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Abstract: A fire is an extraordinary event that can damage property and have a notable effect on
people’s lives. However, the early detection of smoke and fire has been identified as a challenge
in many recent studies. Therefore, different solutions have been proposed to approach the timely
detection of fire events and avoid human casualties. As a solution, we used an affordable visual
detection system. This method is possibly effective because early fire detection is recognized. In
most developed countries, CCTV surveillance systems are installed in almost every public location
to take periodic images of a specific area. Notwithstanding, cameras are used under different types
of ambient light, and they experience occlusions, distortions of view, and changes in the resulting
images from different camera angles and the different seasons of the year, all of which affect the
accuracy of currently established models. To address these problems, we developed an approach
based on an attention feature map used in a capsule network designed to classify fire and smoke
locations at different distances outdoors, given only an image of a single fire and smoke as input. The
proposed model was designed to solve two main limitations of the base capsule network input and
the analysis of large-sized images, as well as to compensate the absence of a deep network using
an attention-based approach to improve the classification of the fire and smoke results. In term of
practicality, our method is comparable with prior strategies based on machine learning and deep
learning methods. We trained and tested the proposed model using our datasets collected from
different sources. As the results indicate, a high classification accuracy in comparison with other
modern architectures was achieved. Further, the results indicate that the proposed approach is robust
and stable for the classification of images from outdoor CCTV cameras with different viewpoints
given the presence of smoke and fire.

Keywords: capsule network; attention feature map; smoke detection; fire detection; deep learning;
artificial intelligence; classification

1. Introduction

Early fire detection is considered a challenging yet important task, considering its
direct impact on human safety and the environment. State-of-the-art technology requires
appropriate solutions for detecting fires during its earliest possible stage to avoid the
possibility of harming human beings [1].

Fire control has always been a challenge to countries around the world. Fires can
become uncontrollable, particularly in developing countries, owing to a lack of financial
resources required to predict and control the likelihood of such events. Preventing fire
events is considered to be of the highest priority owing to unrecoverable damage to
populations and even an entire country. Conventionally, fires can be detected using sensory
systems that define changes in the presence of smoke or temperature within a compartment.
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However, not all modern surveillance systems can cover a vast area and provide detailed
information regarding the location or level of a fire.

According to the U.S. Fire Administration (USFA), 1.4 million fire incidents were
reported by the National Fire Protection Association in the US in 2020. As a result of
such fires, 3500 deaths, 15,200 injuries, and approximately USD 21.9 billion in damage
occurred [2].

In addition, thousands of closed-circuit television (CCTV) systems have been installed
in public locations by national and local authorities. In 2016, 74,000 cameras were installed
in the geographically vital areas of South Korea; however, by 2020, this number had
increased substantially to 1.34 million. The main aim of installing such cameras is to ensure
the safety of the public from unwanted events such as accidents and fires. The ubiquitous
use of CCTV systems has helped decrease crime by 45% in areas where such systems have
been installed [3].

Deep learning is a popular method for processing the massive number of CCTV
images and creating models for identifying unwanted events such as fires and theft. CCTV
technologies coupled with deep learning algorithms can help control crime significantly,
monitoring specific zones such as kindergartens and traffic areas [4].

Modern CCTV cameras and surveillance systems can use deep learning and similar
technologies to detect the presence of fires and smoke at their earliest stages. The ability of
CCTV cameras to monitor different types of catastrophes has been proven in numerous
studies [5–7]. An intelligent CCTV system can eliminate disasters such as smoke and fire
or detect break-ins and other abnormal events. Thus, CCTV is an effective tool for smart
cities and societies, contributing to a safe and healthy environment.

Nonetheless, the frequent utilization of CCTV within a range of monitoring areas
cannot guarantee fire detection during the early stages. Thus, the threat to human life
remains in such cases. In other words, fire and smoke detection systems are expensive and
inconvenient in terms of indoor installation, and have proven to be less accurate when
the image viewpoint changes. Although deep learning algorithms generate results with
maximum accuracy in different applications, such as object detection and face recognition,
the real-time prediction of fire events remains in a preliminary state and is therefore worth
investigating to achieve a state-of-the-art capability.

Fire detection and notification can be achieved through two basic approaches, i.e.,
sensor- and vision-based methods. A sensor-based approach requires sophisticated equip-
ment such as infrared, smoke, and temperature sensors. As a downside of this approach,
it is expensive with outrageously high installation costs. Moreover, such sensors are
low-powered devices and thus induce a time delay and misleading alarms.

By contrast, vision-based methods are territorial and the cost is lower than that of
sensor-based approaches. The primary goal is to use regular RGB images or videos and
to deliver more detailed information in fire detection. In addition, CCTV surveillance
systems are already installed in most public locations, which can help in reducing the
installation cost. Moreover, vision-based cameras can detect fires much faster owing to
high-performing computing abilities and GPUs. Finally, vision-based cameras can observe
larger areas that help diagnose fires as early as possible to prevent flames.

The two approaches above coupled with state-of-the-art deep learning algorithms
can be used to build an effective model to predict a fire with high accuracy and a faster
response time. There are a variety of massively popular deep learning algorithms used
in predicting patterns and features in a given image. For example, convolutional neural
networks (CNNs) and newer algorithms based on a CNN are popularly used for predicting
diseases, through irregular patterns in medical imaging. In this paper, we used the capsule
network baseline (CNB) algorithm, which is a variant of the base CNN.

The CNB architecture includes a first digit capsule layer, second convolutional layer,
and third primary capsule layer [8]. This approach uses small groups of neurons called
capsules. Each of these capsules is designed to detect a specific feature in the image and
recognize it in different scenarios, for example, at different angles. The capsules, in turn,
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form layers to identify objects in video or images. When several capsules in one layer make
the same decision, they activate another capsule at a higher layer. This process continues
until the network can infer what it is seeing.

As shown in Figure 1, the CNB architecture includes a feature extraction layer using
convolutions and a primary module composed of several capsule layers followed by a
classification (digit) layer. The information held in the primary capsule block is given to
the classification (digit) layer, which uses a dynamic routing method stated above, and this
method is called routing by agreement. Furthermore, the coupling coefficients among the
capsules in the primary and classification (digit) capsule layers are renovated to increase the
classification performance. The output of the classification capsule layer is a class capsule
of classes, and the norm of every class indicates the foretelling capability for every class.
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Figure 1. Capsule network architecture.

Our proposed model can be used to represent an essential role in advance. Primary
classification in this domain requires positional relations among features for achieving an
optimal performance.

Using our architecture, we can analyze the spatial relationships among the features
and relevant locations in an input by using a capsule network structure.

We propose the application of two broad technical modifications to the original dy-
namic routing algorithm under the following conditions:

1. A concise overview of the attention feature map is given. We use an attention feature
map based on the capsule network to build our architecture. As we use an attention
feature map, we develop a robust capsule network-based approach that takes a lower
layer and routes to a higher layer within a limited spatially local window.

2. We use large sizes to learn the features from fire input images. The introduction of
new capsule-type transformation matrices uses portions of the grid. These changes
support our input on large image sizes with convolutional capsules having a pixel
resolution of up to 512 × 512. Details are provided in Section 3.

3. We propose an attention feature map for modeling multi-level reliability at large
distances between image regions by combining low- and high-level capsule features.
We vindicated this in our experiments described in Section 5.

The paper is structured as follows: The review of some related studies is presented in
Section 2. Section 3 presents a detailed description of the classification of our methods and
materials. The specifics of the dataset used in our experiments are detailed in Section 4. Our
experiments and the results achieved are given in Section 5. Subsequently, the conclusions
and future directions are presented in Section 6.

2. Related Work

In this paper, we discuss the research conducted in the field of fire and smoke detection,
divided into two main approaches, i.e., computer vision and deep learning.
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2.1. Computer Vision Based on Smoke and Fire

Detecting fine smoke or fire at a farther distance in an uncertain CCTV environment
in the early stage is vital for timely intervention to avoid large-scale damage. Various tools
and methods have been used to recognize smoke and fires based on image processing
algorithms. Most smoke and fire detection methods use sensors, such as outdoor CCTV
systems, which are estimated to detect the presence of smoke or flames. The main limita-
tions of sensors are their minimal range, and an outdoor environment requires widespread
detection systems to cover all areas. As a result, they can only identify fires or flames
near a designated location. Initially, many researchers endeavored to develop handcrafted
techniques for fire detection by concentrating on the action and color properties of flame
detection.

Although a wide number of studies have been carried out, many focused on the
localization level and hazardous fire and smoke. Recognizing fire at an early stage is a
significantly important matter. State-of-the-art technologies require relevant fire detecting
systems that can help prevent the occurrence of numerous fire accidents worldwide.

Primarily, experts have focused on the motion and color features of fire detection to
build customized algorithms for fire alarm systems. In [9], a method based on Markov002
was applied. The study in [10] developed a camera technique for fire movements and
static residential fire detection, which uses the color, boundary, length, and overall shape
of the fire. A tiny flame, such as a candle, is used as an afterthought in this approach.
Such an approach can have a significant difficulty in early flame detection because it
removes and then applies fire development features for an assessment. In this study,
the method combination HSV and YCbCr [11] was proposed. This technique requires a
further transformation of the color area and is preferable to utilizing a single-color area
technique. However, the authors solely employed the static features of the fire. The
technique is unstable and fragile. Although another method [12] used hydrogen sensors to
improve traditional fire detection systems and to increase the accuracy of fire detection,
they shortened the range of sensitivity. Moreover, to detect moving pixels in an image, the
authors in [13] proposed a method for estimating the background of a Gaussian mixture.
This method defines fire areas based on their color patterns, and then conducts a wavelet
analysis in both the space and time domains. Thus, it can analyze the capacity of high-
frequency activities in an area. Similar to the previous method, this detection system also
has computing problems limiting its practical usage. An efficient method of fire detection
proposed in [14] improves a traditional fire detection method using flickering algorithms
installed into the scheme to indicate the flame in color video sequences incrementally.
In [15], the authors tried to improve the Gaussian model by using motion-based and
multicolor detection and obtained good experimental results. Despite this, the method
could not be applied to everyday life, because of the high computational time required.
As a result, the test results indicated that the proposed algorithms are practical, solid, and
efficient.

In [16,17], the authors proposed a fire detection model with higher accuracy. Their
method operates with different types of flame characteristics. An approach following the
fire pixel detection technique based on ICA K-medoids, considered the foundation for prac-
tical use, has also been presented [18]. In [19], a new color-differentiated conversion matrix
system resistant to false positives was demonstrated. Another group of researchers [20]
introduced a new low-cost camera with beneficial smoke and flame detecting features
for RGB and HSV. However, this camera for use went through limitations in-camera for
popularity and application. In [21], owing to the limitations of RGB cameras, the authors
used an ultra-spectral camera to control factors that cannot discern between common light
(halogen or LED) and a flame. Although the results are promising, there may be certain
limitations, such as the higher cost of the camera. The researchers proposed the use of a
flame flicker and color sign for fire detection [22]. In addition, in [23], a method based on
the radiation domain was introduced from a combination of feature models.
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Nonetheless, these methods require the domain knowledge of smoke and fire in the
images, which is crucial for exploring hand-crafted features, and they cannot reflect the
spatially and temporally involved aspects in smoke and fire outdoors. Moreover, most
conventional methods only use a still image or consecutive pairs of frames to detect a fire.
Hence, they reflect the short-term dynamic action of the fire rather than the longer-term
dynamic action.

2.2. Deep Learning-Based Vision for Smoke and Fire Detection

All of the research studies on smoke and fire detection mentioned above differ from
those based on computer vision in many different ways.

To begin with, deep learning algorithms were used to conduct an automatic feature
extraction from a tremendous quantity of data for training, as well as discriminative
characteristics studied using a neural network for fire and smoke detection. From another
perspective, deep neural networks can easily be introduced into many other spheres of life.
Finally, they can be widely used in constructing a robust dataset and achieving an efficient
network structure.

From the discussions above, although video-based fire detection has been studied
and has rapidly matured with multidisciplinary technology used to solve the existing
limitations of the modern method, several problems remain. In comparison to the image
type used in an experiment, a camera image cannot always have rich color information,
which can result in a higher rate of false negatives. The false positive indicator can increase,
while the algorithm involves fewer fire attributes. Therefore, traditional fire detection must
be optimized given the practicality. By contrast, the DL-based approach has the advantage
of an automatic extraction of the characteristics. The process is much more efficient and
reliable than conventional image processing technologies.

However, this deep learning approach requires many heavy calculations during train-
ing and applies hardware to conduct specific tasks and training. For fire detection, dis-
tributing the algorithm function on heavy equipment, such as personal computers, is
useless because the unit must be similar in terms of existing fire detectors and cost. Various
deep learning approaches for fire detection have been proposed [24] through studies on
forest fire alarms conducted using fire patches with a fine-tuned pre-released CNN, called
“Alexnet” [25,26]. In [27], CNN-based fire detection approaches VGG-16 [28], ResNet-
50 [29], and Yolo3 [30] were proposed as a reference architecture.

CCTV and video alert systems can help decrease the detection time compared to other
available sensors in interior and exterior scenarios. Surveillance cameras can monitor the
amplification without any transport slowdowns that traditional “point” sensors suffer
from. CCTV cameras are mainly suitable for observing fire in passenger cars or homes,
offices, and factories within a 100 m distance. In the case of forest or rural areas, other
more advanced technologies must be used and optimized for scenes observing distances of
several kilometers. Numerous studies on the detection of fire in videos [31–33] have been
recently suggested in the field of image/video classification.

CapsNet has been recommended as a powerful functional extraction technology and
robust model structure. As a result, traditional computer vision methods are being replaced
by deep learning methods. Our proposed method adopts models that classify smoke and
fire in an image/video. An incorrect categorization of images or videos increases the
incorrect fire alarm rate owing to changes in the perspective deformations, shadow, and
brightness. We detected a template that uses fire and smoke, showing images based on an
attentional feature map using CapsNet to learn and extract the powerful attributes of the
frame.

3. Materials and Methods

Proposed Network Architecture
As demonstrated in Figure 2, the input size from the capsular network has a pixel

resolution of 512 × 512 when passing through a convolutional layer, creating k × k feature
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maps of the exact spatial dimensions. This first set of capsule outputs form a k × k vector,
where we have one capsule type with a 512 × 512 mesh of capsules. This is followed by the
first layer of the convolutional capsule. In the next step, we generalize our convolutional
capsules and routing to any layer in the network. In the layer, there are many types of
capsules.
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Cl =
{

Cl
1, Cl

2, . . . , Cl
n

∣∣∣nεN
}

(1)

For each cι
i ε Tι, type of capsule, there is a height, weight, and grid zl size of low-level

capsules,
L =

{
l1,1, . . . , l1,wl , . . . , chl ,1, . . . , chl ,wl

}
(2)

The height and weight are the spatial dimensions of the output layer i− 1, and there
are i + 1 capsule types at the next level of the network.

Cl+1 =
{

cl+1
1 , cl+1

2 , . . . , cl+1
m

∣∣∣mεN
}

(3)

where each layer cl+1
i ε Cl+1 of the network capsule has the weight, altitude, and zl+1 size

of the high-level capsules

H =
{

h1,1...,h1, wl+1,1...,hhl+1,1,...,hhl+1, wl+1

}
(4)

In each capsule cl+1
i ε Cl+1 of the convolution, the high-level part hx,y ε H receives

sets of prediction vectors: {
v̂ x,y|cl

1
, v̂ x,y|cl

2
, . . . , v̂ x,y|cl

n

}
(5)

This set of vectors is defined as multiplying the matrix between the studied conversion
matrix M cl+1

j
for this type of high-level capsule and the subnet of low-level capsule output
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data Vx,y|cl
i
. Equation (5) is within the user-defined core with the center at position (x, y) in

the layer, and therefore:

v̂ x,y|cl
i=

Mcl+1
j
×Vx,y|cl

i
, ∀ cl

i ε Cl (6)

Each Vx,y|cl
i

has the form j, where kh × kw × zl is the size of the user-defined kernel

for capsules for all types. Each matrix M cl+1
j

is shaped with kh × kw × zl × zl+1. Thus, in

Equation (6), each v̂ x,y|cl
1

is the dimension vector zl+1, which will be used to form high-level
capsules.

The same conversion matrix is used in all spatial areas within this capsule type to dras-
tically reduce the number of parameters to be studied. The values of these transformation
matrices for each capsule in the layer are studied using the reverse propagation algorithm
with a controlled loss function.

The output feature matrix is extracted from the CapsNet high and low convolutional
layer and then passed to the attention feature map (Figure 3). The objects at all levels are
then combined and transferred to the residual network for achieving a convolution and a
standard map of objects.
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Fmap = {Conv([FL, FH ]) (7)

Here, the mask layers of a low-level capsule layer and the high-level elements from
the layers of a high-level capsule are used. This helps the capsule network model connect
remote regions and balance between efficiency and long-term dependencies by providing
a weighted sum of features across all locations in the image. We determine a non-local
operation as:

ηij(x) = f (xi)
Tm
(
xj
)
,

f (xi) = Wg, m
(
xj
)
= Fmap.

(8)

where WgCrxr and FmapεCrxr are the learned weight matrices, as illustrated in Figure 3;
high- and low-level capsule networks feature a map output inserted into the convolutional
layers with a kernel size of 5 × 5, followed by ReLU, and learns a unique weight tensor for
attention feature maps. In particular, the learning of unique weight tensors is formulated
as:

M = σ
(
Wg × Fmap + b

)
(9)

where M denotes the weight tensor corresponding to the input map.
After the second convolution, the sigmoid function processes the resulting weight

tensor, identifies the protruding areas, and removes the function responses to preserve the
activation units. The original feature maps are then combined with each weight tensor by
performing an element-wise multiplication operation that results in a weighted feature
map. Finally, the element-wise addition operation combines the weighted feature maps to
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create the final weighted summary feature map. The final output attention feature map is
formulated as follows:

A = M× Fmap (10)

The final result of attention map A is then transferred to the entry-level. The output
vector of capsule j will be vj. The vector length, which means the probability that a particular
object is at a given location in the image, must be between 1 and zero. To ensure this, we
used a compressing function that stores information about the location of the object. Short
vectors are reduced to zero, and long vectors are reduced to less than 1. The abbreviation
function is described as follows:

υj =
||ΣitijWijA||2(

1 + ||ΣitijWijA||2
) ΣitijWijA

||ΣicijWijA ||
(11)

All capsules are in the layer above j and capsule i, where Wij is the weight matrix, and
tij is the coupling coefficients between them, as shown in Equation (11), and is considered
through iterative dynamic routing steps:

tij =
exp

(
bij
)

Σi exp
(
bij
) (12)

Here, bij is the logarithm of the prior probabilities that capsule ith should be connected
to capsule jth. In addition, the vj vector is used to obtain the reconstructed image during
training, which provides the highest coupling factor. Here, tij runs the correct vj through
two fully connected ReLU layers. The loss of restoration of the LR

(
I, Î
)

architecture is
defined as follows:

LR
(

I, Î
)
= ||I − Î ||22 (13)

where I is the 512 × 512-sized input image and Î is the reconstructed image. The loss
function is calculated using a summation of the output of the logistic units and the pixel
intensity and their quadrate differences. Through this process, capsules optimally learn
the parameters’ properties for reconstruction, which generalize the ability of the model to
learn properties’ parameters with an accuracy almost to the pixel. If the model learns better
reconstruction, the output will be with high predictability. Then, the reconstruction loss is
input to the next LM margin loss function.

LM = Σ
k Skmax

(
0, m+ − ||υk ||

)2
+ Σ

k λ(1− Sk)max
(
0, ||υk|| −m−

)2 (14)

Here, Sk = 1 if a pattern of class k is present. From here, the momentum in Equation
(14), m+ = 0.9, and the amount of motion is selected m− = 0.1. The proposed pass-through
architecture is estimated, and the total loss function LT , based on weight, which is the sum
of all losses of the k total classes, is estimated as follows:

LT = LM + ξ IsLR (15)

Here, ξ = 0.0005 is the regularization factor for each channel pixel value, which ensures
that restoration loss does not prevail over the LM during training.

In addition, Is = h × w × Ch—indicates the number of inputs based on height, width,
and number of input channels.

4. Dataset

High-quality fire and smoke datasets are extremely rare and, when open for public
use, they are generally of low quality for evaluating and analyzing the proposed methods.
Therefore, we mainly collected data from various internet resources to test it on our model.
The primary size of our data was from pixels from 512× 512 images. The datasets contained
three main parts: smoke, fire, and negative images. For training and testing, each section
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contained 4000 images. Table 1 lists the information on a number of all images, as shown in
Figure 4, below. We trained and tested the proposed model using our datasets collected
from different sources. In total was used 12.000 images. Many of them were opened by
the owners for use, and some of them that needed some copyright issues were asked
permission for using in our research.

Table 1. Dataset information.

Name of Class Images Smoke Fire Negative Amount

Dataset 4000 4000 4000 12,000
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5. Experiments and Results

In this section, we describe the experimental setup and generated results individually.
First, we prepared our implementation details for training and obtained the results. We
then comprehensively discussed our results.

Implementation Details
The training setup was designed based on the PyTorch framework [34] and trained

through the following configuration: Stochastic Gradient Descent (SGD) [35] was used for
the backpropagation optimization applied, binary cross-entropy loss function, learning rate
(LR) of 0.0005, and 100 epochs. The CPU model of the test equipment was an Intel® Core™
i7-9750H CPU@2.60 GHz, and the software environment was CUDA 10.1, Python 3.7, as
portrayed in Table 2.

Table 2. Performance hardware and software of computer.

Technology Description

Programming language Python 3.7
OS Windows

Deep Learning library PyTorch
CPU Intel(R) core™ i-7 9750H
GPU GeForce GTX 1660 Ti
RAM 16.00 GB RAM
Cuda 10.1

In addition to these infrastructure changes, we had to perform many tests on various
parameters of dozens of tests to train the entire model using different hyper parameters.
To accelerate and parallelize the training process, we implemented our CUDA models so
that we could use the GPU to reduce the training time. All three authors had access to
GPU-related labs where they conducted their thesis. All GPUs were GeForce GTX 1660Ti 16
GB. We spent at least 30 of the superior CapsNet for our results in this article, each of which
took about 4 h, so the bottom line of our GPU-hours was 120. We found that changing
the standard hyper parameters, describing SGD depending on batch size, learning rate,
speed, and momentum, did not significantly affect the final performance. This is because
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our CapsNets had already come together, so these parameters could only reduce the time
spent learning. The hyperparameter that interests us most is the number of iterations of
routing from the dynamic routing algorithm. This parameter is unique to CapsNets and
has important consequences for their performance and execution. Each time the output is
run, multiple routing operations are performed to determine three routing operations. We
conducted a number of experiments where we set the number of routing operations per one
of 1, 2, 3, 4, and 5. Although 3 iterations gave good test accuracy, in general, 2 performed
about some cases, even better. This is interesting for two reasons. First, it contradicts the
original article. It may be that 3 iterations converged to become more stable than 2, but we
translated our experiments several times and obtained similar graphs each time. Second, it
may be indicative that the proposed dynamic routing algorithm was too sharp. The process
of determining which primary capsules are inserted into which Digit capsules is complex,
and it would be incredible if the algorithm ever needed only two iterations to do this well.

In this section, the classification results of the offered and other classical methods are
evaluated. All methods under review have been assessed based on their accuracy (A),
specificity (SP), and sensitivity (SE). “A” reflects a classifier′s overall effect of prediction.
The two variables SP and SE, respectively, represent the positive and negative predictive
power. The following Equation (16) are used to assess the performance of the models under
evaluation.

A = TP+TN
TP+FP+TN+FN

SE = TP
(TP+FN)

SP = TN
FP+TN

(16)

where TP denotes true positive/blocking, TN denotes true negative/nonblocking, FP
denotes false positive/blocking, and FN denotes false-negative/nonblocking.

The power of classification of the models was measured based on the receive operating
characteristic curve (AUC) area, which is considered a significant metric to demonstrate
the effectiveness of a classification by means of changing the threshold of discrimination.
A Matthew Correlation Coefficient (MCC) is another indicator of binary (two-grade) clas-
sifications quality. The MCC is used to consider the relationships of balancing the four
confusion matrix categories, i.e., TP, TN, FP, and FN, and objectively reflects the models′

predicting power without being influenced by the disproportionate ratio of positives and
negatives contained in the dataset. Equation (17) is used to calculate the MCC:

MCC =
(TP× TN)− (FP× FN)√

(FP + TN)(FP + TP)(FN + TN)(FN + TP)
(17)

The name of the dataset for training was adopted for training all models, and to
monitor the training processes, the fivefold cross-validation method was used. The training
set was randomly divided into five subsets for fivefold cross-validation. Four of the five
subsets were used as the training data. The validation data for testing the model used the
remaining subset. The process of cross-validating was repeated six times, and each of the
five subsets was used once as the validation data. The average result of the six runs was
calculated to obtain a single estimation.

The results of the fivefold cross-validating process for the training set are shown in
Table 3. Based on the given results, the best performance pertains to the CapsNet variable.
The overall accuracy prediction (A) for the CapsNet model reached 99.4%. It is important
to stress that the MCC values of CapsNet accounted for 0.884, respectively, which also
constituted the highest of all MCC values (Table 3); in addition, a higher MCC value
frequently indicates greater predictive power of the model.
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Table 3. Comparing results with a different architecture.

Capsule Network Architecture SE SP MCC A (%)

Original CapsNet 80.4% 86.7% 0.673 84.1%
FC+FC 82.6% 86.7% 0.694 85.0%

Conv+FC 82.6% 84.6% 0.687 84.6%
Conv+FC+FC 84.5% 85.3% 0.693 84.9%

Conv+Conv+FC+FC
(our model) 99.0% 99.7% 0.884 99.4%

Conv+Conv+Conv+FC+FC 81.9% 86.9% 0.685 84.9%

For the purpose of comparing the performance of the given models with other ap-
proaches, widely used machine learning techniques were applied to develop predictive
models using the same training set of fire data. To this end, such machine learning methods,
including a logistic regression (LR), deep belief network (DBN), light gradient boosting
machine (LightGBM), multilayer perceptron (MLP), k-nearest neighbors (k-NN), support
vector machine (SVM), and convolutional neural network (CNN), were used. The hyper
parameters for these methods were optimized using a five-fold cross-validation process
beforehand, and the optimal hyper parameters are given in Table 4. Table 4 also lists the
results of predictions for the fire dataset name, test set, as well as an external validation set.

Table 4. Comparison of accuracies of the same training dataset of smoke and fire classification for
different methods.

Model SE SP MCC A (%) AUC

Test Set

Our Model 91.8% 92.9% 0.850 92.4% 0.955

CNN [36] 87.0% 85.0% 0.715 85.9% 0.933

MLP [37] 82.4% 86.4% 0.687 84.7% 0.920

DBN [38] 72.2% 80.8% 0.533 80.8% 0.903

SVM [39] 90.7% 84.4% 0.743 87.1% 0.933

k-NN [40] 69.4% 96.6% 0.703 85.1% 0.928

Logistic
regression

[41]
88.8% 83.7% 0.710 85.5% 0.858

LightGBM
[42] 79.6% 82.3% 0.617 81.2% 0.810

Validation Set

Our Model 88.9% 71.4% 0.554 76.7% 0.806

CNN 94.4% 52.4% 0.441 65.0% 0.725

MLP 88.9% 57.1% 0.426 66.7% 0.707

DBN 88.9% 52.4% 0.386 63.3% 0.683

SVM 88.9% 52.4% 0.386 63.3% 0.660

k-NN 77.8% 52.4% 0.279 60.0% 0.624

Logistic
regression 83.3% 52.4% 0.332 61.7% 0.623

LightGBM 61.1% 59.5% 0.190 60.0% 0.609
The MCC values and overall accuracy of prediction (A) were 92.4%.

Table 4 demonstrates an obviously higher level of prediction accuracy of the capsule
network model with respect to the seven models, mentioned above. Table 4 provides a
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summary of the results of a capsule network prediction and other popular CNN-based
classification models. Table 4 shows that the model demonstrates an outstanding predictive
capacity for the fire dataset name, test set, as well as for the external validation set. The
accuracy of prediction of the capsule network model was 99.4%, whereas the prediction
accuracy of the CNN classification models was at approximately 90.8%.

As demonstrated in Figure 5, the AUC values for both the external validation and
test sets were at 0.955, respectively. Taken altogether, this unequivocally indicates that the
established capsule network can both provide a correct classification for the training set
compounds, as well as demonstrate excellent predictability for external agents that are not
included in the training set.
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Figure 5. Result of AUC scores of capsule network.

Figure 6 shows the images of fire and smoke classifications. The method under review
showed an outstanding capacity to derive important features from the images. At instances
where the images were difficult to differentiate, the features studied by the capsule network
were observed at the terminal layers when utilizing the activation map approach. With
the recommended method, higher-end results were achieved for the images that looked
similar. The proposed capsule network model was proven to be 99.4% greater than other
traditional and popular deep models for the images of fire and smoke classification.

In our work, we were able to obtain 30 FPS with our model on the processor. The
latest versions of Tensorflow and PyTorch are optimized for performing certain operations
on multiple kernels and can be controlled by parameters. Thus, the absence of a GPU does
not mean that the process is impossible or time-costly. For example, this may be the case if
you are dealing with cloud computing with limited resources.

We also used certain methods to speed up the GPU output even more. In such cases,
if the GPU supports fp16, it will simply apply mixed-precision, which is part of the latest
versions of PyTorch and TensorFlow. This allows for using the accuracy of fp16 for some
layers and fp32 for others, maintaining the numerical stability of the network and thus
maintaining accuracy. The alternative and even more effective way to accelerate the model
is TensorRT conversion. This is a more complex method, but it can provide a 5x faster
output. There are also other obvious optimization options, such as resizing and output.
The flexibility of the system was important in this case because we wanted to process not
only video files but also different video-recording formats. It showed a good FPS in the
range of 30−60 depending on the configuration used.

We previously claimed that the use of the local window size in the capsule layers helps
efficiently solve our classification task. However, we do not know exactly how large the
capsule should be. We proved that the large size that we chose is the best option for solving
the current challenge. The results are shown in Figure 6.
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6. Conclusions

In this paper, our proposed model is described for the visible detection of smoke and
fire classification using an attention feature map based on capsule networks. Our model
has a robust design that allows firefighters to categorize outdoor CCTV images in real-time.
Using this proposed approach, we applied the following main components: an attentional
function map, large-sized input images, high features, and a local window. We showed
experimentally that the current problem can be efficiently solved using these contributions.
The proposed model is simple to design and can be trained fast. The proposed solution
achieved promising results for accuracy in comparison to the state-of-the-art. In terms
of false positives, it reduced the background errors in nonfire and smoke videos. The
proposed method fulfilled the high accuracy, even with videos consisting of challenging
features such as the sun and clouds. The proposed work solution is suitable for its low-
resolution and real-time performance when compared to the other methods. Our results
showed that the model can detect smoke and fire in a short period of time as an early
alerting alarm for the occasion of fire and smoke accidents. To evaluate the performance
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of our model and to compare it with other approaches, we experimented with a custom
dataset, which contained highly variable images, occlusions, different viewpoints, and
lighting and weather conditions such as rainy, cloudy, and sunny days. We conducted
experiments comparing the performance and generalizability of our approach with other
current methods. These experimental results confirmed that our proposed capsule network
method is the best among different well-known architectures. Our model provides higher
accuracy for completely new images than previous approaches. The proposed method is
effective, allowing researchers to detect fires at an early stage, determine the location of a
fire, and save the lives and property of people.

In a future study, we will explore expansion models more efficiently and in detail
with thermal cameras or drone feature representations, and we look forward to improving
the model by applying a 3D convolutional neural network, where a 3D network obtains
features from both extensional and temporal dimensions based on 3D convolutions.
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