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Abstract: Human motion tracking is widely applied to rehabilitation tasks, and inertial measurement
unit (IMU) sensors are a well-known approach for recording motion behavior. IMU sensors can
provide accurate information regarding three-dimensional (3D) human motion. However, IMU
sensors must be attached to the body, which can be inconvenient or uncomfortable for users. To
alleviate this issue, a visual-based tracking system from two-dimensional (2D) RGB images has been
studied extensively in recent years and proven to have a suitable performance for human motion
tracking. However, the 2D image system has its limitations. Specifically, human motion consists of
spatial changes, and the 3D motion features predicted from the 2D images have limitations. In this
study, we propose a deep learning (DL) human motion tracking technology using 3D image features
with a deep bidirectional long short-term memory (DBLSTM) mechanism model. The experimental
results show that, compared with the traditional 2D image system, the proposed system provides
improved human motion tracking ability with RMSE in acceleration less than 0.5 (m/s2) X, Y, and Z
directions. These findings suggest that the proposed model is a viable approach for future human
motion tracking applications.

Keywords: depth image; time-of-flight camera; deep learning; human motion tracking;
rehabilitation application

1. Introduction

Rehabilitation is becoming an increasingly important issue owing to the rise in elderly
population. According to the World Population Ageing 2020 report [1], 727 million people
were aged 65 years or older around the world, and the number of the elderly was projected
to rise to 1.5 billion by 2050. In addition, the World Health Organization (WHO) indicates
that 15 million people suffer from stroke each year [2], with 75% of those being elderly [3].
This means that healthcare, such as motion rehabilitation to regain motor function, must be
valued and improved.
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Rehabilitation is described as a set of interventions that assist individuals with health
concerns in achieving and maintaining optimal functioning in their daily lives [4]. Motor
rehabilitation requires accurate measurement of limb movement for evaluation and treat-
ment purposes. However, according to the statistics from the WHO, there are less than
10 skilled practitioners per one million people worldwide, which means a shortage of phys-
ical therapists [5]. To improve motor rehabilitation quality, many types of motion capture
(MoCap) systems have been developed to monitor human movement more efficiently.

There are three main types of MoCap systems: non-visual-based tracking, visual
marker-based tracking, and visual marker-free tracking [3]. In non-visual-based tracking
systems, inertial measurement unit (IMU) devices are broadly used to obtain motion
information based on inertia-based microelectromechanical system sensors that contain
accelerators, gyroscopes, and magnetometers. IMU devices are cost-efficient and easy to
use, and human motion tracking tasks can be performed with these devices thanks to their
high sensitivity and accuracy. For example, Seel et al. used IMU sensors to analyze gait
performance and accurately determined the root mean square errors (RMSE) of the knee
flexion/extension angles, with less than 1◦ differences on a prosthesis and 3◦ on human
legs compared with a visual marker-based tracking system [6]. Similarly, this application
performed well in an upper limb analysis. Jung et al. measured human arm movements
using inertial sensors, and the results indicated that the displacement errors of the three
axes, that is, the coordinates of the arm segments, were less than 5 cm [7]. These studies
demonstrate the applicability of IMU sensors for human motion tracking. However, IMU
sensors are limited as they must be attached to the body, which can be inconvenient or
cause discomfort [8]. Therefore, visual marker-based tracking systems such as Vicon [9]
and visual marker-free tracking systems can be used to alleviate these issues [10–13].

Currently, Vicon is a well-known visual marker-based tracking system that contains
several infrared-light cameras. Cameras track the markers that are attached to human skin
from different points of view. The system then calculates the precise spatial positions of each
marker from the recordings. Previous studies proved that the Vicon system could provide
high accuracy for motion tracking [14,15]. However, this system is difficult to popularize
and apply clinically because of its high cost and low portability. Conversely, the visual
marker-free tracking system is another well-known approach that is mainly based on image
processing technology and computer vision. Recently, OpenPose has become a well-known
system for human motion tracking tasks [10]. This system estimates human poses based
on RGB images and predicts locations of human joints and the affinity between two joints
using convolution neural network (CNN) technology [16]. OpenPose has been applied to
human motion analysis and rehabilitation tasks, and the results have demonstrated good
performance [17–19]. However, these applications also reveal the disadvantages of using
RGB images for human motion tracking. As the performance of motion estimation relies
on the lighting conditions [17] and recording directions [18], the environmental setup must
be properly controlled for target tasks. More specifically, precise 3D information cannot be
accurately obtained because single RGB camera systems have difficulty capturing depth
features. These types of systems generally have limited recording views, which means
that similar motions will represent different features in the 2D motion capture system. As
a result, planar motions are easier to analyze, whereas non-planar motions are difficult
to accurately detect with a 2D image system. Therefore, a multiple-RGB-camera system
is used to solve this accuracy problem. For example, Li et al. used a two-camera system
to analyze human gaits, and the results showed that the accuracy could be improved
compared to a single camera system [20]. Although the two-camera system provides better
accuracy, it is not convenient enough for clinical users because the cameras have to be
calibrated. Additional problems exist for RGB-based systems, such as ambient lighting
conditions, which directly affect the accuracy of visual recognition [21].

More recently, single RGB-depth (RGB-D) camera systems, known as time-of-flight
(ToF) cameras, have been applied to human motion tracking [22]. The ToF camera sensor
can obtain depth information through its emitter and receiver. The emitter discharges
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infrared light on the object, whereas the receiver obtains the reflected light and calculates
the depth information through the time difference. In addition, lower cost and higher
portability make it popular for research and even for daily use. Based on the advantages
of the RGB-D sensors, Chen et al. used CNN technology to perform regression analysis
of the IMU information, demonstrating that RGB-D sensor technologies not only improve
the performance of human motion tracking but also provide more useful information of
3D features than of 2D features [23]. Moreover, Ma et al. used long short-term memory
(LSTM) [24], a deep learning (DL) method proficient in temporal information processing,
to rectify the kinematic information obtained from the ToF camera [25]. Specifically, the
x-, y-, and z-axis acceleration information originating from human motion were captured
and used as the regression goal. The results indicated that it is feasible to use the DL
method to study the accuracy of human motion tracking systems. At the same time, using
an LSTM-type model has advantages over temporal information processing. Based on
the successful results noted above, the purpose of this study is to prove whether a deep
bidirectional LSTM (DBLSTM) mechanism model [26] with 3D image features can further
improve the performance of human motion tracking. Conventional models, including a
deep neural network (DNN) [27] and CNN, were compared to investigate the benefits of
temporal information in human motion tracking tasks. Note that the “arm reaching” task,
an important training task in rehabilitation, was chosen as the test example in this study, as
it is a common daily function for the upper extremities. In addition, the features of classic
RGB images, known as 2D images, were used as the baseline system for comparison to
investigate the benefits of the proposed system compared to 3D images.

Our main contributions of this study are as follows: (1) We investigate whether
the time-related deep learning model structure, DBLSTM, is advantageous compared to
several traditional models in human motion tracking tasks. Employing IMU sensors as our
target provided x-, y-, and z-axis acceleration information, which are a kind of continuous
signal and closely related to time clues. We took our system as a kind of regression
approach to obtain the acceleration information from 3D image features, and the results
demonstrated that DBLSTM indeed performed well in such kinds of tasks. (2) We delve
into the potentiality of 3D image features to determine whether the data comprise more
information that can be representative of human motion. The 3D image comprises features
such as the relative relationship—i.e., involving vectors and Euclidean distances—between
the human joints. Two-dimensional image features were used as a comparison. Data from
several recording views were collected and evaluated through our proposed system, and
the results did verify the high potentiality for 3D images.

2. The Proposed System

A block diagram of the proposed system, including the training and testing phases, is
shown in Figure 1. In the training phase, the amplitude (MA) and point cloud information
(MP) were recorded using a ToF camera. Specifically, MA refers to the energy of the images,
which are 2D grayscale images; MP refers to the point cloud data, which are generated
through the information of MA and phases that are obtained through the receiver on the
ToF camera. Representations of MA and MP are shown in Figure 2. Next, MA was input
to the OpenPose system to obtain the human joints (J2D), which were represented by two-
dimensional coordinates. Images were input into the OpenPose system, and human poses
were estimated using the CNN. Confidence maps and part affinity fields were set up to
detect human body parts and part associations from different people. Part affinity was first
calculated through CNN to analyze the vector information of human poses. For example,
based on the colors of the images, the vectors offered information linking the shoulder
to the elbow, the elbow to the wrist, and so on. Subsequently, the obtained information
was combined with the original input, that is, means the image, and sent to the next
convolutional layers to analyze the positions of the human joints [10]. All of the joints from
the bottom to the top were obtained through OpenPose. Based on our previous study [23],
four human joints were selected for the “arm reaching” action: the right shoulder (RS), left
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shoulder (LS), left elbow (LE), and left wrist (LW). The LS point was chosen as the reference
point. Note that these four points were the most efficient positions in the observation of
“arm reaching” actions in our previous study.
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The features for the human joints in the 2D images (J2D) can be expressed as:

J2D =


RS2D(x, y)− LS2D(x, y),
LE2D(x, y)− LS2D(x, y),
LW2D(x, y)− LS2D(x, y),

D2D

, (1)

where RS2D(x, y), LS2D(x, y), LE2D(x, y), and LW2D(x, y) are the joint coordinates of the
right shoulder, left shoulder, left elbow, and left wrist, respectively; D2D represents the
Euclidean distances from the right shoulder, left elbow, and left wrist joints to the left
shoulder joint. More specifically, D2D can be expressed as:

D2D =


‖RS2D(x, y)− LS2D(x, y)‖,
‖LE2D(x, y)− LS2D(x, y)‖,
‖LW2D(x, y)− LS2D(x, y)‖

. (2)

A 3D generator unit was used to combine the information of J2D and MP [23]; J2D
assists the generator to determine the depth coordinates of the images from the distribution
of the point cloud data, which is denoted by J3D. The same feature selection as for the
2D images was adapted, with the joint of the left shoulder used as the reference point to
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obtain relative vectors and distances. In this case, the features for the human joints in the
3D images (J3D) can be expressed as:

J3D =


RS3D(x, y, z)− LS3D(x, y, z),
LE3D(x, y, z)− LS3D(x, y, z),
LW3D(x, y, z)− LS3D(x, y, z),

D3D

, (3)

where RS3D(x, y, z), LS3D(x, y, z), LE3D(x, y, z), and LW3D(x, y, z) represent the joint coor-
dinates for the right shoulder, left shoulder, left elbow, and left wrist, respectively; D3D
represents the Euclidean distances from the right shoulder, left elbow, and left wrist to the
left shoulder. More specifically, D3D can be expressed as:

D3D =


‖RS3D(x, y, z)− LS3D(x, y, z)‖,
‖LE3D(x, y, z)− LS3D(x, y, z)‖,
‖LW3D(x, y, z)− LS3D(x, y, z)‖

. (4)

In the training phase, the J2D and J3D data were separately used as inputs for the 2D
and 3D regression model tasks, respectively. The same target (G) was used for both to
evaluate performance. The obtained J3D was used as the input for the proposed DBLSTM
model, which has the advantage of processing temporal information such as natural
language and speech recognition tasks [26,28]. Therefore, it was assumed that the DBLSTM
model would provide further benefits for tracking tasks because human motion is a type
of spatial movement and continuous signal. The synchronously recorded data G from the
IMU sensor was used as the output of the DBLSTM model. The G signals included the x-,
y-, and z-axis acceleration information, which can be expressed as:

G =
{

Accx, Accy, Accz
}

, (5)

where Accx, Accy, and Accz are the accelerations of the x-, y-, and z-axis, respectively,
obtained from the IMU sensors. The mean squared error was used as the loss function to
ensure convergence of the model and evaluate the predicted results. The related equation
can be expressed as:

W∗, B∗ = argmin
W,B

∑t
i=1 (Gi − Ĝi)

2, (6)

where t indicates the total frame of the training data; Gi and Ĝi are the training target and
predicted result in the ith time frame, respectively; W∗ and B∗ represent the optimal weight
and bias parameters of the training model, respectively. Finally, the ToF camera was used
to record the human motion and subsequently obtain the predicted motion information in
the testing phase.

3. Materials and Methods
3.1. Materials

The data from the IMU sensors and the ToF camera were recorded at 50 fps and were
temporally aligned. “Arm reaching” [29] was used as the target task because it is the most
commonly executed motor function by the upper extremities and a major focus of stroke
rehabilitation. The setup of the recording environment is shown in Figure 3. During the
experiment, the IMU sensors were placed on the subject’s left wrist, and the ToF camera was
placed in front of the subject. The subject was seated behind a cup with their arm resting
on the table. During the repetition of the task, the subject was asked to perform the arm
reaching task repetitively. The whole sequences of “arm reaching” included: (1) the subject
extending the left arm and using the left hand to pick up and raise the cup to the height
that matched their mouth, and (2) the subject returning the cup to the starting point. As the
experiment started, the subject would first raise the hand on the table for approximately
5 s; then, the “arm reaching” motion started. Until the time was up, the subject had to
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lower their hand. An Xsens IMU sensor [30] and RL100 Pro camera were used [31]. The
IMU sensor was placed flat on the table before the experiment started to ensure that the
calibrated x-, y-, and z-axis directions were the same in every recording. Considering the
inherent deficit of cumulative error from the accelerometers, they were calibrated before
the experiments were held. The data had been analyzed to compensate for accelerator
errors, resulting in the minimization of cumulative errors. Data were recorded for a total of
1.5 h in three types of views (S1, S2, and S3, as shown in Figure 3). The positions of S1 and
S3 represented the subject sitting at relative angles of 0◦ (frontal view) and 30◦, respectively.
These two recording views were used as training data (or defined as known-view data),
whereas the S2 recording view (sitting at a relative angle of 15◦) was used as the testing
data (or defined as unknown-view data). Note that the known-view data means the DL
model recognizes the recording view of the data, and the unknown-view data means the
DL model does not recognize the recording view of the data. Three different recording
views were used to simulate the real conditions.
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3.2. Methods

Two experiments were conducted: the first was for the comparison of model perfor-
mance, and the second was for the comparison between the performances of the 2D and 3D
systems. The purpose of the first experiment was to address the question of whether the
DBLSTM model could demonstrate better results in the human motion regression task. In
the second experiment, the DBLSTM model was further used to compare the performance
of 2D and 3D image features. We recorded several types of data acquired from different
recording views, as shown in Figure 3, but the same type of motion to simulate the real
conditions for daily life and rehabilitation use. Considering the conditions for the users, the
recording views in every system operation may not be sufficiently similar. Consequently,
the system should tolerate some displacement resulting from the recording view. Therefore,
the second experiment was conducted to analyze whether 2D or 3D image features can be
applied to the usage of different recording views, leading to a more robust system.

In the first experiment, the DNN and CNN models were compared with the DBLSTM
model. The DNN structure is the most commonly used model in machine learning and
includes several hidden layers consisting of multilayer perceptrons [27] that calculate the
relationship between the input and output using back propagation technology [32]. A
DNN was selected as our baseline owing to its simple structure. CNN is a well-known
DL structure frequently used in image recognition and signal analysis [33], which obtains
spatial or temporal information through convolutional calculations. In our previous study,
a CNN was used to regress the information of IMU signals from 3D images, and it was
proven to provide suitable performance [23]. Here, the known-view data were used to
evaluate the performance of the system. The data were split into training and testing sets
at a ratio of 9:1. The setting information of the three models is listed in Table 1. In addition,
batch normalization [34] was used in each hidden layer, and the Nadam optimizer [35] was
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used to optimize the models. The initial learning rate was set to 0.0005, and the batch size
was set to 1024.

Table 1. Details for model setting.

Model Hidden Layer Total Parameters

DNN Neurons = (36, 324, 324, 324, 36)
Dropout = (None, 0.3, 0.2, None, None) 501,988

CNN
Filters = (32, 64, 128, 256)

Kernel size = 3 × 3
Dropout = (None, 0.3, 0.2, None)

512,644

DBLSTM
Bidirectional LSTM, units = 128

LSTM, units = 256
Dropout = (0.3, 0.2)

500,996

In the second experiment, the performance between the 2D and 3D features was deter-
mined. The DBLSTM model, which had the best performance (see details in Section 4.1) in
the first experiment, was also used in this experiment. The recording views from S1 and
S3 were used to train the DL model. Two parts were set up to evaluate the robustness of
the performance under different conditions, defined as the known-view and unknown-
view performances. The known-view performance used all the recording views of the
testing data that were recognized in the system, whereas the unknown-view performance
used distinct recording views of the testing data that were not recognized in the system.
The same training data were used as in the first experiment, which included recording
views from S1 and S3. In addition, the recording view from S2 was used to evaluate the
unknown-view performance.

3.3. Evaluation

The RMSE [36], percent root mean square error (PRMSE) [37], and coefficient of
multiple correlations (CMC) [38] were used to determine the performance of the proposed
system. Each axis was separated to evaluate the performance. The RMSE was used to
indicate the differences between the labeled data and predicted results. The PRMSE, which
is a method based on the RMSE, provided a more accurate index, which was determined
using the mean of the data. The PRMSE has the advantage of demonstrating better precision
because of the variances of the three axes. The PRMSE equation is expressed as:

PRMSE =

√√√√∑t
i=1

(Gi−Ĝi)
2

Gi

t
× 100%, (7)

where Gi and Ĝi represent the testing target and predicted result in the ith time frame,
respectively. In this type of method, it helps to evaluate the percentage of the error that is
produced by the system.

The CMC indicates whether the relationship between Gi and Ĝi is well connected and
is expressed as:

CMC = 1−∑t
i=1

(Gi − Ĝi)
2

(Gi − G)
2 , (8)

where G is the average of the test target. The evaluation of the CMC can be found in [39].
The CMC value was limited to 0−1, where CMC ≈ 1 indicates an excellent relationship
between the testing target and predicted results, 0.5 < CMC < 0.99 indicates a good rela-
tionship, 0.16 < CMC < 0.49 indicates a moderate connection, and CMC ≤ 0.16 indicates
a poor relationship. The predicted results provided three types of information: the x-, y-,
and z-axis accelerations, which were evaluated separately. Here, lower RMSE and PRMSE
values with a higher CMC value indicate that the system exhibited better performance.
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4. Results and Discussion
4.1. Model Performance Comparison

The results of the model performance comparison, with the best performances marked
in bold, are listed in Table 2. First, all the models demonstrated good performance with
CMC > 0.9 and PRMSE < 5%, which means that using DL methods can obtain good
performance in human motion tracking tasks. Moreover, the DBLSTM model achieved the
best CMC performance with the least RMSE and PRMSE among these models. Specifically,
the DBLSTM model predicted the most accurate results compared with the labeled data.
CNN was ranked second, and DNN performed the worst. The performance might depend
on the characteristics of each model. The DBLSTM model holds an advantage when
processing temporal information. No studies have compared the performance for the three
types of DL methods simultaneously in human motion tracking tasks. Several studies
in the field of speech recognition and human activity recognition showed that DBLSTM
exhibited a more stable and accurate performance compared with such kinds of traditional
DL models [28,39]. The proposed DBLSTM model considered the IMU acceleration as the
target of the regression model and proved that the method was feasible. Even though the
concept of the DBLSTM is not that novel, it is a state-of-the-art model in terms of analyzing
temporal information. DBLSTM comprises LSTM units, which are characteristic of its forget
gate, input gate, and output gate. The forget gate includes a sigmoid function to manipulate
the information originating from the previous unit, whereas the input and output gates
include sigmoid and hyperbolic tangent functions to reinforce the important information
originating from its unit mixed with the message coming from the forget gate. The most
important information can be extracted and passed to the next LSTM unit. Based on the
message that human motion is a continuous signal, adequate parameters manipulated
by time sequence can make the model perform better, and the increased hidden layers
help the model be more robust. Moreover, CNN can capture subsequent information
through kernels and convolution. The same features were used to demonstrate a similar
performance, but the performance shows the limits. DNN owns the fundamental concept
in deep learning, and it does exhibit the basic performance. It is clear that acceleration
information is highly related to the temporal changes. In conclusion, the DBLSTM model
succeeded in extracting useful information, obtaining more accurate results than the CNN
and DNN models.

Table 2. Details for model performance comparison. Note that the best performances are marked
in bold.

DNN CNN DBLSTM

X-axis acceleration
RMSE 0.30 0.26 0.22

PRMSE 3.2% 2.8% 2.3%
CMC 0.990 0.993 0.995

Y-axis acceleration
RMSE 0.48 0.40 0.29

PRMSE 4.3% 3.6% 3.5%
CMC 0.991 0.994 0.994

Z-axis acceleration
RMSE 0.38 0.37 0.33

PRMSE 3.4% 3.3% 3.0%
CMC 0.926 0.930 0.943

4.2. Comparison of 2D/3D Performance

Based on the results of the first experiment, we selected DBLSTM to evaluate the
performance of the 2D and 3D experiments. The results of the 2D and 3D performance
experiments are shown in Figure 4. The horizontal axis represents the number of time
frames, whereas the vertical axis shows the value of the acceleration data. The results
of the x-, y-, and z-axis accelerations from known-view data are shown in Figure 4a–c,
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respectively. The results of the x-, y-, and z-axis accelerations from the unknown-view data
are shown in Figure 4d–f, respectively. There are three lines in each subplot: blue represents
the testing target from the IMU sensors, yellow represents the predicted results from 2D
image features, and orange represents the predicted results from the 3D image features.
The 3D image features performed slightly better than the 2D image features, as shown
in Figure 4a–c. More detailed information about the known-view and unknown-view
performances are listed in Tables 3 and 4, respectively. Using 3D features to regress human
motion information was confirmed to be more accurate than using 2D features, as shown
in Table 4. Both of the features in the known-view conditions achieved good performance
with CMC > 0.9 and PRMSE < 5%. We think that the DBLSTM model was successful in
extracting the features of human motion based on its memory cell structure. In addition,
the amount of motion data was sufficient for the system to handle this task. Our results
demonstrate that using 2D images could achieve a similar accuracy level as 3D images from
the known recording views of the data. However, for the unknown recording views of the
data, the 2D image had increased prediction errors, whereas the 3D image maintained high
accuracy, as shown in Figure 4d–f.
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Figure 4. 2D/3D performance comparison; (a–c) represent the results of the x-, y-, and z-axis
accelerations from known-view data, respectively; (d–f) represent the results of the x-, y-, and z-axis
accelerations from unknown-view data, respectively.

Table 3. Details for 2D/3D performance comparison in known-view testing. Note that the best
performances are marked in bold.

3D Images 2D Images

X-axis acceleration
RMSE 0.22 0.25

PRMSE 2.3% 2.6%
CMC 0.995 0.993

Y-axis acceleration
RMSE 0.29 0.47

PRMSE 3.5% 4.3%
CMC 0.994 0.991

Z-axis acceleration
RMSE 0.33 0.34

PRMSE 3.0% 3.0%
CMC 0.943 0.941
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Table 4. Details for 2D/3D performance comparison in unknown-view testing. Note that the best
performances are marked in bold.

3D Images 2D Images

X-axis acceleration
RMSE 0.37 2.92

PRMSE 4.7% 37.2%
CMC 0.984 0.004

Y-axis acceleration
RMSE 0.46 4.02

PRMSE 2.7% 23.5%
CMC 0.987 0.010

Z-axis acceleration
RMSE 0.50 5.88

PRMSE 8.5% 42.5%
CMC 0.960 0.007

The detailed performance results are presented in Table 4. The 2D features clearly
performed well with increased RMSE and PRMSE, and a low CMC. Conversely, the 3D
features achieved good performance with CMC > 0.9 and PRMSE < 10%. The difference
between the 2D and 3D image features was the depth information, which can be referred
to as the z-axis information in J3D. The depth information assisted the system to obtain
spatial messages when subjects were performing motions, thus improving the accuracy. In
addition, every kind of recording view was different for the 2D images because the features
lacked depth information. Even though a subject performed the same type of motion, it
appeared to be different for 2D image features because of the different recording views.
The 2D system performed well under the known-view condition but was challenged under
the unknown-view condition. This implies that 3D image features have an advantage
over 2D image features in unknown-view applications. The CMC in the unknown-view
performance was as good as in the known-view performance. However, the PRMSE in
the unknown-view performance appeared slightly higher than that in the known-view
performance. The linear relationship between the predicted results and the IMU data was
good, and the PRMSE appeared to be slightly higher than expected. It is assumed that
the errors could be decreased by increasing the recording views for the provided human
motion data.

5. Conclusions

This study proposed a DL-based system to track human motion using 3D image
features with a DBLSTM model. Three-dimensional image features were combined with
the DL model to improve the accuracy of human motion tracking and increase the tolerance
of the recording view. The “arm reaching” movement was used as a target task to evaluate
the performance, which showed that such features could succeed in regressing motion
information. A depth camera was used to capture the motion of the subject, providing
adequate information for doctors or therapists to evaluate important features of the patients’
performance. The main contributions of this study are as follows.

(1) Classic DL models were used to compare the performance of a human motion
regression task. The results demonstrated that the DBLSTM model had an advantage over
DNN and CNN models because of its ability to retain temporal information. Because
the acceleration information from IMU sensors are continuous signals, models that can
process time sequences are advantageous. As we can see, the DBLSTM was demonstrated
to predict the most accurate results based on similar parameters.

(2) The model’s predictability with 2D and 3D image features was compared, and the
data from multiple recording views were used to confirm the advantages of the DBLSTM
model. The results showed that the 3D system demonstrated superiority in recording the
spatial information of human motion. This is because 3D image features contained depth
information that was able to capture spatial changes. The application of 3D image features



Sensors 2022, 22, 292 11 of 13

was first discovered to demonstrate the potential for unknown-view applications. The
relative relationships between chosen human joints were the features used. The information
includes the relative vectors and Euclidean distances. In our opinion, the features help
build a robust connection between joints that carry out the same motion type from different
recording views. The relative information from different recording views seems to be stable
in 3D image features. As we can see, the left elbow moves relative to the left wrist with the
same motions, which can be defined as a rigid relationship. The unknown recording view
S2 is likely to refer to the interpolation of the perspective of known views S1 and S3, and
it shows that applications for unknown views are likely to succeed. However, we cannot
guarantee whether other recording views, especially referring to extrapolations in 45◦, 60◦,
or higher, can achieve the same performance as in the interpolated case.

In summary, the proposed system has the potential for clinical application. Looking
ahead to the application of tele-rehabilitation, there are increasingly more opportunities
to use cameras to track and evaluate the condition of patients. The proposed system
provided good information that indicated the acceleration of human motion. However,
considering future applications in clinical use, more data from different recording views
may be needed. The proposed system demonstrated potential for use in tele-rehabilitation,
but its practicality must be verified through subsequent studies. We also recognize that
the calibration process only reduces but does not eliminate the motion integration error
based on the acceleration retrieved from the accelerometer. In practical applications, it is
still necessary to analyze the error function that changes over time, so that the solution
we propose can perform better. In future applications that use camera sensors with depth
photography capabilities, patients will not need to wear any sensors to record the signals,
and body movement could be tracked with a single camera, resulting in a convenient and
practical way to improve the delivery of the clinical application.
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