large number of edge devices, including security, privacy, data abstraction, service
management, and optimization issues [41]. With fog computing still in its developmental
stage, it faces many open challenges. It has difficulties similar to edge computing due to
its correlations, and the notable challenges include programmability, managing heteroge-
neous systems, providing security, interoperability, mobility, scalability, federation, and
energy/resource efficiency [20,128].

Fog computing is a more generic model compared to related paradigms due to the far-
reaching scope and presence in the Thing-to-Cloud continuum. The comparison and
features of the fog, edge and cloud [2,129–131] are displayed in Tables 3 and 4. The associa-
tion between cloud, edge, and fog computing [132] is shown in Figure 12. Fog computing
is imminent of offering amelioration in the near future in an open-standards setting of
connected devices, apparent when the IEEE Standard adopted the Open-Fog Reference
Architecture [133]. Hence, our cynosure for the rest of the paper is on challenges and future
research directions pertaining to fog computing.
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Table 3. Comparison of fog, edge and cloud computing characteristics.

Characteristic Fog Edge Cloud

Operators Users and cloud provider Local enterprise or network
infrastructure providers Cloud provider

Participating Nodes Fog devices (switches,
routers, access points, etc.) and IoT devices Edge devices Fewer nodes spanning cloud to IoT

devices
Service Type Less global Local Global
Management Distributed/centralized Local business and service provider Centralized

Hardware Devices with virtualization facility (access
points, routers, switches, servers) Edge devices with compute capacity Massive data centers and equipment

with virtualization potential

Computation Device Any device capable of
computation, networking, and storage Edge devices Powerful cloud servers

Available Computing
Resources Moderate Moderate High

Nature of Failure Highly diverse Highly diverse Predictable
Main Driver Academia/ Industry Academia/industry Academia/industry

User Connectivity Mostly wireless Mostly wireless High speed (Both wired and wireless)
Distance from Users Relatively close Close Far

Internal Connectivity Operate autonomously with intermittent
or no internet connectivity

Operate autonomously with
intermittent or no internet

connectivity

Requires internet connectivity
throughout service duration

Main
Standardization

Entity
OpenFog Consortium, IEEE -

National Institute of Standards and
Technology (NIST), Cloud Security

Alliance (CSA), Distributed
Management Task Force (DMFT),

Open Commons Consortium (OCC),
Global Inter-Cloud Technology Forum

(GICTF)

Power Source Battery/green energy/
direct power Battery/green energy/direct power Direct power

Power Consumption Low Low High
Application Type High computation with lower latency Low latency computation Ample computation

Architecture Decentralized/hierarchical Localized/distributed Centralized/hierarchical
Computation Capacity Moderate Moderate High

Storage Capacity Limited Limited Massive storage capacity
Availability High Average High

Latency Low Low Relatively high
Node mobility High High Very low

Security/Vulnerability Must be provided on
participant nodes Must be provided on edge devices Must be provided along

Cloud-to-Things continuum

Server Location Can be deployed at edge or dedicated
locations Near edge devices Stationed in huge

dedicated buildings
Number of

Intermediate Hops One/few One Multiple

Hardware
Connectivity WAN, LAN, WLAN, Wi-Fi, cellular WAN, LAN, WLAN, Wi-Fi___33,

cellular, ZigBee WAN

Application Handling—real-time Achievable Achievable Difficult owing to
increased latency

Service Access Through connected devices from the edge
to the core At the edge of the internet Through core

Computation Cost Low Low High
Cooling Cost Very low Very low High

Deployment Space Less Less Massive
Delay Cost Less Less More

Table 4. Fog, edge, and cloud computing functionalities.

Feature Fog Edge Cloud

Heterogeneity support Yes Yes Yes
Connection to cloud Yes Yes or No Yes
Infrastructure need Yes Yes Yes
Geographically distributed Yes Yes No
Virtualization technology Yes No Yes
Location awareness Yes Yes No
Ultra-low latency Yes Yes No
Scalability Yes Yes Yes
Mobility support Yes Yes No
Application support—real-time Yes Yes No
Application support—large-scale Yes Yes Yes
Standardized Yes Yes Yes
Multiple IoT applications Yes No Yes
Data persistence Yes No Yes
Computation migration Yes No No
Conserving energy Yes Yes No
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4.1. Fog Computing: Open Challenges

The fog computing paradigm has evolved from the cloud computing utility model.
With IoT proliferation, computations closer to the network edge significantly minimize
the cost of computing and data offloading at the cloud. However, processing at the edge
poses numerous challenges pertaining to devices, security, the network, integrating fog,
and IoT, which the distributed fog system has to deal with [28,44,110]. The open challenges
identified are pictured in Figure 13.

• Standards and programming languages

The fog structure is distinct from the cloud as it extends cloud services to end-user
devices, warranting upgraded standards and associated programming languages, along
with effective user interfaces and network protocols for IoT device management.

• Scalability

Scalability is a key issue for systems involving extensive IoT applications on fog, and
exploring optimal algorithms that illustrate the fog system’s complexity would be valuable.
In the fog model, time-critical tasks are executed at the fog, and others are moved for
processing to the cloud. Ascertaining when fog resources are utilized optimally depending
on service type, user count, and resource availability are significant.

• Computational challenges

The Fog system continually interacts with the cloud servers. It intends to respond
to users within a stipulated duration and forward complex computer-intensive tasks to
the cloud, which may take longer. The parts of computation that are unrestricted by
response time are sent to the cloud, while others are carried out at the edge for a minimum
computational cost. The challenge lies with figuring out which computer tasks are to be
executed at the edge and offloaded to the cloud.

• Deployment challenges

The fog system has to be precisely deployed to subdue latency. Factors such as
the type and task amount performed at a particular tier, fog device capability, and reliability,
and the number of sensors determine implementation decisions. As per the application
requirements, resource scaling, as well as shrinking, are carried out without hindering
the operation of ongoing services. OpenFog recommends the N-tier fog model from s
mobilization viewpoint; however, escalating the fog layer levels may instigate delays,
which require defining the number of levels for the specific application.

• Decentralized framework and failure management

The decentralized fog entails a high likeliness of fog device malfunction relating to
the software, hardware, power source, mobility, as well as connectivity issues considering
an unreliable wireless connection, linking the majority of fog devices. The fog system is
adaptable to a minor disruption and resource shortage. The fog node failure may make
its respective virtualized resources unavailable, and related issues, such as latency and
migration, have to be dealt with for resource availability at downtime. The decentral-
ized fog results in the repetition of code at edge devices, and this redundancy has to
be checked. The random distribution of network resources at the edge complicates con-
nectivity, which can be rectified by deploying a middleware that manages resources to
the demanding application. The small client services are disseminated from the cloud
to the edge, and acquiring such services from fog systems is quite challenging. The fog
system manages billions of IoT devices; hence, provisioning services to all fog devices
is arduous. The portability of the fog’s edge node requisites ubiquitous fog computing.
With fog being distributed, the preciseness of computation needs to be confirmed as its
applications demand consistency.
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• Device heterogeneity and resource management

Fog computing sets the stage for numerous heterogeneous technologies to offer IoT
services with a key challenge of linking resources from diverse platforms. It is vital to exam-
ine algorithms that are competent at handling scheduling, synchronizing for the effective
utilization of IoT devices that are short on resources. The diversified nature of edge devices
has to be emphasized by the fog architecture at the device as well as the network levels.
Utilizing heterogeneous devices in a diverse fog setting with varying application demands
is strenuous. Numerous IoT devices from diverse hardware and software vendors add to
the complexity factor. When the edge lacks computational resources, it can be acquired and
assigned from among the fog nodes setting up a common pool of computing, network, and
storage resources, availed by applications as per demand. The heterogeneity of fog devices
and resources in the dynamic fog setting enables resource scheduling and allocation to be
more challenging than that of the cloud, with utilizing idle resources being fog’s top priority.

• Security and privacy

The heterogeneity of devices makes the fog framework vulnerable to various attacks
due to its deployment in a not-so-secure setting. As fog nodes are positioned between
the cloud and end-users, fog computing is susceptible to security issues. Assuring the pri-
vacy of sensitive data originating from sensors is critical. The fog-based Distributed Denial
of Service (DDoS) attack is highly destructive, as diverse malignant devices overwhelm
resource-limited end devices with fake service requests. Another such attack is the Man-in-
the-Middle Attack (MMA), which discloses sensitive private data. The physical components
of IoT devices can also be attacked, referred to as a physical attack based on the protection
level and implemented location.

• QoS

The fog framework encompasses devices from the cloud to the edge, and the fog nodes
are to provide end-to-end services adhering to users’ service-specific QoS features. The fog
system is entitled to manage the distribution of computing and storage to the cloud while
orchestrating heterogeneous edge devices. Hence, it is necessary to dynamically integrate
cloud servers and fog devices.

• Blockchain and Software-Defined Networking (SDN)
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In fog-based IoT settings, blockchain technology can provide a secure framework for
controlling data and information exchanges amongst independently operating devices.
To improve privacy and security, blockchain offers the safe transmission and storage of
digitally signed documents. As a result, an additional study into this technology is critical
in order to offer and improve methods for securely transmitting data between IoT devices,
utilizing a trustworthy approach such as a time-stamped contractual handshake.

Furthermore, Software Defined Networking (SDN) is a networking technology that
may be used in conjunction with fog technology to enable effective data exchange and
resource collaboration. SDN may also bring intelligence to fog-based IoT networks, among
other things. SDN may also be utilized to protect fog-based IoT infrastructures. The authors,
for example, developed a hybrid network design for smart cities that included SDN with
blockchain. As a result, research into SDN and its integration with blockchain would be
helpful in providing an efficient architecture for sustainable smart cities.

• Latency management

Latency control is required in fog computing to guarantee an acceptable level of Quality
of Service. As a result, research into various latency management techniques would aid
in delivering services with the least amount of delay and ensuring a higher QoS throughout
the system. The estimate of resources is another key topic in fog computing. It aids
in allocating computing resources depending on various policies, allowing for the correct
allocation of resources for future computation. In order to attain the necessary QoS,
a comprehensive study into various resource estimate policies in terms of multiple aspects
such as user attributes and experienced Quality of Experience (QoE) would be useful.

• Sustainability

In order to reduce the total carbon footprint, sustainability which refers to the utiliza-
tion of renewable energy supplies, energy harvesting, and energy-efficient architecture,
is a crucial necessity when building fog-based IoT architectures for smart cities. Dense
IoT end-devices and fog computing servers are predicted in smart cities. As a result,
the smart city infrastructure would suffer considerable energy constraints. As a result, it is
critical to research various methods for increasing the energy efficiency of fog-based IoT
systems without sacrificing QoS, which could be accomplished through energy-efficient
caching methods.

• Interoperability and federation of fog

Another essential prerequisite for accomplishing the goal of a fog-based IoT and sus-
tainable smart cities becoming a reality is interoperability. Because of the large number of
heterogeneous IoT devices running on multiple protocols, the interoperability of fog-based
IoT systems in sustainable smart cities is difficult. The fog-based IoT architecture should
provide interoperability so that various systems and devices can correctly comprehend and
use each other’s functionalities. On that account, intense research efforts are recommended
to create frameworks that allow interoperability for fog-based IoT systems in sustainable
smart cities.

On the fog, requests are processed at proximity, mitigating latency. If numerous
latency-sensitive applications were to request services, the interoperability of the Fog
clusters and its servers along with federation would be required so that a fog device can
request its peers to manage processing to avoid cloud involvement that increases latency.

• Power management

Fog nodes manage innumerable end devices, as in sensors, and when fog nodes
are employed as needed, they substantially multiply active nodes, increasing the whole
system’s power consumption. Hence, power has to be managed effectively in large fog sys-
tems. One such option to study would be integrating the fog nodes in specific applications
and moving tasks among nodes. The majority of fog devices are power-constrained, and
efficient energy utilization is essential.
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Table 5 furnishes the summary of open issues and potential solutions concerned with
fog computing.

Table 5. Open challenges and future research directions—summary.

Open Issue Limitations
Prevalent

Potential Solutions or
Research Prospect

Related
Specifics Impact

Standardization of
fog computing

Several fog definitions and related
concepts are being proposed.

Formulate fog definition that can be
universally accepted. Foundation Standards and

Definition

Scalability Major fog system schemes in practice fail
to scale IoT vastitude.

Design algorithms and procedures that ensure
scalability. Scalability

Placement; Service
Provisioning;

Scheduling; Load
Balancing;
Offloading

Bandwidth-aware
system

Although reducing bandwidth usage is
key, fewer fog computing regard

conserving bandwidth through fog
systems.

Deliberate on saving bandwidth through fog
systems and measure bandwidth usage under

fog systems.
Bandwidth

Testbeds and
Experiments; Control

and Monitoring;
Infrastructure Design

SLA for fog
system

SLAs for cloud system are defined, but
SLAs for fog systems are not defined.

Devise new SLA compatible for fog
computing systems that supports

multi-vendors.
Cost, QoS

Fog Infrastructure;
Control and
Monitoring

Mobility Major existing work considers fixed fog
nodes and mobile IoT devices.

Propose fog systems with mobile fog nodes
and design suitable task offloading and

scheduling plans ensuring availability to IoT
nodes.

Mobility,
Management

Concepts and
Framework; Security

and Privacy;
Scheduling, Load

Balancing and
Offloading

Fog node site
selection

The issue of site selection for fog node is
highlighted by limited studies.

The placing of fog servers at appropriate
positions is crucial to offer maximum

service. Analysis of demand and
workload of a specific node prior to

placement minimizes maintenance cost.

Devise site selection policies for fog nodes,
addressing computation, communication,

storage, and cost.
QoS, Cost, RAS

Resource Analysis and
Estimation;

Infrastructure Design

SDN support Fog computing does not provide native
support to SDN.

Improving and standardizing SDN for fog
systems. Programmability

Software and Tools;
Definition and

Standards

Resource
Monitoring

Fog resource monitoring is addressed by
very few studies.

Formulate procedures that monitor resources
of fog systems involving multi-operators.

Management,
Programmability

Software and Tools;
Control and
Monitoring

High-speed user
support

Existing communication protocols do not
assist high-speed users.

Develop protocols supporting high-speed
users and mobility-predicting algorithms

based on machine learning.
Mobility Architecture and

Framework

Federation Federation schemes or application for fog
is unavailable.

Formulate new fog node federation strategy
operating across diverse domains.

Programmability,
Management Software and Tools

Fog node
security

The fog nodes positioned at proximity of
end user incites security challenge.

Configure secure fog nodes with robust access
control policies that handle site attacks and

secure hardware design to withstand physical
damage.

Security, Device
Heterogeneity

Security and Privacy;
Hardware Design

Trust and
authentication

Heterogeneous IoT nodes and fog nodes
make the traditional authentication and
trust strategies inept. The providers of

fog service may be internet service
provider, cloud vendor, or end-users,

which jeopardizes the trust in fog.

Design of novel trust and authentication
structure for user, service, and nodes is

needful.

Heterogeneity,
Security

Security and Privacy;
Definition and

Standards

Security for fog
offloading

Fog node task offloading may lead to
security and privacy concern.

Devise secure offloading technique and
integrity, correctness checking scheme for task

offloaded.
Security, QoS Offloading, Security,

and Privacy

Privacy

With various networks involved and fog
operating predominantly on wireless

technology, privacy issues arise. The end
user can access numerous fog nodes

which involves sensitive data.

Maintaining the privacy of sensitive personal
data is vital. Privacy Privacy and Security

Flexibility

Fault or failure at network is not
regarded by existing fog networks, with

fog nodes being more prone to DoS
attacks due to limited resources.

Regard fault prevention, detection, and
recovery in fog networks and design

DoS-resilient fog system.
Security

Security and Privacy;
Infrastructure Design;

Control and
Monitoring

Green fog
computing

Enhancing energy efficiency of overall
fog system has to be deliberate.

Utilize battery storages and energy harvesting
for IoT sensors and devices and place fog

nodes near renewable energy sources.
Energy

Resource analysis,
Estimation;

Infrastructure Design

Energy
consumption

With huge number of fog nodes, energy
consumed is large. The energy demand

of fog nodes should be reduced to
mitigate cost and energy.

Device resource provisioning strategy that is
energy efficient, while being aware of fog

node positions.
Energy

Resource Analysis,
Estimation;

Infrastructure Design

Multi-objective
design

Many existent schemes reckon certain
objectives and overlook other objectives.

Propound schemes that regard multiple
objectives concurrently (task offload strategy
that deems availability, bandwidth, energy,

and security).

QoS

Scheduling, Load
Balancing, and

Offloading; Resource
Analysis and

Estimation; Testbeds
and Experiments
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4.2. Future Prospects of Fog/Edge Computing

The technological possibilities that may lead fog/edge computing paradigms into
the future are portrayed in Figure 14 and detailed as follows:
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4.2.1. Big Data Analytics

The proliferation of the ubiquitous IoT has led up to an overwhelmingly immense
amount of data generation, inferred as big data [134]. Big data entails ever-expanding
datasets, which are heterogeneous in nature, comprising of structured, semi-structured,
and unstructured data [135]. It garners potential for opportunities as well as challenges,
including the five Vs [136]. Thus, big data analytics is a promising solution that processes
the humongous big data and transforms it into smart data, imparting actionable insights
into making data-driven decisions [137]. The key feature of fog computing and edge
computing models is the potential to quickly store and process data, benefiting real-time
applications and playing a crucial part in efficient business operations [138,139].

4.2.2. Serverless Computing

Serverless computing facilitates an easy and hastier IoT application development
by eliminating the need to manage a real infrastructure [140]. It is also referred to as
the Function-as-a-Service (FaaS), implementing code as independent functions through
dynamic resource provisioning, which enhances the runtime infrastructure scalability [141,
142]. Integrating serverless computing to the edge computing model increases the com-
putation speed of data generated and processed by IoT applications deployed on edge
devices [143]. As individual functions are executed on edge devices, the response time,
latency, and energy consumed is decreased, and the reliability is improved.

4.2.3. Blockchain

Blockchain is a novel concept to store data as a chain of blocks to enhance data
security [144]. It is a super-secure method to store, authenticate, and protect data, which
promotes trusted transactions. Blockchain usually revolves around securing cryptocurrency
with real potential being transparent and immutable. It utilizes the distributed ledger
model to secure transactions and is decentralized in nature, providing accurate and efficient
transactions, evading intermediaries. Blockchain is engaged in offering services pertaining
to finance, voting, supply chain monitoring, and smart contracts. It can be deployed to
secure data generated by IoT applications [145,146].

4.2.4. Quantum Computing

The emerging field of quantum computing extends a substantial computational lead
over classical computing by leveraging the quantum physics principles of entanglement
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and superposition [147]. With unimaginably swift quantum computers, calculations are
performed and stored using quantum bits referred to as qubits, which allows number
crunching and problem-solving at an exponential scale. Seemingly unsolvable complex
tasks, predicting viable solutions to issues, and the processing of a massive amount of
data can be handled with absolute ease by quantum computers. They can further enhance
computational efficiency, security, and energy efficiency [148]. Quantum computing can
be combined with ML and DL techniques to predict the resource demand and handle
an efficient resource and energy utilization at fog and edge layers [149,150]. Quantum
computing is in its budding stage, with research efforts underway at an accelerating
pace [148].

4.2.5. Software-Defined Networking

Software-Defined Networking is an upcoming paradigm that overcomes the verti-
cal integration issue by separating the control logic of the network from the underlying
switches and routers, enabling a logical network control centralization [151]. It makes it
simpler to manage a flexible and reliable network, introduces new networking abstrac-
tions, and leads to network evolution. SDN overcomes conventional network issues by
enhancing the virtualization, security, energy efficiency, and network reliability, optimizing
the network topology, managing complexity, service orchestration-benefitting fog, and
edge computing [152,153].

4.2.6. Artificial Intelligence (AI)

Artificial intelligence is a key field of computer science, where machines mimic human
intelligence/behavior and is already transforming the world. The accelerating ability
of machines to learn and act smart is gearing up to drive even more businesses and
technologies. AI, collectively with its subfields of machine learning and deep learning,
help businesses save cost, enrich customer experience, communicate effectively, streamline
workflows, and obtain insights for better decisions. ML is the ability of a machine to learn
without involving explicit programming. It can analyze huge datasets and offer actionable
insights. DL, which is a subset of ML, is capable of handling complex computational tasks.
AI has begun to see the light of the day with automation and implementation occurring at
a large scale and fast pace. Likewise, intense research efforts are underway for integrating
fog and edge computing with artificial intelligence to enhance the overall performance,
including resource, energy management, security, and reliability [154–156].

5. Sustainable/Green Computing in Fog/Edge

Sustainable/green computing is the efficient management of computational, commu-
nication, and storage devices through convincing design and manufacturing practices with
a reduced impact on the environment [157]. The last decade has seen sustainable/green
computing permeating fields of social computing, mobile computing, agent systems based
on AI, as well as the Internet of Things. IoT nodes possess power constraints and connecting
with the internet makes them vulnerable to attacks. For IoT to be sustainable, energy and
security are the two key aspects to be emphasized.

5.1. Energy Sustainability

With IoT services pervading all aspects of our lives, energy-constrained IoT devices
spark concern while considering sustainability. The massive number IoT sensors and
actuators deployed necessitate a continuous and persistent power supply. As the IoT
node size reduces, the size of the battery also decreases. In light of the current trend to
enhance IoT device functionality, formulating sustainable solutions for confronting power
constraints is essential [158].

Numerous research efforts have been oriented towards energy harvesting for self-
sufficient IoT functioning, alongside tackling IoT security issues. The energy consumed
by digital and smart gadgets has become concerning. Energy harvesting from renewable
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energy sources can power a myriad of IoT sensors [159,160]. With IoT sensors having
a battery that lasts for a limited time, frequent charging or replacement is not viable at
all times. Hence, energy harvesting from renewable energy such as kinetic, solar, ther-
mal, etc., seems plausible [161]. Moreover, energy harvesting this issue can be handled
by deploying an efficient data transmission policy [162], with almost 80% of a sensor’s
energy being depleted on data transmission. Even though efforts for enriching the energy
efficiency of IoT systems are underway, they hardly match the proliferating pace of IoT
services/dependence [158].

5.2. Security Sustainability

IoT sustainability emphasizes the security of data and devices. Securing data involves
handling confidentiality and integrity aspects, whereas device security concerns defense
against stealth attacks. Energy-harvesting chips are susceptible to malicious attacks, in-
cluding DoS attacks that disrupt sensors. Both the criteria of energy efficiency and security
characterize the IoT sustainability while, at the same time, challenging IoT progress [163]
as IoT devices are power constrained, which demands a refined, lightweight energy and
security framework.

According to a study, 70% of connected devices are at risk of cyber-attacks [164]. Fur-
thermore, vulnerable smart devices are estimated to cause 25% of all industrial attacks [158].
As IoT devices are resource-constrained, they are highly prone to attack than desktops
or laptops. As the battery size decreases, it can hold less energy, which in turn reduces
the availability of resources that provide security. Hence, lightweight security mechanisms
suitable for power constraint devices are essential, as traditional security solutions designed
for resource-rich devices consume more energy, owing to more computations. Research
shows that the advanced encryption standard, as well as the elliptic curve cryptography,
offer a lightweight cryptographic solution with an evaluation based on resource limitations,
chip space, latency, and throughput [165]. For the IoT systems to be sustainable, the balanc-
ing of aspects such as energy efficiency, power consumption, performance, and security is
required [158].

6. Confluence of ML and Fog/Edge

The conventional cloud model falls short of fulfilling IoT application necessities due
to the enormous data generated from IoT devices [166]. Transmitting the overwhelming
IoT data to the cloud would cause network overhead, consuming bandwidth, and latency
issues [167]. Hence, to cut back on the data transfer cost as well as network delays, service
providers are steering towards the fog and edge computing [168], with an additional
opportunity for enforcing security and privacy [169]. The IoT systems comprise edge
equipment, sensors, and actuators with latency, bandwidth, and security necessities [166].
The fog computing technology of extending computer and storage to network’s edge solves
processing and networking impediments [167], enabling rapid processing close to the data
source [170]. The complexity and dynamism of fog computing with its communication
networks facilitating low latency makes sophisticated computation possible in a conducive
environment. Fog computing confers societal benefits through its range of applications,
namely, healthcare, Industry 4.0, autonomous vehicles, smart cities [171], etc.

Despite that, it encounters performance as well as security setbacks. As a result,
machine learning (ML), which is a subfield of artificial intelligence (AI), is catching on to
assist FC in resolving its shortcomings. Using ML to enhance FC applications and deliver
efficient services in terms of accuracy, latency reduction, energy consumption, security,
privacy, resource, and traffic management [25,172,173] has been increasingly popular
in recent times. Fog computing resource management involving ML enhances the computer,
decision-making, and resource provisioning, along with delay prediction. Deploying ML
techniques in fog computing facilitates accurate data processing and analyses in real-time
while managing the network overhead as well as communication traffic, owing to fog’s
decentralized model. The security aspects for the device, network, and data involving fog
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computing accompanied by ML prove to be effective. The merging of the fog model with
machine learning has evolved into robust end-user and upper-layer services, allowing for
deeper analytics and intelligent answers to tasks.

Machine learning (ML) is a promising option for intelligent data processing and infer-
ence and is a prime enabler to various IoT application domains [166], such as healthcare,
smart home, smart agriculture, smart industry, smart grid, etc. It has a crucial part in design-
ing the intelligent/smart setting for autonomous operations [167]. Machine learning has
immense potential as a significant IoT technology gaining traction to provide insights for
IoT applications [174]. IoT has excellent prospects for enhancing human life and industrial
growth as innumerable sensing devices perform monitoring and increase communication
potential [175]. For resource-constrained IoT devices, the confluence of machine learning
with the cloud, edge, and fog is vital for IoT implementation [156,175] to usher in efficient
performance, greater controllability, productivity, and cost reduction possibilities, while
managing IoT’s QoS challenges.

Enabling intelligence at fog and IoT improves the overall performance [100]. FC moves
the cloud’s potential to the edge of the network, where IoT and human users are present.
Intelligence can be incorporated into FC as device-driven or human-driven. In a device-
driven approach, fog and IoT are equipped with more sensing, processing, network, and
storage capabilities, enabling context awareness for decision making and local resource
management. In a human-driven model, human users act as the data source to the system,
whose behavioral pattern is the key in shaping the network while serving them. Collectively,
these two approaches can help meet IoT’s demand for QoS when designing fog computing
systems.

The harnessing of machine learning in an IoT setting facilitates deeper analytics
and helps materialize efficient and smart IoT applications [174]. Moreover, it can be
utilized to overcome networking difficulties pertaining to routing, resource allocation,
traffic engineering, and security [176–180]. Neural networks are deployed to effectively
analyze enormous data produced by IoT [181]. Moreover, advanced AI involving deep
learning has been thriving in data analytics, decision making, and prediction [85].

The potential of IoT has remarkably expanded thanks to the convergence of ma-
chine learning and artificial intelligence. Advanced machine intelligence approaches have
enabled substantial insights into a number of real-world situations and the capacity to
determine critical operational choices from the massive volume of IoT sensory data. As
a result, ML and IoT must work in tandem to solve complicated real-world issues and
fulfill computation and communication needs.

7. Conclusions

Cloud computing has revolutionized device interactions on the internet, which ush-
ered in the Internet-of-Things and implemented a plethora of connected gadgets, with
the potential to continually sense and respond to user requirements. The proliferation
of networked IoT devices and ensuing big data and the rigorous demands of emerging
IoT applications, such as low latency, location awareness, and mobility support in a geo-
distributed scenario, have challenged the conventional cloud computing architecture.
Hence, various computing paradigms such as edge and fog have emerged to address these
limitations by deploying resources at the network’s edge. The computing at edge and fog
implies collecting, processing, and analyzing data close to the data source and transmitting
refined results to the centralized cloud, favoring time-sensitive applications that require
increased accuracy, low latency, high-speed analytics, faster response time, improved re-
liability, and availability. Combining fog/edge with cloud computing has the prospect
of aiding IoT in multiple ways. Because the fog and edge computing paradigms are up-
and-coming, exhaustive research on this new technology is imperative. The evolving
computing paradigms, as well as the challenges and opportunities, were explored in this
study. Budding researchers can largely benefit from this extensive survey to comprehend
recent advances in evolving computing paradigms.
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