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supplements

Table S1. Evaluation metrics for Sensor vs reference instrument comparison. In this table si is 
sensor value and ri is reference grade instrument value and s̄, r̄ are their respective means. n is 
number of observation N is total number of observations. d is the difference in the paired ranks of s 
and r values

metric equation inferences

Correlation coefficient (r)[1,2] r = ∑(si−s̄)(ri−r̄)√
∑(si−s̄)2∑(ri−r̄)2

Indicates linear relationship between
sensor measured values and corresponding
reference instrument values

Spearman’s correlation
coefficient (ρ) [3] ρ = 6 ∑ di

2

n(n2−1)

Indicates the monotonic relationship
between sensor measured values and
reference corresponding reference
instrument values

Mean Absolute error (MAE)
[4] MAE = 1

N ∑i=n
i=1 |si − ri|

Indicates the average difference between
the sensor values and reference instrument
values

Mean bias error (MBE) [5] MBE = 1
N ∑i=n

i=1 (si − ri)
Indicates average bias between the sensor
values and reference instrument values

Root mean squared error and
(RMSE) Normalized root
mean squared error(nRMSE)
[6–9]

RMSE =
√

1
N ∑i=n

i=1 (si − ri)2

nRMSE =

√
1
n ∑i=n

i=1 (si−ri)2

1
2N ∑i=n

i=1 (si+ri)

It is a good measure of sensor accuracy.
Indicates the sensors values dispersion from
the refrance grade instrument

Table S2. metric for reproducibility and repeatability. In this table σ is standard deviation and µ is mean

metric equation inferences

coefficient of variation (CV)
[10]

σ
µ Indicate the precision of sensors

In the figure S1, The leftmost circle represents, all commercial sensors available in the market
and rightmost circle represents the final list of sensors after our methodology, out of which we can 

select the desired. The size of the circle decrease as we progress form left to right since the right one is 4 

the subset of the left one. Decreasing size of circle from left to right illustrates decrease in number of 5 

sensors in the list. Therefore selecting sensors from left circle is more cumbersome than from the right 6 

one.
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Algorithm S1 The proposed procedure to select sensors is illustrated in the following steps, and 
how this procedure can help to reduce the efforts in the selection of sensors is illustrated in figure s1.

Step 1: List the application details such as
Location of the study, duration of the study, availability of reference station near by,
meteorology of the site (temperature and humidity), major pollution sources

Step 2: Study the basic statics of the data that is collected in the location i.e.,
Range and mean of temperature & humidity, Wind speed, wind direction and distribution of
the pollutants of interest (optional and possible only if near by reference station is available)

Step 3: Find out sensors of which type (MOS/EC/PM/others) suitable in the application.
Every sensor type has certain limitations and advantages [11,12]. Map these details with the
data gathered in steps 1 and 2 to figure out suitable sensor type.

Step 4: List of sensors finalized type for the pollutant of interest that are available in the market.
The extensive list reported in the studies [12–16] can help in this regard

Step 5: Study the data-sheets of listed sensors and discard which are not suitable for the study.
This can be done based on characteristics of the sensors mentioned in the data-sheets, like
the range of measurement, accuracy, sensitivity. Studies by Maag et al. [17] and Rai et al. [12]
useful to understand these characteristics.

Step 6: Check for the peer-reviewed evaluation studies of the remaining sensors in the literature.
According to them, we can further reduce the list of sensors, makes the selection task easy.

Step 7: Do cost trade off
Finally, we can select the best possible LCS suitable for our application.

Step 8: Basic input, output testing to check working of sensors
Step 9: Proceed with calibration and evaluation discussed in the next sections.

 X = Sub set of L Y = Sub set of X Z = Subset of Y

M

E

P

L

Selection based on sensor type

Selection based on characterisitcs

K = Sub set
of Z

Selection based on existing evaluation

Selection based on characterisitcs

R = Sub
set of K

Selection based on cost

Figure S1. Graphical representation of minimizing available LCS set with our procedure, that makes
the selection is easy from a minimal set. Here L : set of all commercial available sensors, M : metal oxide
sensors, P : particulate sensors, E : electrochemical sensors, O : L - (M ∪ P ∪ E) represents other sensors
of advanced sensing principles like graphene etc. X, Y, Z, K, R are different subsets of L, where R is
having minimum number of sensors. Circle size decrements from left to right indicates the reduction
of sensor list out of which suitable can select
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