
����������
�������

Citation: Aldhyani, T.H.H.;

Alkahtani, H. Attacks to Automatous

Vehicles: A Deep Learning Algorithm

for Cybersecurity. Sensors 2022, 22,

360. https://doi.org/10.3390/

s22010360

Academic Editors: Bhisham Sharma,

Deepika Koundal, Rabie A. Ramadan

and Juan M. Corchado

Received: 6 December 2021

Accepted: 30 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Attacks to Automatous Vehicles: A Deep Learning Algorithm
for Cybersecurity
Theyazn H. H. Aldhyani 1,* and Hasan Alkahtani 2

1 Applied College in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
2 College of Computer Science and Information Technology, King Faisal University, P.O. Box 400,

Al-Ahsa 31982, Saudi Arabia; hsalkahtani@kfu.edu.sa
* Correspondence: taldhyani@kfu.edu.sa; Tel.: +966-504937279

Abstract: Rapid technological development has changed drastically the automotive industry. Net-
work communication has improved, helping the vehicles transition from completely machine- to
software-controlled technologies. The autonomous vehicle network is controlled by the controller
area network (CAN) bus protocol. Nevertheless, the autonomous vehicle network still has issues and
weaknesses concerning cybersecurity due to the complexity of data and traffic behaviors that benefit
the unauthorized intrusion to a CAN bus and several types of attacks. Therefore, developing systems
to rapidly detect message attacks in CAN is one of the biggest challenges. This study presents a
high-performance system with an artificial intelligence approach that protects the vehicle network
from cyber threats. The system secures the autonomous vehicle from intrusions by using deep
learning approaches. The proposed security system was verified by using a real automatic vehicle
network dataset, including spoofing, flood, replaying attacks, and benign packets. Preprocessing
was applied to convert the categorical data into numerical. This dataset was processed by using
the convolution neural network (CNN) and a hybrid network combining CNN and long short-term
memory (CNN-LSTM) models to identify attack messages. The results revealed that the model
achieved high performance, as evaluated by the metrics of precision, recall, F1 score, and accuracy.
The proposed system achieved high accuracy (97.30%). Along with the empirical demonstration,
the proposed system enhanced the detection and classification accuracy compared with the existing
systems and was proven to have superior performance for real-time CAN bus security.

Keywords: in-vehicle network; CAN; cybersecurity; intrusion detection; deep learning; artificial
intelligence

1. Introduction

The technology of self-driving vehicles and smart cars has been notably improved
during recent years. The term vehicular networks refers to vehicle nodes that offer ad-
vantages such as managing traffic, parking, and avoiding accidents [1]. Vehicle nodes
function as a communication messenger and are studied in different research areas, for
example, vehicular ad hoc networks, the Internet of vehicles, and vehicle-to-everything
communications. An independent area of research, the in-vehicle networks (IVNs), deals
with the communication between the engine control unit (ECU), the transmission control
unit, the anti-lock braking system, the body control modules, and various sensors inside
the vehicle [2].

There are special protocols that facilitate the functioning of IVNs. These protocols
include the controller area network (CAN), FlexRay, and Ethernet [3]. CAN is the most
common network topology used for controlling the automotive and the industrial system.
It is a communication network that offers rapid communication among microcontroller
devices. CAN employs interconnected nodes to send a message-based protocol designed to
permit all nodes to receive the message and perform on the network message [4]. Figure 1

Sensors 2022, 22, 360. https://doi.org/10.3390/s22010360 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010360
https://doi.org/10.3390/s22010360
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1822-1357
https://doi.org/10.3390/s22010360
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010360?type=check_update&version=2

Sensors 2022, 22, 360 2 of 20

shows the CAN standard bus interface that attackers use to inject attack messages into the
communication network.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 20

to permit all nodes to receive the message and perform on the network message [4]. Figure
1 shows the CAN standard bus interface that attackers use to inject attack messages into
the communication network.

Figure 1. The CAN bus interface.

Figure 2 shows the CAN message header frame format which consists of the start of
the frame (1 bit), in the arbitration field (12 bits); the arbitration field is used to determine
the owner of the CAN message when the system starts broadcasting. The cyclical redun-
dancy check (CRC) was used to check the frame header and uses the (16 bits),
Acknowledge (ACK) field to return messages to the network for receiving the frame; the
end of frame (EOF) has (7 bits).

Figure 2. CAN bus data Frame.

Two important inventions are emerging as ways to offer drivers more convenience:
high connectivity and automotive electronics [5]. Vehicle-to-vehicle communication uses
smart devices and the cellular network to allow drivers to share important information
such as dangerous situations on the road. Another type of communication is vehicle-to-
infrastructure, which is incorporated in autonomous vehicles in the form of sensors. The
novel developments in technology have made vehicle smart devices that are equipped
with specific instruments that offer safety (e.g., forward collision avoidance) and conven-
ience (e.g., telematics) [6,7]. However, these improvements in vehicle connectivity are
prone to external attacks. For example, the current CAN message frame does not have
authentication mechanisms, leading to the lack of security for the in-vehicle data [8]. In
addition, the interconnection of in-vehicle controllers is accompanied through an increase
in the complexity of the architecture. Thus, unintended motions or failures can be caused
by mutual effects between controllers, which may lead to defects affecting the safety of
the passengers or the cybersecurity of the vehicles [9–11].

Figure 1. The CAN bus interface.

Figure 2 shows the CAN message header frame format which consists of the start of the
frame (1 bit), in the arbitration field (12 bits); the arbitration field is used to determine the
owner of the CAN message when the system starts broadcasting. The cyclical redundancy
check (CRC) was used to check the frame header and uses the (16 bits), Acknowledge
(ACK) field to return messages to the network for receiving the frame; the end of frame
(EOF) has (7 bits).

Sensors 2022, 22, x FOR PEER REVIEW 2 of 20

to permit all nodes to receive the message and perform on the network message [4]. Figure
1 shows the CAN standard bus interface that attackers use to inject attack messages into
the communication network.

Figure 1. The CAN bus interface.

Figure 2 shows the CAN message header frame format which consists of the start of
the frame (1 bit), in the arbitration field (12 bits); the arbitration field is used to determine
the owner of the CAN message when the system starts broadcasting. The cyclical redun-
dancy check (CRC) was used to check the frame header and uses the (16 bits),
Acknowledge (ACK) field to return messages to the network for receiving the frame; the
end of frame (EOF) has (7 bits).

Figure 2. CAN bus data Frame.

Two important inventions are emerging as ways to offer drivers more convenience:
high connectivity and automotive electronics [5]. Vehicle-to-vehicle communication uses
smart devices and the cellular network to allow drivers to share important information
such as dangerous situations on the road. Another type of communication is vehicle-to-
infrastructure, which is incorporated in autonomous vehicles in the form of sensors. The
novel developments in technology have made vehicle smart devices that are equipped
with specific instruments that offer safety (e.g., forward collision avoidance) and conven-
ience (e.g., telematics) [6,7]. However, these improvements in vehicle connectivity are
prone to external attacks. For example, the current CAN message frame does not have
authentication mechanisms, leading to the lack of security for the in-vehicle data [8]. In
addition, the interconnection of in-vehicle controllers is accompanied through an increase
in the complexity of the architecture. Thus, unintended motions or failures can be caused
by mutual effects between controllers, which may lead to defects affecting the safety of
the passengers or the cybersecurity of the vehicles [9–11].

Figure 2. CAN bus data Frame.

Two important inventions are emerging as ways to offer drivers more convenience:
high connectivity and automotive electronics [5]. Vehicle-to-vehicle communication uses
smart devices and the cellular network to allow drivers to share important information
such as dangerous situations on the road. Another type of communication is vehicle-to-
infrastructure, which is incorporated in autonomous vehicles in the form of sensors. The
novel developments in technology have made vehicle smart devices that are equipped
with specific instruments that offer safety (e.g., forward collision avoidance) and conve-
nience (e.g., telematics) [6,7]. However, these improvements in vehicle connectivity are
prone to external attacks. For example, the current CAN message frame does not have
authentication mechanisms, leading to the lack of security for the in-vehicle data [8]. In
addition, the interconnection of in-vehicle controllers is accompanied through an increase
in the complexity of the architecture. Thus, unintended motions or failures can be caused
by mutual effects between controllers, which may lead to defects affecting the safety of the
passengers or the cybersecurity of the vehicles [9–11].

Certain procedures must be considered when designing the cybersecurity of a mission-
critical environment such as vehicles. IVNs protection requires intrusion detection or
prevention systems of high accuracy [12]. A vehicle may recognize a critical message as
an attack, causing safety issues. Consequently, the intrusion prevention system should be

Sensors 2022, 22, 360 3 of 20

able to block false alarms [13,14]. Malicious attacks on vehicles could pose safety problems
to passengers, pedestrians, and other vehicles. Hence, real-time response is vital for the
cybersecurity of vehicles. Nevertheless, the in-vehicle system does not respond in real time
due to constraints in the time and space resources of the moving vehicle. This leads to the
necessity of designing a real-time intrusion detection system (IDS) of high accuracy that
performs within the available limited resources [15].

The CAN bus system has been shown to have technical defects, as the receiving nodes
do not authenticate if a received packet whose source is not given is authorized or not [16].
Hackers can use ECUs to send unauthenticated CAN packets. Such defects make CAN bus
systems vulnerable and unable to recognize the nodes responsible for the attacks. Thus,
security systems for the CAN bus are important [17].

However, many challenges arise in network-based attacks since they are new to the
automotive field of research [18]. Because there is an opportunity to modify the CAN
protocol, a machine learning approach can be employed to apply an intrusion detection
method, owing to the ability to learn through examples to adjust to any modification in
the protocol. Many studies have adopted machine learning-dependent IDS that requires
supervision when deployed. Data used in such studies need to be thoroughly labeled,
which is impractical given the large amount of data per milliseconds produced by real-time
CAN [19,20]. Consequently, a detecting system based on an unsupervised machine learning
approach is needed.

In the USA, Google started examining driverless vehicles in 2009 with road tests of
CAVs [21]. Tesla [22] has designed on-road CAV driving vehicles and distributed them for
commercial purposes; for instance, the University of Michigan [23] has tested the in Mcity
field. In Europe, major companies such as BMW, Audi, and Mercedes Benz have begun
to develop CAN systems [24]. In China, the CAN system was tested in Shanghai [25],
while Baidu started designing the Apollo CAV framework in 2019 [26]. Some studies have
attempted to discuss intrusion in CAVs. It was indicated that spoofing and flood attacks,
two of the serious cyberattacks, send fake messages [27]. The cyberattacks in CAVs have
been categorized into passive and active attacks.

Login password, knowledge-acquiring attacks are sorts of attacks on interconnected-
computers networks [28]. Various sources of attack in traditional automobile vehicles have
indeed been classified into two sorts [29], including cyberattacks on the sound system or
mobile apps and attacks on the CAN. The latter sort of attack is deemed riskier than the
first because CAN is interconnected to in-vehicle hardware pieces of equipment such as
brakes, air conditioning systems, and the steering wheel. CAVs are integrated with both
hardware and virtual software components interconnected to the complete transportation
infrastructure, unlike computer networks and ordinary autos. As a result, any form of
attack on a vehicle could occur in CAVs. Furthermore, as autonomy and connectivity grow,
more vulnerability and attack points will occur [30]. Cybersecurity is required to secure the
system against cyberattacks that could impact its effectiveness, whether electronically or
physically. Utilizing the artificial intelligence model-based CAV architecture described in
Figure 3, it is vital to detect, identify, and categorize different types of attacks on CAVs at
an initial stage.

Sensors 2022, 22, 360 4 of 20Sensors 2022, 22, x FOR PEER REVIEW 4 of 20

Figure 3. Attack points through communication.

2. Related Works
The most recent research works on the intrusion detection systems on CAN

are discussed in this section. Song et al. [31] used an inception-ResNet model to train
the in-vehicle network traffic data against attacks to detect intrusion. The results have
been compared with various existing models such as long short-term memory, the neural
network (NN), the support vector machine (SVM) approach, the naïve Bayes approach,
the k-nearest neighbors (KNN) model [32], and decision tree algorithms [33]. Zhang et al.
[34] developed an intrusion detection system to manage the CAN bus from attacks, and
the authors used a hybrid model, namely gradient descent momentum and adaptive gain,
for classification of the attacks’ message. Liang et al. [35] applied deep neural network-
based intrusion detection for monitoring the CAN bus message frame. For training pro-
cess, the deep learning model used was the deep-belief network function, of which the
accuracy of the proposed system has been shown to reach 98%. Hoppe et al. [36] devel-
oped an IDS system in the CAN bus to analyze network traffic for finding new network
packets’ pattern and compared them with patterns on the IDS system. The system was
compared with the tradition system, and it is noted that their system achieved high accu-
racy. Taylor et al. [37] introduced an LSTM model to detect CAN bus attacks. Wang et al.
[38] presented a hierarchical temporal memory algorithm to design a distributed anomaly
classification. The empirical results have indicated that the model requires more time to
detect attacks. Several machine learning (ML) and deep learning (DL) algorithms have
been applied to predict intrusions on the CAN bus, using the deep neural network [39,40],
applied Convolutional Neural Networks (CNNs) [41], and artificial neural networks
(ANNs) to build the adversarial attacks [42].

To raise awareness about the cybersecurity of vehicles, a Jeep Cherokee was remotely
hacked in 2015 [43]. A recent study [44] concluded that the main focus of research should
not be on preventing attacks, since it is impossible to produce a vehicle with a security
system that defends it against attacks. On the contrary, attention should be paid toward
designing a system that detects attacks and responds accordingly.

Thus, the current study proposes a model that detects attacks and abnormal behav-
iors resulting from injected messages onto vehicles in real time with appropriate accuracy.
A technique known as hierarchical data analysis was applied to detect and classify the
attack data. Moreover, a machine learning algorithm was used for minimizing misdetec-
tion and non-detection by properly training the model of intrusion detection. To obtain

Figure 3. Attack points through communication.

2. Related Works

The most recent research works on the intrusion detection systems on CAN are dis-
cussed in this section. Song et al. [31] used an inception-ResNet model to train the in-vehicle
network traffic data against attacks to detect intrusion. The results have been compared
with various existing models such as long short-term memory, the neural network (NN),
the support vector machine (SVM) approach, the naïve Bayes approach, the k-nearest neigh-
bors (KNN) model [32], and decision tree algorithms [33]. Zhang et al. [34] developed an
intrusion detection system to manage the CAN bus from attacks, and the authors used a hy-
brid model, namely gradient descent momentum and adaptive gain, for classification of the
attacks’ message. Liang et al. [35] applied deep neural network-based intrusion detection
for monitoring the CAN bus message frame. For training process, the deep learning model
used was the deep-belief network function, of which the accuracy of the proposed system
has been shown to reach 98%. Hoppe et al. [36] developed an IDS system in the CAN bus
to analyze network traffic for finding new network packets’ pattern and compared them
with patterns on the IDS system. The system was compared with the tradition system, and
it is noted that their system achieved high accuracy. Taylor et al. [37] introduced an LSTM
model to detect CAN bus attacks. Wang et al. [38] presented a hierarchical temporal mem-
ory algorithm to design a distributed anomaly classification. The empirical results have
indicated that the model requires more time to detect attacks. Several machine learning
(ML) and deep learning (DL) algorithms have been applied to predict intrusions on the
CAN bus, using the deep neural network [39,40], applied Convolutional Neural Networks
(CNNs) [41], and artificial neural networks (ANNs) to build the adversarial attacks [42].

To raise awareness about the cybersecurity of vehicles, a Jeep Cherokee was remotely
hacked in 2015 [43]. A recent study [44] concluded that the main focus of research should
not be on preventing attacks, since it is impossible to produce a vehicle with a security
system that defends it against attacks. On the contrary, attention should be paid toward
designing a system that detects attacks and responds accordingly.

Thus, the current study proposes a model that detects attacks and abnormal behaviors
resulting from injected messages onto vehicles in real time with appropriate accuracy. A
technique known as hierarchical data analysis was applied to detect and classify the attack
data. Moreover, a machine learning algorithm was used for minimizing misdetection and
non-detection by properly training the model of intrusion detection. To obtain the required
hyper parameters, we provided a simulation environment and used an algorithm that
is suitable for the selected dataset. More specifically, a method that promptly detects an

Sensors 2022, 22, 360 5 of 20

existing attack in real time was suggested [45–47]. This was achieved through the CAN
data behavior. To validate the model for vehicles in a real environment, we increased its
accuracy and ensured its function with limited resources. To measure the accuracy of the
model, the F1 score and the detection time were used as reliable metrics. The empirical
results of our study showed optimal accuracy with deep learning approaches compared
with other state-of-the-art approaches for detecting attack messages from a CAN bus [48].

3. Contribution

The main motivation for the proposed system is to address the challenges of infor-
mation security in CAVs by detecting the potential attack messages and launching CAV
cybersecurity. The artificial intelligence framework is one solution to the robust building
for the confrontation of cyber threats to IVNs’ communication. Novel intrusion detection
from IVNs’ compunction is important, considering that CAVs have become an emerging
technology in many countries and are incorporated in daily social life. The development of
the proposed deep learning approaches to detect attacks against in-vehicle CAN buses was
the main objective of the study. This method greatly improved the detection accuracy of
all types of attacks compared with the existing systems. The proposed system achieved
superior accuracy in detecting two types of attacks. Furthermore, the deep learning ap-
proach detected attack messages in a CAN bus. The proposed system was examined by
using recent real datasets for CAV cybersecurity.

4. Materials and Methods

As self-driving vehicles were rapidly developed, many companies have faced chal-
lenges related to the protection of the CAV system against attacks, creating various issues
on the road. A few studies have discussed approaches to secure the systems, but there is
still a gap in the algorithm to obtain high performance. In this study, we used deep learning
approaches on real CAV datasets. Figure 4 shows the proposed framework to detect attacks
against a CAV network.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 20

the required hyper parameters, we provided a simulation environment and used an algo-
rithm that is suitable for the selected dataset. More specifically, a method that promptly
detects an existing attack in real time was suggested [45–47]. This was achieved through
the CAN data behavior. To validate the model for vehicles in a real environment, we in-
creased its accuracy and ensured its function with limited resources. To measure the ac-
curacy of the model, the F1 score and the detection time were used as reliable metrics. The
empirical results of our study showed optimal accuracy with deep learning approaches
compared with other state-of-the-art approaches for detecting attack messages from a
CAN bus [48].

3. Contribution
The main motivation for the proposed system is to address the challenges of infor-

mation security in CAVs by detecting the potential attack messages and launching CAV
cybersecurity. The artificial intelligence framework is one solution to the robust building
for the confrontation of cyber threats to IVNs’ communication. Novel intrusion detection
from IVNs’ compunction is important, considering that CAVs have become an emerging
technology in many countries and are incorporated in daily social life. The development
of the proposed deep learning approaches to detect attacks against in-vehicle CAN buses
was the main objective of the study. This method greatly improved the detection accuracy
of all types of attacks compared with the existing systems. The proposed system achieved
superior accuracy in detecting two types of attacks. Furthermore, the deep learning ap-
proach detected attack messages in a CAN bus. The proposed system was examined by
using recent real datasets for CAV cybersecurity.

4. Materials and Methods
As self-driving vehicles were rapidly developed, many companies have faced chal-

lenges related to the protection of the CAV system against attacks, creating various issues
on the road. A few studies have discussed approaches to secure the systems, but there is
still a gap in the algorithm to obtain high performance. In this study, we used deep learn-
ing approaches on real CAV datasets. Figure 4 shows the proposed framework to detect
attacks against a CAV network.

Figure 4. The proposed framework. Figure 4. The proposed framework.

Sensors 2022, 22, 360 6 of 20

4.1. Dataset

The CAV dataset was collected from real CAN traffic data including spoofing, flood
and replaying attacks, and benign packets. The dataset was designed by building a CAN
traffic OBD-II port from a real CAV where the transferring messages injected various
types of attack messages. The CAN packet generator Open Car Testbed and Network
Experiments (OCTANE) was used. The intrusions were injected every 3 to 5 sec, and CAV
traffic took 30 to 40 min. Table 1 shows the injection attack of CAN traffic. Dataset available
via this link https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset (access on
20 November 2021).

Table 1. CAN bus attacks.

Attacks Description

Flood Attack Sending flood messages from CAN to different ECU nodes.
The attacks were injected every 0.3 ms.

Replaying Attack
The replaying attacks send a message to CAN, earlier sent

by users that have injected CAN messages containing
replaying attacks. The injections occurred every 0.5 ms.

Spoofing Attack (RPM/gear) Injecting attacks to CAN messages related to RPM/gear
information. They were injected every 1 ms.

4.2. Preprocessing

The dataset contained the information of the timestamp in seconds, data and arbitra-
tion ID features in hexadecimal and DLC, and data bytes from 0 to 8 (Table 2). The labels of
the dataset received three attacks, namely spoofing, flood, and replaying attacks, as well
as benign and normal packets (Table 3). To run the system, the data and arbitration ID
feature are categorical variables, including the messages sent from the ECU devices to CAN.
Therefore, we converted these variables to numerical to identify and classify the intrusion.

After transforming the categorical variables, the data were processed by using maximum–
minimum normalization methods to avoid a possible overlap in the training process that
can result from handling large datasets. In the normalization method used to scale the
dataset in the same range, we used a scaling range between 0 and 1.

zn =
x− xmin
xmax−xmin

(Newmaxx − Newminx) + Newminx (1)

where,
xmin: minimum of the data
xmax: maximum of the data
Newminx : the minimum number (0)
Newmaxx : the maximum number (1).

Table 2. Features of the dataset.

Feature

Timestamp recorded time (s)
CAN ID identifier of CAN message in HEX (ex. 043f)

DLC number of data bytes, from 0 to 8
DATA [0~7] data value (byte)

https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset

Sensors 2022, 22, 360 7 of 20

Table 3. Training datasets for each class.

#Labels Volume

Flood attack 38,657
Replaying attack 13,294
Spoofing attack 2890
Normal packets 739,679

Fuzzing 22,527

4.3. Proposed System of the Deep Learning Algorithm

In this study, we applied deep learning approaches to detect CAN attacks, [49] present-
ing the LSTM technique as a time recurrent neural network (RNN) for long-term knowledge
dependency. The flow of LSTM is comparable to that of RNN. The difference between the
LSTM and RNN techniques is in the way that cells operate in the case of LSTM [50]. Each
LSTM unit consists of four gates: input, candidate, forget, and output. The forget gate
classifies data as to whether they should be discarded or saved. The input gate refreshes
the cells, and the hidden state in the LSTM is always determined by the output gate. In
addition, LSTM incorporates an embedded memory block and gate structure that allow it
to solve both the disappearing and the implosion-gradient difficulties in the RNN learning
process [51]. The structure of the LSTM technique can be seen in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 20

Normal packets 739,679
Fuzzing 22,527

4.3. Proposed System of the Deep Learning Algorithm
In this study, we applied deep learning approaches to detect CAN attacks, [49] pre-

senting the LSTM technique as a time recurrent neural network (RNN) for long-term
knowledge dependency. The flow of LSTM is comparable to that of RNN. The difference
between the LSTM and RNN techniques is in the way that cells operate in the case of
LSTM [50]. Each LSTM unit consists of four gates: input, candidate, forget, and output.
The forget gate classifies data as to whether they should be discarded or saved. The input
gate refreshes the cells, and the hidden state in the LSTM is always determined by the
output gate. In addition, LSTM incorporates an embedded memory block and gate struc-
ture that allow it to solve both the disappearing and the implosion-gradient difficulties in
the RNN learning process [51]. The structure of the LSTM technique can be seen in Figure
5.

Figure 5. The structure of the LSTM technique.

The computing equations that are associated with the LSTM structure in Figure 5 are
as follows: 𝑓 = 𝜎 𝑊 . 𝑋 + 𝑊 . ℎ + 𝑏 (2)𝑖 = 𝜎(𝑊 . 𝑋 + 𝑊 . ℎ + 𝑏) (3)𝑆 = 𝑡𝑎𝑛ℎ(𝑊 . 𝑋 + 𝑊 . ℎ + 𝑏) (4)𝐶 = 𝑖 ∗ 𝑆 + 𝑓 ∗ 𝑆 (5)𝑜 = 𝜎(𝑊 + 𝑋 + 𝑊 . ℎ + 𝑉 . 𝐶 + 𝑏) (6)ℎ = 𝑜 + tanh (𝐶) (7)

The arithmetical notations in the above formulas can be represented as follows: 𝑋 is the vector of the input data that are forwarded to the memory cell at time t; 𝑊 , 𝑊 , 𝑊 , 𝑊 , and 𝑉 refer to the weight matrices; 𝑏 , 𝑏 , 𝑏 , and 𝑏 are point to bias vectors; ℎ indicates the specified value of the memory cell at time t; 𝑆 and 𝐶 are defined values of the candidate state of the memory cell and the state
of the memory cell at time t, respectively;

Figure 5. The structure of the LSTM technique.

The computing equations that are associated with the LSTM structure in Figure 5 are
as follows:

ft = σ
(

W f . Xt + W f . ht−1 + b f

)
(2)

it = σ(Wi. Xt + Wi . ht−1 + bi) (3)

St = tanh(Wc. Xt + Wc . ht−1 + bc) (4)

Ct = it ∗ St + ft ∗ St−1 (5)

ot = σ(Wo + Xt + Wo . ht−1 + Vo .Ct + bo) (6)

ht = ot + tan h(Ct) (7)

The arithmetical notations in the above formulas can be represented as follows:
Xt is the vector of the input data that are forwarded to the memory cell at time t;
Wi, W f , Wc, Wo, and Vo refer to the weight matrices;

Sensors 2022, 22, 360 8 of 20

bi, b f , bc, and bo are point to bias vectors;
ht indicates the specified value of the memory cell at time t;
St and Ct are defined values of the candidate state of the memory cell and the state of

the memory cell at time t, respectively;
σ and tanh represent the activation functions in the LSTM neural network;
it, ft, and ot are obtained values for the input gate, the forget gate, and the output gate

at time t, respectively. These gates have values in the range of 0 to 1 over the nonlinear
sigmoid activation function.

CNN is one technique of the deep-learning neural network that takes spatial inputs
into account. CNN neurons, as with other neural networks, possess trainable weights and
biases. Furthermore, CNN is mostly employed to manage information with a grid layout,
which distinguishes it from other architectures [52]. CNN is a feed-forward network with
the input dataflow in one direction, from input to output [53]. The CNN model is mainly
comprised of three layers: the convolutional, pooling, and fully connected layers. To reduce
data dimensionality and computation cost, the convolution and pooling layers are utilized.
The completely connected layer, on the other hand, is the folded layer connected to the
output of the previous layers. There are different pooling techniques in the structure of
CNN such as maximum, average, and global pooling. From those, maximum pooling
is widely used and functions by selecting the maximum value from a pooling window.
Figure 6 shows the structure of the CNN model.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 20

σ and tanh represent the activation functions in the LSTM neural network; 𝑖 , 𝑓 , and 𝑜 are obtained values for the input gate, the forget gate, and the output
gate at time t, respectively. These gates have values in the range of 0 to 1 over the nonlinear
sigmoid activation function.

CNN is one technique of the deep-learning neural network that takes spatial inputs
into account. CNN neurons, as with other neural networks, possess trainable weights and
biases. Furthermore, CNN is mostly employed to manage information with a grid layout,
which distinguishes it from other architectures [52]. CNN is a feed-forward network with
the input dataflow in one direction, from input to output [53]. The CNN model is mainly
comprised of three layers: the convolutional, pooling, and fully connected layers. To re-
duce data dimensionality and computation cost, the convolution and pooling layers are
utilized. The completely connected layer, on the other hand, is the folded layer connected
to the output of the previous layers. There are different pooling techniques in the structure
of CNN such as maximum, average, and global pooling. From those, maximum pooling
is widely used and functions by selecting the maximum value from a pooling window.
Figure 6 shows the structure of the CNN model.

Figure 6. The structure of the CNN model.

CNN–LSTM is an integrated deep-learning algorithm based on neural networks
techniques. It was created to solve problems of visual time-series forecasting and to gen-
erate text from sequences of images. CNN layers are used as an extraction feature from
the input data, while LSTM is combined with CNN to allow sequential prediction in the
CNN–LSTM system. CNN takes information from spatial data, applies it to the LSTM
structure to generate the description [54,55], and classifies the intrusion detection system.
The CNN–LSTM network effectively preserves the spatiotemporal associations and con-
tinuously beats the connected LSTM (FC-LSTM) model in precipitation prediction, ac-
cording to the results of the experiment. The CNN–LSTM model’s structure is depicted in
Figure 7. The significant parameters of the CNN–LSTM model is presented in Table 4.
Pseudocode of CNN-LSTM algorithm is presented in Algorithm 1.

Table 4. Parameters of the proposed model.

Parameters Size of Values
Convolutions layer 128

Kernel size 5
Size of max pooling 5

Size of Drop out 0.50
Size of Fully connected 256

Name of Activation function tanh
Optimizers function RMSprop

Figure 6. The structure of the CNN model.

CNN-LSTM is an integrated deep-learning algorithm based on neural networks tech-
niques. It was created to solve problems of visual time-series forecasting and to generate
text from sequences of images. CNN layers are used as an extraction feature from the input
data, while LSTM is combined with CNN to allow sequential prediction in the CNN-LSTM
system. CNN takes information from spatial data, applies it to the LSTM structure to gen-
erate the description [54,55], and classifies the intrusion detection system. The CNN-LSTM
network effectively preserves the spatiotemporal associations and continuously beats the
connected LSTM (FC-LSTM) model in precipitation prediction, according to the results of
the experiment. The CNN-LSTM model’s structure is depicted in Figure 7. The significant
parameters of the CNN-LSTM model is presented in Table 4. Pseudocode of CNN-LSTM
algorithm is presented in Algorithm 1.

Sensors 2022, 22, 360 9 of 20

Algorithm 1. Algorithm of CNN-LSTM

Preprocessing data
Class 4, input data 22222
Model = Sequential()
model. Add(Conv1D(filters = 128, kernel_size = 1, strides = 1, padding = ‘same’,
input shape = (train_data_st.shape [1], 1)))
model. Add(Conv1D(filters = 128, kernel size = 1, strides = 1, padding = ‘same’))
model. Add(LSTM(64, activation = ‘relu’, return sequences = True))
model. Add(LSTM(64, return sequences = True))
model. Add(Flatten())
model.add(Dense(128, activation = ‘relu’))
model.add(Dense(256, activation = ‘relu’))
Build Model
Input = Input(shape = (train_data_st.shape[1],1))
C = Conv1D(filters = 32, kernel_size = 1, strides = 1)(inp)
C2 = Conv1D(filters = 32, kernel_size = 1, strides = 1, padding = ‘same’)(C)
A1 = Activation(“relu”)(C11)
C3 = Conv1D(filters = 32, kernel_size = 1, strides = 1, padding = ‘same’)(A11)
S13 = Add()([C12, C])
A1 = Activation(“relu”)(S11)
M11 = MaxPooling1D(pool_size = 1, strides = 2)(A12)
C3 = Conv1D(filters = 32, kernel_size = 1, strides = 1, padding = ‘same’)(M11)
A3 = Activation(“relu”)(C21)
C4 = Conv1D(filters = 32, kernel_size = 1, strides = 1, padding = ‘same’)(A21)
S4 = Add()([C22, M11])
A4 = Activation(“relu”)(S11)
M4 = MaxPooling1D(pool_size = 1, strides = 2)(A22)
C5 = Conv1D(filters = 32, kernel_size = 1, strides = 1, padding = ‘same’)(M21)
A5 = Activation(“relu”)(C31)
C6 = Conv1D(filters = 32, kernel_size = 1, strides = 1, padding = ‘same’)(A31)
S5 = Add()([C32, M21])
A5 = Activation(“relu”)(S31)
M31 = MaxPooling1D(pool_size = 1, strides = 2)(A32)
F1 = Flatten()(M31)
D1 = Dense(32)(F1)
A66 = Activation(“relu”)(D1)
D22 = Dense(32)(A66)
D33 = Dense(labels.shape[1])(D22)
A77 = Activation(“softmax”)(D33)
model = Model(inputs = inp, outputs = A7)
opotimnaztion
Paramters patience = 3, verbose = 1, factor = 0.5, lr = 0.00001 and optimizer = rms, epochs = 10
batch_size = 64
For→ rms = keras.optimizers.rms = RMSprop(learning_rate = 0.001, rho = 0.9)
history = model.fit(x_train_cnn,y_train, batch_size = batch_size,
steps_per_epoch = x_train.shape[0]//batch_size,
epochs = epochs,
validation_data = (x_validate_cnn,y_validate),
#validation_split = 0.10,
callbacks = [learning_rate_reduction, checkpoint]

Sensors 2022, 22, 360 10 of 20

Sensors 2022, 22, x FOR PEER REVIEW 9 of 20

Learning_rate 0.001

Figure 7. The structure of the CNN–LSTM mode.

Algorithm 1. Algorithm of CNN–LSTM
Preprocessing data
Class 4, input data 22222
Model = Sequential()
model. Add(Conv1D(filters=128, kernel_size=1, strides=1, padding=‘same’, input shape =
(train_data_st.shape [1], 1)))
model. Add(Conv1D(filters=128, kernel size=1, strides=1, padding=‘same’))
model. Add(LSTM(64, activation = ‘relu’, return sequences=True))
model. Add(LSTM(64, return sequences=True))
model. Add(Flatten())
model.add(Dense(128, activation=‘relu’))
model.add(Dense(256, activation=‘relu’))
Build Model
Input = Input(shape=(train_data_st.shape[1],1))
C = Conv1D(filters=32, kernel_size=1, strides=1)(inp)
C2 = Conv1D(filters=32, kernel_size=1, strides=1, padding=‘same’)(C)
A1 = Activation(“relu”)(C11)
C3 = Conv1D(filters=32, kernel_size=1, strides=1, padding=‘same’)(A11)
S13 = Add()([C12, C])
A1 = Activation(“relu”)(S11)
M11 = MaxPooling1D(pool_size=1, strides=2)(A12)
C3 = Conv1D(filters=32, kernel_size=1, strides=1, padding=‘same’)(M11)
A3 = Activation(“relu”)(C21)
C4 = Conv1D(filters=32, kernel_size=1, strides=1, padding=‘same’)(A21)
S4 = Add()([C22, M11])
A4 = Activation(“relu”)(S11)
M4 = MaxPooling1D(pool_size=1, strides=2)(A22)
C5 = Conv1D(filters=32, kernel_size=1, strides=1, padding=‘same’)(M21)
A5 = Activation(“relu”)(C31)
C6 = Conv1D(filters=32, kernel_size=1, strides=1, padding=‘same’)(A31)
S5 = Add()([C32, M21])
A5 = Activation(“relu”)(S31)
M31 = MaxPooling1D(pool_size=1, strides=2)(A32)
F1 = Flatten()(M31)
D1 = Dense(32)(F1)
A66 = Activation(“relu”)(D1)
D22 = Dense(32)(A66)
D33 = Dense(labels.shape[1])(D22)

Figure 7. The structure of the CNN-LSTM mode.

Table 4. Parameters of the proposed model.

Parameters Size of Values

Convolutions layer 128
Kernel size 5

Size of max pooling 5
Size of Drop out 0.50

Size of Fully connected 256
Name of Activation function tanh

Optimizers function RMSprop
Learning_rate 0.001

4.4. Evaluation Metrics

In order to evaluate the proposed system, the standard evaluation of accuracy, recall,
precision, and F1-score metrics was applied. The evaluation metrics calculate by using
confusion metrics indicators namely true-positive (TP), false-positive (FP), true-negative
(TN), and false-negative (FN).

Accuracy =
TP + TN

FP + FN + TP + TN
× 100% (8)

Precision =
TP

TP + FP
× 100% (9)

F1− score = 2 ∗ precision× sensitivity
precision + sensitivity

× 100% (10)

Specificity =
TN

TN + FP
× 100% (11)

5. Experiments

The CAN packets generator OCTANE was used to collect the training data for the
examination of the proposed deep learning algorithm. In this experiment, we applied two
deep learning algorithms, namely CNN and CNN-LSTM.

5.1. Splitting the Dataset

The dataset was divided into 70% of data for the training and 30% for the testing. The
testing data were used to validate and evaluate our model for attack detection from the
vehicle’s self-care system. Table 5 shows the splitting of the dataset.

Sensors 2022, 22, 360 11 of 20

Table 5. Splitting the dataset.

#Data #Instance Values

Training 490,526
Testing 240,258

Validation 70,076

In this experiment, the network packets were 800,860. The testing process included
240,258 packets considered as the testing data. The validation process was applied to avoid
overfitting issues occurring during the training process.

5.2. Environment Setup

To develop the cybersecurity system by using artificial intelligence algorithms, the
hardware and software parts were required to successfully obtain the system. Table 6
summarizes the system requirements for the development of the proposed security system.

Table 6. Hardware and software requirements for the design of the system.

Hardware Software

8 GB RAM Python
CPU I7 Jupyter

Operating System: Windows

5.3. Results

The proposed deep learning models were used to identify the attack messages from
the vehicle network. The system was examined by applying a real network which included
fuzzing, spoofing, replaying, and normal packets. The datasets were randomly divided
into 70% of the data for training and 30% for testing. The database of the system contained
486,640 messages in the training phase and 486,640 messages in the testing phase.

Table 7 shows the statistical analysis of the datasets, the mean, maximum, and min-
imum values, and the standard deviation metrics for the specific dataset features. The
statistical results revealed that there is a large difference between the features and the labels.
We noted that the traditional approaches used to detect the attack messages in a CAN bus
are not appropriate. Figure 8 displays the correlation between the features of the datasets.
There is a gap between the features due to the different characteristics of the network.

Table 7. Statistical analysis.

Features Mean Standard Deviation Minimum Maximum

Arbitration ID 1.80 1.67 0.00 8.00
DLC 7.50 1.188 2.00 8.00
Data 1.61 5.98 0.00 2.78

Table 8 shows the results of the CNN model for attack detection. As for the precision
(0.86%), recall (100%), specificity (93%), and F1-score (100%), they achieved good values.
However, the CNN model failed to detect the attack packets. Overall, the performance of
the CNN model in the identification of attack messages from a CAN bus was 86%. As we
mentioned earlier, the monitoring of the traffic of a CAN bus poses big challenges, therefore
we developed a hybrid deep learning model that deals with these attacks.

Sensors 2022, 22, 360 12 of 20

Sensors 2022, 22, x FOR PEER REVIEW 11 of 20

summarizes the system requirements for the development of the proposed security sys-
tem.

Table 6. Hardware and software requirements for the design of the system.

Hardware Software
8 GB RAM Python

CPU I7 Jupyter
 Operating System: Windows

5.3. Results
The proposed deep learning models were used to identify the attack messages from

the vehicle network. The system was examined by applying a real network which in-
cluded fuzzing, spoofing, replaying, and normal packets. The datasets were randomly di-
vided into 70% of the data for training and 30% for testing. The database of the system
contained 486,640 messages in the training phase and 486,640 messages in the testing
phase.

Table 7 shows the statistical analysis of the datasets, the mean, maximum, and min-
imum values, and the standard deviation metrics for the specific dataset features. The
statistical results revealed that there is a large difference between the features and the
labels. We noted that the traditional approaches used to detect the attack messages in a
CAN bus are not appropriate. Figure 8 displays the correlation between the features of
the datasets. There is a gap between the features due to the different characteristics of the
network.

Table 7. Statistical analysis.

Features Mean Standard Deviation Minimum Maximum
Arbitration ID 1.80 1.67 0.00 8.00

DLC 7.50 1.188 2.00 8.00
Data 1.61 5.98 0.00 2.78

Figure 8. Correlation features of the dataset.

Figure 8. Correlation features of the dataset.

Table 8. Results of the proposed system for the validation phase.

Dataset Precision (%) Recall (%) F1-Score (%)

Normal 0.86 100 93
Attacks 0.00 0.00 0.00

Accuracy 0.86
Weighted average 0.75 0.86 0.80

Figure 9 shows the performance, the loss of training, and the validation of the CNN
model to predict attacks in a vehicle network. Figure 9a shows the accuracy of the CNN
model with 10 epochs. We observed that the accuracy of the CNN model increased from 84%
to 86% and then reached a plateau. Therefore, we considered 10 epochs. Figure 9b shows
the loss of training in the CNN model. It can be noted that the training loss decreases very
slowly due to the decreased accuracy performance, starting from 0.52 and reaching 0.40.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 20

Table 8 shows the results of the CNN model for attack detection. As for the precision
(0.86%), recall (100%), specificity (93%), and F1-score (100%), they achieved good values.
However, the CNN model failed to detect the attack packets. Overall, the performance of
the CNN model in the identification of attack messages from a CAN bus was 86%. As we
mentioned earlier, the monitoring of the traffic of a CAN bus poses big challenges, there-
fore we developed a hybrid deep learning model that deals with these attacks.

Table 8. Results of the proposed system for the validation phase.

Dataset Precision (%) Recall (%) F1-Score (%)
Normal 0.86 100 93
Attacks 0.00 0.00 0.00

Accuracy %86
Weighted average 0.75 0.86 0.80

Figure 9 shows the performance, the loss of training, and the validation of the CNN
model to predict attacks in a vehicle network. Figure 9a shows the accuracy of the CNN
model with 10 epochs. We observed that the accuracy of the CNN model increased from
84% to 86% and then reached a plateau. Therefore, we considered 10 epochs. Figure 9b
shows the loss of training in the CNN model. It can be noted that the training loss de-
creases very slowly due to the decreased accuracy performance, starting from 0.52 and
reaching 0.40.

Figure 9. The performance of the CNN model: (a) accuracy performance and (b) training loss and
validation.

In order to improve the training accuracy, the overfitting of the proposed system
should be overcome. Therefore, the hybrid CNN–LSTM model was applied. Table 9 sum-
marizes the CNN–LSTM results of the detection of the attack messages from a CAN bus.
The proposed system failed to detect replaying and spoofing attacks. However, the CNN–
LSTM model achieved superior performance in the detection of the flood, fuzzing, and
normal packets. The overfitting of the system was overcome by using a hybrid deep learn-
ing approach.

Figure 9. The performance of the CNN model: (a) accuracy performance and (b) training loss
and validation.

Sensors 2022, 22, 360 13 of 20

In order to improve the training accuracy, the overfitting of the proposed system
should be overcome. Therefore, the hybrid CNN-LSTM model was applied. Table 9
summarizes the CNN-LSTM results of the detection of the attack messages from a CAN
bus. The proposed system failed to detect replaying and spoofing attacks. However, the
CNN-LSTM model achieved superior performance in the detection of the flood, fuzzing,
and normal packets. The overfitting of the system was overcome by using a hybrid deep
learning approach.

Table 9. Results of the CNN-LSTM model in the detection of all attacks on the dataset of a CAN bus.

Attacks Precision % Recall % F1-Score %

Benign 95 100 97

Flood 91 0.09 0.16

Replaying 0.0 0.0 0.0

Spoofing 0.0 0.0 0.0

Fuzzy 96 100 98

Accuracy 95.44%

Weighted average 93 95 93

Loss 0.20

The confusion metrics, in terms of TP, FP, TN, and FN, are important in the evaluation
and classification of the CAN messages in the proposed system. Furthermore, the confusion
metrics calculate the number of CAN messages correctly classified as normal or attacks.
The confusion metrics of the CNN-LSTM model are presented in Figure 10. Prediction
values of each class is presented in percentage values.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 20

Table 9. Results of the CNN–LSTM model in the detection of all attacks on the dataset of a CAN
bus.

Attacks Precision % Recall % F1-Score %
Benign 95 100 97
Flood 91 0.09 0.16

Replaying 0.0 0.0 0.0
Spoofing 0.0 0.0 0.0

Fuzzy 96 100 98
 Accuracy 95.44%

Weighted average 93 95 93
Loss 0.20

The confusion metrics, in terms of TP, FP, TN, and FN, are important in the evalua-
tion and classification of the CAN messages in the proposed system. Furthermore, the
confusion metrics calculate the number of CAN messages correctly classified as normal
or attacks. The confusion metrics of the CNN–LSTM model are presented in Figure 10.
Prediction values of each class is presented in percentage values.

Figure 10. Confusion metrics of the CNN–LSTM model.

The accuracy performance of the proposed system is presented in Figure 11. The y-
axis represents the percentage of corrected classified. The training accuracy is the perfor-
mance of the validation system. We observe that the system stopped the optimization to
increase the accuracy to 20 epochs. The performance of the CNN–LSTM model increased
from 91% to 95.55%. The categorical_crossentropy function was used to measure the train-
ing loss of the proposed system. Figure 11b shows the CNN–LSTM loss. It is also observed
that the validation loss decreased from 24 to 20, whereas the training loss decreased from
25 to 21 with 20 epochs.

Figure 10. Confusion metrics of the CNN-LSTM model.

The accuracy performance of the proposed system is presented in Figure 11. The y-axis
represents the percentage of corrected classified. The training accuracy is the performance

Sensors 2022, 22, 360 14 of 20

of the validation system. We observe that the system stopped the optimization to increase
the accuracy to 20 epochs. The performance of the CNN-LSTM model increased from 91%
to 95.55%. The categorical_crossentropy function was used to measure the training loss of
the proposed system. Figure 11b shows the CNN-LSTM loss. It is also observed that the
validation loss decreased from 24 to 20, whereas the training loss decreased from 25 to 21
with 20 epochs.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20

Figure 11. The performance of CNN–LSTM: (a) accuracy performance and (b) training loss and val-
idation of the CNN–LSTM model.

Table 10 shows the experimental results of the CNN–LSTM model in the evaluation
of flood and fuzzing attacks and normal packets. It is noted that the performance of the
proposed system was enhanced. The evaluation metrics of the weighted values are preci-
sion (97%), recall (97%), F1-score (96%), and accuracy (97.30%). The empirical results
showed that, when the replaying and spoofing attacks were removed, the accuracy of the
system increased. Figure 12 displays the confusion metrics of the CNN–LSTM model in
the detection of flood and fuzzing attacks and normal packets in a CAN bus.

Figure 12. The confusion metrics of the CNN–LSTM model in the detection of the flood, fuzzing,
and normal packets in a CAN bus network.

Figure 11. The performance of CNN-LSTM: (a) accuracy performance and (b) training loss and
validation of the CNN-LSTM model.

Table 10 shows the experimental results of the CNN-LSTM model in the evaluation
of flood and fuzzing attacks and normal packets. It is noted that the performance of
the proposed system was enhanced. The evaluation metrics of the weighted values are
precision (97%), recall (97%), F1-score (96%), and accuracy (97.30%). The empirical results
showed that, when the replaying and spoofing attacks were removed, the accuracy of the
system increased. Figure 12 displays the confusion metrics of the CNN-LSTM model in the
detection of flood and fuzzing attacks and normal packets in a CAN bus.

Table 10. Results of the CNN-LSTM model for the detection of the flood, fuzzing, and normal packets
in a CAN bus.

Attacks Precision % Recall % F1-Score %

Benign 99 100 99

Flood 66 11 18

Fuzzy 97 100 99

Accuracy 97.30%

Weighted average 97 97 96

Loss 0.11

Sensors 2022, 22, 360 15 of 20

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20

Figure 11. The performance of CNN–LSTM: (a) accuracy performance and (b) training loss and val-
idation of the CNN–LSTM model.

Table 10 shows the experimental results of the CNN–LSTM model in the evaluation
of flood and fuzzing attacks and normal packets. It is noted that the performance of the
proposed system was enhanced. The evaluation metrics of the weighted values are preci-
sion (97%), recall (97%), F1-score (96%), and accuracy (97.30%). The empirical results
showed that, when the replaying and spoofing attacks were removed, the accuracy of the
system increased. Figure 12 displays the confusion metrics of the CNN–LSTM model in
the detection of flood and fuzzing attacks and normal packets in a CAN bus.

Figure 12. The confusion metrics of the CNN–LSTM model in the detection of the flood, fuzzing,
and normal packets in a CAN bus network.
Figure 12. The confusion metrics of the CNN-LSTM model in the detection of the flood, fuzzing, and
normal packets in a CAN bus network.

The validation performance of the proposed model for identifying fuzzing attacks and
normal packets in a CAN bus is presented in Figure 13. The system achieved a validation
accuracy of 97%, undergoing an increase from 94% to 97.74% with 20 epochs. The validation
loss is minimal due to the very slight overfitting of the system, and the validation loss is
reduced to 0.11 by using cross entropy metrics.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 20

Table 10. Results of the CNN–LSTM model for the detection of the flood, fuzzing, and normal pack-
ets in a CAN bus.

Attacks Precision % Recall % F1-Score %
Benign 99 100 99
Flood 66 11 18
Fuzzy 97 100 99

Accuracy 97.30%
Weighted average 97 97 96

Loss 0.11

The validation performance of the proposed model for identifying fuzzing attacks
and normal packets in a CAN bus is presented in Figure 13. The system achieved a vali-
dation accuracy of 97%, undergoing an increase from 94% to 97.74% with 20 epochs. The
validation loss is minimal due to the very slight overfitting of the system, and the valida-
tion loss is reduced to 0.11 by using cross entropy metrics.

Figure 13. The performance of CNN–LSTM: (a) accuracy performance and (b) training and valida-
tion loss of the CNN–LSTM model in detecting flood, fuzzing, and normal packets in a CAN bus.

6. Discussion
With the increase in CAV manufacturing, companies are developing and adding

new features that make care smarter. These features are connected to remote networks,
therefore risk will inevitably increase. Hackers try to find a gap in the CAN bus system
by sending fake messages that contain incorrect information. Intrusion detection in au-
tonomous vehicle networks has played a significant role in the detection of malicious traf-
fic and the monitoring of CAN bus systems for the identification of normal and abnormal
messages among different ECUs. The IDS can be developed by employing artificial intel-
ligence models such as machine learning and deep learning algorithms that handle data-
bases containing numerous attacks and normal packets to detect new attacks.

In this study, we investigated a deep learning model that identifies attack behaviors
in a CAN bus. In order to evaluate the proposed system, experimental data were used to
detect attack messages in a CAN bus system. First, we applied a CNN model to predict
and classify the dataset with two labels: normal or attacks. We observed that the model
had more overfitting, and the accuracy was good. In the second experiment, the hybrid

Figure 13. The performance of CNN-LSTM: (a) accuracy performance and (b) training and validation
loss of the CNN-LSTM model in detecting flood, fuzzing, and normal packets in a CAN bus.

Sensors 2022, 22, 360 16 of 20

6. Discussion

With the increase in CAV manufacturing, companies are developing and adding new
features that make care smarter. These features are connected to remote networks, therefore
risk will inevitably increase. Hackers try to find a gap in the CAN bus system by sending
fake messages that contain incorrect information. Intrusion detection in autonomous
vehicle networks has played a significant role in the detection of malicious traffic and the
monitoring of CAN bus systems for the identification of normal and abnormal messages
among different ECUs. The IDS can be developed by employing artificial intelligence
models such as machine learning and deep learning algorithms that handle databases
containing numerous attacks and normal packets to detect new attacks.

In this study, we investigated a deep learning model that identifies attack behaviors
in a CAN bus. In order to evaluate the proposed system, experimental data were used to
detect attack messages in a CAN bus system. First, we applied a CNN model to predict
and classify the dataset with two labels: normal or attacks. We observed that the model
had more overfitting, and the accuracy was good. In the second experiment, the hybrid
CNN-LSTM model was applied to identify intrusion from a dataset with four labels/types
of attack, namely flood, fuzzing, spoofing, and replaying attack and a normal packet. In
the third experiment, we applied the CNN-LSTM model with a dataset containing flood,
spoofing, fuzzing, and normal packets. The performance of the proposed dataset was high
compared with a different dataset. Table 11 shows the final results of the proposed system.

Table 11. Comparison results of deep learning algorithms.

Models Labels Precision (%) Recall (%) F1-Score (%) Accuracy (%)

CNN Two 75 86 80 86

CNN-LSTM Six 93 95 93 95.44

CNN-LSTM Three 97 97 96 97.30

The proposed system achieved the highest accuracy with the dataset of four classes
containing flood, spoofing, fuzzing, and normal packets. The graphical representation
of the receiver operating characteristic curve is shown in Figure 14, demonstrating the
performance of the model in the classification of all classes.

A comparative classification performance between the proposed system and existing
models is presented in Table 12. The accuracy of the proposed framework scored 97%,
outperforming all the present systems for detecting IDS on vehicle networks.

Table 12. Shows accuracy performance of recent research against the proposed system on intrusion
detection system for in-vehicle networks.

Ref. Models Accuracy % Attack Types

Ref. [56] Deep learning model 95% Normal and attacks (Two classes)

Ref. [57] Deep learning model 85% DoS, Command Injection, Malware attacks

Ref. [58] Generative adversarial networks 95% DoS, Fuzzing, and Gear attacks

Ref. [59] LSTM 80% Spoofing, Replay, and Flooding attacks

Ref. [60] Machine learning 90% DoS, Fuzzing, Spoofing attacks

Ref. [61] Neural network–LSTM 90% DoS, Fuzzing, Spoofing attacks

Proposed model CNN-LSTM 97% DoS, Fuzzing, Spoofing, Replaying

Sensors 2022, 22, 360 17 of 20

Sensors 2022, 22, x FOR PEER REVIEW 16 of 20

CNN–LSTM model was applied to identify intrusion from a dataset with four labels/types
of attack, namely flood, fuzzing, spoofing, and replaying attack and a normal packet. In
the third experiment, we applied the CNN–LSTM model with a dataset containing flood,
spoofing, fuzzing, and normal packets. The performance of the proposed dataset was high
compared with a different dataset. Table 11 shows the final results of the proposed system.

Table 11. Comparison results of deep learning algorithms.

Models Labels Precision (%) Recall (%) F1-Score (%) Accuracy (%)
CNN Two 75 86 80 86

CNN–LSTM Six 93 95 93 95.44
CNN–LSTM Three 97 97 96 97.30

The proposed system achieved the highest accuracy with the dataset of four classes
containing flood, spoofing, fuzzing, and normal packets. The graphical representation of
the receiver operating characteristic curve is shown in Figure 14, demonstrating the per-
formance of the model in the classification of all classes.

Figure 14. The receiver operating characteristics curve of CNN–LSTM: (a) dataset with two classes
and (b) dataset with three classes.

A comparative classification performance between the proposed system and existing
models is presented in Table 12. The accuracy of the proposed framework scored 97%,
outperforming all the present systems for detecting IDS on vehicle networks.

Table 12. Shows accuracy performance of recent research against the proposed system on intrusion
detection system for in-vehicle networks.

Ref. Models Accuracy % Attack Types
Ref. [56] Deep learning model 95% Normal and attacks (Two classes)

Ref. [57] Deep learning model 85%
DoS, Command Injection, Malware

attacks

Ref. [58]
Generative adversarial

networks
95% DoS, Fuzzing, and Gear attacks

Figure 14. The receiver operating characteristics curve of CNN-LSTM: (a) dataset with two classes
and (b) dataset with three classes.

7. Conclusions

With the rapid development of automobile manufacturing and the Internet of Things
technology, the autonomous vehicle network has become intelligent and more established.
The autonomous vehicle provides many facilities by connecting the automobile to satellite
navigation or entertaining systems. However, autonomous cars providing these facilities
face the risk of remote attacks due to the connection of the intelligent automatic vehicle
network to the Internet for remote accessing.

The traffic behavior of CAN is a broadcast domain in nature. The development of
an efficient security system has faced a lot of challenges. Hence, the intrusion detection
system based on artificial intelligence models has given solutions against the increased risk
of vehicle networks. IDS based on artificial intelligence algorithms can update the system
if there are any changes in the CAN messages sent from possible attackers.

In this paper, we proposed a novel intrusion detection system for attacks against
a CAN bus by using a large real dataset containing spoofing, flood, and replaying attacks,
as well as benign packets. The CAN bus system was injected with various types of attack
messages to generate a real dataset with different time intervals for the evaluation of the
system using OCTANE.

The empirical results established that the proposed CNN-LSTM and CNN models
identify attack messages. The proposed systems were confirmed to efficiently display
abnormal packet detection to protect the CAN bus. They can also be extended to other
designs of security systems within the complex infrastructures of autonomous vehicle
networks for secure data processing.

Overall, the proposed systems achieved an accuracy score of 97.30%. These empirical
results were compared with existing systems, outperforming them. In the future, we will
continue improving our system by using advanced artificial intelligence.

Author Contributions: Conceptualization, T.H.H.A. and H.A.; methodology, T.H.H.A.; software,
T.H.H.A.; validation, T.H.H.A. and H.A. formal analysis, T.H.H.A. and H.A. investigation, T.H.H.A.
and H.A. resources, T.H.H.A. data curation, T.H.H.A. and H.A..; writing—original draft preparation,
T.H.H.A. and H.A.; writing—review and editing, H.A.; visualization, T.H.H.A. and H.A. supervision,

Sensors 2022, 22, 360 18 of 20

T.H.H.A.; project administration, T.H.H.A. and H.A.; funding acquisition, T.H.H.A. and H.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research and the APC were funded by the Deanship of Scientific Research at King
Faisal University for the financial support under grant No. NA00036.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available here https://ocslab.
hksecurity.net/Datasets/datachallenge2019/car.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
King Faisal University for funding this research work through the project number NA00036.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Hartenstein, H.; Laberteaux, K.P. VANET: Vehicular Applications and Inter-Networking Technologies; John Wiley & Sons:

Chichester, UK, 2009.
2. Zeng, W.; Khalid, M.A.S.; Chowdhury, S. In-Vehicle Networks Outlook: Achievements and Challenges. IEEE Commun. Surv.

Tutor. 2016, 18, 1552–1571. [CrossRef]
3. Mehedi, S.T.; Anwar, A.; Rahman, Z.; Ahmed, K. Deep Transfer Learning Based Intrusion Detection System for Electric Vehicular

Networks. Sensors 2021, 21, 4736. [CrossRef]
4. Kiencke, U.; Dais, S.; Litschel, M. Automotive Serial Controller Area Network. SAE Trans. 1986, 95, 823–828.
5. Vasudev, H.; Das, D.; Vasilakos, A.V. Secure message propagation protocols for IoVs communication components. Comput. Electr.

Eng. 2020, 82, 106555. [CrossRef]
6. Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The Sensable City: A Survey on the Deployment and Management for

Smart City Monitoring. IEEE Commun. Surv. Tutor. 2019, 21, 1533–1560. [CrossRef]
7. Barletta, V.; Caivano, D.; DiMauro, G.; Nannavecchia, A.; Scalera, M. Managing a Smart City Integrated Model through Smart

Program Management. Appl. Sci. 2020, 10, 714. [CrossRef]
8. Baldassarre, M.T.; Barletta, V.S.; Caivano, D. Smart Program Management in a Smart City. In Proceedings of the 2018 AEIT

International Annual Conference, Bari, Italy, 3–5 October 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway,
NJ, USA, 2018; pp. 1–6.

9. Zhou, J.; Dong, X.; Cao, Z.; Vasilakos, A.V. Secure and Privacy Preserving Protocol for Cloud-Based Vehicular DTNs. IEEE Trans.
Inf. Forensics Secur. 2015, 10, 1299–1314. [CrossRef]

10. Baldassarre, M.T.; Barletta, V.; Caivano, D.; Scalera, M. Integrating security and privacy in software development. Softw. Qual. J.
2020, 28, 987–1018. [CrossRef]

11. Zhou, J.; Cao, Z.; Dong, X.; Vasilakos, A.V. Security and Privacy for Cloud-Based IoT: Challenges. IEEE Commun. Mag. 2017, 55,
26–33. [CrossRef]

12. Challa, S.; Das, A.K.; Gope, P.; Kumar, N.; Wu, F.; Vasilakos, A.V. Design and analysis of authenticated key agreement scheme in
cloud-assisted cyber–physical systems. Future Gener. Comput. Syst. 2020, 108, 1267–1286. [CrossRef]

13. Sommer, F.; Duerrwang, J.; Kriesten, R. Survey and Classification of Automotive Security Attacks. Information 2019, 10, 148.
[CrossRef]

14. Caivano, D. Continuous Software Process Improvement through Statistical Process Control. In Proceedings of the Ninth European
Conference on Software Maintenance and Reengineering, Manchester, UK, 21–23 March 2005; Institute of Electrical and Electronics
Engineers (IEEE): Piscataway, NJ, USA, 2005; pp. 288–293.

15. Baldassarre, M.T.; Barletta, V.S.; Caivano, D.; Raguseo, D.; Scalera, M. Teaching cybersecurity: The hack-space integrated model,
CEUR Workshop Proceedings. In ITASEC, Proceedings of the Third Italian Conference on Cyber Security, Pisa, Italy, 13–15 February 2019;
University of BariAldo Moro: Bari, Italy, 2019; Volume 2315.

16. Lokman, S.F.; Othman, A.T.; Abu-Bakar, M.-H. Intrusion detection system for automotive Controller Area Network (CAN) bus
system: A review. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 184. [CrossRef]

17. Carsten, P.; Andel, T.R.; Yampolskiy, M.; McDonald, J.T. In-Vehicle Networks. In Proceedings of the 10th Annual Cyber and
Information Security Research Conference on-CISR ’15, London, UK, 6–8 April 2015; Association for Computing Machinery
(ACM): New York, NY, USA; pp. 1–8.

18. Gmiden, M.; Gmiden, M.H.; Trabelsi, H. An intrusion detection method for securing in-vehicle CAN bus. In Proceedings of the
2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse,
Tunisia, 19–21 December 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 176–180.

19. Young, C.; Zambreno, J.; Olufowobi, H.; Bloom, G. Survey of Automotive Controller Area Network Intrusion Detection Systems.
IEEE Des. Test Comput. 2019, 36, 48–55. [CrossRef]

https://ocslab.hksecurity.net/Datasets/datachallenge2019/car
https://ocslab.hksecurity.net/Datasets/datachallenge2019/car
http://doi.org/10.1109/COMST.2016.2521642
http://doi.org/10.3390/s21144736
http://doi.org/10.1016/j.compeleceng.2020.106555
http://doi.org/10.1109/COMST.2018.2881008
http://doi.org/10.3390/app10020714
http://doi.org/10.1109/TIFS.2015.2407326
http://doi.org/10.1007/s11219-020-09501-6
http://doi.org/10.1109/MCOM.2017.1600363CM
http://doi.org/10.1016/j.future.2018.04.019
http://doi.org/10.3390/info10040148
http://doi.org/10.1186/s13638-019-1484-3
http://doi.org/10.1109/MDAT.2019.2899062

Sensors 2022, 22, 360 19 of 20

20. Qu, X.; Yang, L.; Guo, K.; Ma, L.; Sun, M.; Ke, M.; Li, M. A Survey on the Development of Self-Organizing Maps for Unsupervised
Intrusion Detection. Mob. Netw. Appl. 2019, 26, 808–829. [CrossRef]

21. Yao, X.Q.; Tang, G.; Hu, X. Method for recognizing mechanical status of container crane motor based on SOM neural network.
In IOP Conference Series: Materials Science and Engineering; IOP: London, UK, 2018; Volume 435, p. 12009.

22. NCSL. Autonomous Vehicles|Self-Driving Vehicles Enacted Legislation; NCSL: Washington, DC, USA, 2019.
23. Madrigal, A.C. Inside Waymo’s Secret World for Training Self-Driving Cars. In The Atlantic; Carnegie Mellon University:

Pittsburgh, PA, USA, 23 August 2017.
24. Dikmen, M.; Burns, C.M. Autonomous driving in the real world: Experiences with tesla autopilot and summon. In Proceedings

of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, New York, NY, USA,
24 October 2016; ACM: New York, NY, USA, 2016; pp. 225–228.

25. Eustice, R. University of Michigan’s Work toward Autonomous Cars; Technical Report; University of Michigan: Ann Arbor, MI,
USA, 2015.

26. Fagnant, D.J.; Kockelman, K. Preparing a nation for autonomous vehicles: Intelligent connected vehicles: The industrial practices
and impacts on automotive value-chains in China recommendations. Transp. Res. Part A Policy Pract. 2015, 77, 167–181. [CrossRef]

27. Koscher, K.; Czeskis, A.; Roesner, F.; Patel, S.; Kohno, T.; Chekoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; et al.
Experimental security analysis of a modern automobile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
Berkeley/Oakland, CA, USA, 16–19 May 2010.

28. Checkoway, S.; Damon, M.; Kantor, B.; Anderson, D.; Shacham, H.; Savage, S.; Koscher, K.; Czeskis, A.; Roesner, F.; Kohno, T.
Comprehensive experimental analyses of automotive attack surfaces. In Proceedings of the USENIX Security Symposium,
San Francisco, CA, USA, 8–12 August 2011.

29. Miller, C.; Valasek, C. A Survey of Remote Automotive Attack Surfaces; BlackHat: Las Vegas, NV, USA, 2014.
30. Song, H.M.; Kim, H.R.; Kim, H.K. Intrusion detection system based on the analysis of time intervals of CAN messages for

in-vehicle network. In Proceedings of the 2016 International Conference on Information Networking (ICOIN), Kota Kinabalu,
Malaysia, 13–15 January 2016.

31. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun.
2020, 21, 100198. [CrossRef]

32. Cover, T.M.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
33. Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
34. Zhang, Y.; Chen, X.; Jin, L.; Wang, X.; Guo, D. Network Intrusion Detection: Based on Deep Hierarchical Network and Original

Flow Data. IEEE Access 2019, 7, 37004–37016. [CrossRef]
35. Liang, L.; Ye, H.; Li, G.Y. Toward Intelligent Vehicular Networks: A Machine Learning Framework. IEEE Internet Things J. 2019, 6,

124–135. [CrossRef]
36. Hoppe, T.; Kiltz, S.; Dittmann, J. Security threats to automotive CAN networks Practical examples and selected short-term

countermeasures. Reliab. Eng. Syst. Saf. 2011, 96, 11–25. [CrossRef]
37. Taylor, A.; Leblanc, S.; Japkowicz, N. Anomaly detection in automobile control network data with long short-term mem-

ory networks. In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (DSAA 2016),
Montreal, QC, Canada, 17–19 October 2016; pp. 130–139.

38. Wang, C.; Zhao, Z.; Gong, L.; Zhu, L.; Liu, Z.; Cheng, X. A Distributed Anomaly Detection System for In-Vehicle Network Using
HTM. IEEE Access 2018, 6, 9091–9098. [CrossRef]

39. Bezemskij, A.; Loukas, G.; Gan, D.; Anthony, R.J. Detecting Cyber-Physical Threats in an Autonomous Robotic Vehicle Using
Bayesian Networks. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), Exeter, UK, 21–23 June 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp.
98–103.

40. Kang, M.-J.; Kang, J.-W. A Novel Intrusion Detection Method Using Deep Neural Network for In-Vehicle Network Security.
In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; Institute
of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 1–5.

41. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.B.; Wang, Y.; Iqbal, F. Malware Classification with Deep Convolutional
Neural Networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security
(NTMS), Paris, France, 26–28 February 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018;
pp. 1–5.

42. Lin, Z.; Shi, Y.; Xue, Z. IDSGAN: Generative Adversarial Networks for Attack Generation against Intrusion Detection. arXiv 2018,
arXiv:1809.02077.

43. Miller, C.; Valasek, C. Remote Exploitation of an Unaltered Passenger Vehicle. In Proceedings of the Black Hat USA 2015, Las
Vegas, NV, USA, 1–6 August 2015; pp. 1–91.

44. Miller, C. Lessons learned from hacking a car. IEEE Des. Test Comput. 2019, 36, 7–9. [CrossRef]
45. Petit, J.; Shladover, S.E. Potential cyberattacks on automated vehicles. IEEE Trans. Intell. Transp. Syst. 2015, 16, 546–556. [CrossRef]
46. He, Q.; Meng, X.; Qu, R. Survey on cyber security of CAV. In Cooperative Positioning and Service (CPGPS); IEEE: Harbin, China,

2017; pp. 351–354.

http://doi.org/10.1007/s11036-019-01353-0
http://doi.org/10.1016/j.tra.2015.04.003
http://doi.org/10.1016/j.vehcom.2019.100198
http://doi.org/10.1109/TIT.1967.1053964
http://doi.org/10.1007/BF00116251
http://doi.org/10.1109/ACCESS.2019.2905041
http://doi.org/10.1109/JIOT.2018.2872122
http://doi.org/10.1016/j.ress.2010.06.026
http://doi.org/10.1109/ACCESS.2018.2799210
http://doi.org/10.1109/MDAT.2018.2863106
http://doi.org/10.1109/TITS.2014.2342271

Sensors 2022, 22, 360 20 of 20

47. Integrating Autonomous Vehicle Safety and Security. 2017. Available online: https://www.researchgate.net/publication/321323
032_Integrating_Autonomous_Vehicle_Safety_and_Security (accessed on 10 March 2019).

48. El-Rewini, Z.; Sadatsharan, K.; Selvaraj, D.F.; Plathottam, S.J.; Ranganathan, P. Cybersecurity challenges in vehicular communica-
tions. Veh. Commun. 2020, 23, 100214. [CrossRef]

49. Alkahtani, H.; Aldhyani, T.H.H. Botnet Attack Detection by Using CNN-LSTM Model for Internet of Things Applications. Secur.
Commun. Netw. 2021, 2021, 3806459. [CrossRef]

50. Khan, M.A.; Karim, M.R.; Kim, Y. A Scalable and Hybrid Intrusion Detection System Based on the Convolutional-LSTM Network.
Symmetry 2019, 11, 583. [CrossRef]

51. Alkahtani, H.; Aldhyani, T.; Al-Yaari, M. Adaptive anomaly detection framework model objects in cyberspace. Appl. Bionics
Biomech. 2020, 2020, 6660489. [CrossRef] [PubMed]

52. Kim, J.; Kim, J.; Kim, H.; Shim, M.; Choi, E. CNN-Based Network Intrusion Detection against Denial-of-Service Attacks. Electronics
2020, 9, 916. [CrossRef]

53. Zheng, Z.; Yatao, Y.; Niu, X. Wide & Deep Convolutional Neural Networks for Electricity-Theft Detection to Secure Smart Grids.
IEEE Trans. Ind. Inform. 2017, 14, 1606–1615.

54. Ullah, A.; Javaid, N.; Omaji, S. CNN and GRU based Deep Neural Network for Electricity Theft Detection to Secure Smart Grid.
In Proceedings of the 2020 International Wireless Communications and Mobile Computing, Limassol, Cyprus, 15–19 June 2020.

55. Yao, R.; Wang, N.; Liu, Z.; Chen, P.; Sheng, X. Intrusion Detection System in the Advanced Metering Infrastructure: A Cross-Layer
Feature-Fusion CNN-LSTM-Based Approach. Sensors 2021, 21, 626. [CrossRef] [PubMed]

56. Kang, M.J.; Kang, J.W. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security. PLoS ONE 2016,
11, e0155781. [CrossRef] [PubMed]

57. Loukas, G.; Vuong, T.; Heartfield, R.; Sakellari, G.; Yoon, Y.; Gan, D. Cloud-Based Cyber-Physical Intrusion Detection for Vehicles
Using Deep Learning. IEEE Access 2017, 6, 3491–3508. [CrossRef]

58. Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN based Intrusion Detection System for In-Vehicle Network. In Proceedings of the IEEE
Access 2018 16th Annual Conference on Privacy, Security and Trust (PST), Belfast, Ireland, 28–30 August 2018; pp. 1–6. [CrossRef]

59. Zhu, K.; Chen, Z.; Peng, Y.; Zhang, L. Mobile Edge Assisted Literal Multi-Dimensional Anomaly Detection of In-Vehicle Network
Using LSTM. IEEE Trans. Veh. Technol. 2019, 68, 4275–4284. [CrossRef]

60. Avatefipour, O.; Al-Sumaiti, A.S.; El-Sherbeeny, A.M.; Awwad, E.M.; Elmeligy, M.A.; Mohamed, M.A.; Malik, H. An Intelligent
Secured Framework for Cyberattack Detection in Electric Vehicles’ CAN Bus Using Machine Learning. IEEE Access 2019, 7,
127580–127592. [CrossRef]

61. Yang, Y.; Duan, Z.; Tehranipoor, M. Identify a Spoofing Attack on an In-Vehicle CAN Bus Based on the Deep Features of an ECU
Fingerprint Signal. Smart Cities 2020, 3, 17–30. [CrossRef]

https://www.researchgate.net/publication/321323032_Integrating_Autonomous_Vehicle_Safety_and_Security
https://www.researchgate.net/publication/321323032_Integrating_Autonomous_Vehicle_Safety_and_Security
http://doi.org/10.1016/j.vehcom.2019.100214
http://doi.org/10.1155/2021/3806459
http://doi.org/10.3390/sym11040583
http://doi.org/10.1155/2020/6660489
http://www.ncbi.nlm.nih.gov/pubmed/33376505
http://doi.org/10.3390/electronics9060916
http://doi.org/10.3390/s21020626
http://www.ncbi.nlm.nih.gov/pubmed/33477451
http://doi.org/10.1371/journal.pone.0155781
http://www.ncbi.nlm.nih.gov/pubmed/27271802
http://doi.org/10.1109/ACCESS.2017.2782159
http://doi.org/10.1109/PST.2018.8514157
http://doi.org/10.1109/TVT.2019.2907269
http://doi.org/10.1109/ACCESS.2019.2937576
http://doi.org/10.3390/smartcities3010002

	Introduction
	Related Works
	Contribution
	Materials and Methods
	Dataset
	Preprocessing
	Proposed System of the Deep Learning Algorithm
	Evaluation Metrics

	Experiments
	Splitting the Dataset
	Environment Setup
	Results

	Discussion
	Conclusions
	References

