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Abstract: The rapid increase in illicit drug use and its adverse health effects and socio-economic
consequences have reached alarming proportions in recent years. Surface-enhanced Raman scattering
(SERS) has emerged as a highly sensitive analytical tool for the detection of low dosages of drugs
in liquid and solid samples. In the present article, we review the state-of-the-art use of SERS for
chemical analysis of illicit drugs in aqueous and complex biological samples, including saliva, urine,
and blood. We also include a review of the types of SERS substrates used for this purpose, pointing
out recent advancements in substrate fabrication towards quantitative and qualitative detection of
illicit drugs. Finally, we conclude by providing our perspective on the field of SERS-based drug
detection, including presently faced challenges. Overall, our review provides evidence of the strong
potential of SERS to establish itself as both a laboratory and in situ analytical method for fast and
sensitive drug detection and identification.

Keywords: surface-enhanced Raman scattering; Raman spectroscopy; point-of-care diagnostics; drug
detection; illicit drugs

1. Introduction

The increasing rate of illicit drug use and its consequences for the physical and
mental health of individuals has become a major concern in recent years. According to
the United Nations Office on Drugs and Crime (UNODC), around 275 million people
used drugs in 2019, up by 22 percent from 2010, while almost half a million people lost
their lives from drug use in that year [1]. In addition to fatalities, drug abuse can have
various other irreversible physical and psychological consequences, including a weakened
immune system, seizures, productivity losses, economic damage, and increased crime
rates [2]. Rapid, accurate, and affordable drug detection and identification methods can
be a powerful tool in our efforts to reduce devastating effects stemming from illicit drug
use, or more generally, drug abuse. Drug detection methods can not only reduce fatalities
among people who use drugs but also improve the safety and welfare of our society by
assisting in the monitoring of trends and hotspots of drug abuse [3].

Numerous techniques have been employed for illicit drug detection in forensic toxi-
cology, such as nuclear magnetic resonance [4,5], mass spectrometry [6,7], combined gas
chromatography/mass spectrometry (GC-MS) [8,9], high-performance liquid chromatog-
raphy (HPLC) [10], and X-ray powder diffraction [11]. In spite of their high molecular
specificity, the aforementioned methods are typically centralized and require extensive
sample preparation, expensive reagents, trained personnel, and time-consuming analysis.
Such methods are not ideal for in situ drug testing or routine use by small publicly-funded
organizations. Analytical techniques that combine user-friendliness with the ability for in
situ sample testing have also been employed in illicit drug detection. Ultraviolet-visible
(UV-Vis) spectrophotometry [3,12] is a simple and fast method; however, it provides a
narrow spectral range and is only fit for the detection of a certain number of drugs [13].
Fourier transform infrared (FTIR) spectroscopy [14,15] suffers from water interference,
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while enzyme-linked immunosorbent assays [16,17] cannot match the low detection capa-
bilities of the other methods. Commercial portable detection kits are currently available
only for a limited number of drugs and require large sample volumes and specialized
reactants [18,19].

Owing to their specificity and non-invasiveness, spectroscopic techniques, especially
Raman spectroscopy, are highly effective in detecting trace amounts of illicit drugs in
clinical and forensic applications. Raman spectroscopy is defined as a Category A technique,
i.e., a technique with the highest amount of identification power for drug samples [20]. By
contrast, ion-mobility spectrometry (IMS) is a Category B technique (less identification
power), whereas color change tests are placed in category C (least). As a reagent-free,
accurate, and rapid technique, Raman spectroscopy has been widely used for illicit drug
detection in forensic analyses [21,22]. The presence of a conjugated ring system makes
many drugs strong Raman scatterers, resulting in relatively large Raman cross-sections [23].
Databases containing the Raman “fingerprints” of many illicit drugs, such as cocaine [14,24]
α-methyltryptamine hydrochloride, and 3,4-methylenedioxymethamphetamine (MDMA),
also known as ecstasy [25], legal highs [26], and many of their analogues are already
available. Owing to its small cross-section for water, Raman spectroscopy is not subject to
solvent interference in aqueous solutions, which is a significant advantage over infrared
spectroscopy for analyzing aqueous samples [27]. Raman spectroscopy’s sensitivity to the
intrinsic molecular properties of analytes such as molecular structure, molecular weight,
charge density, and functional groups allows the collection of quantitative and qualitative
information for a given molecule [28].

However, the relatively low sensitivity of Raman spectroscopy is an impediment to its
widespread use as a method for ultrasensitive detection and chemical analysis [29]. While
typical cross-sections for absorption in the infrared and ultraviolet regions are ca. 10−21

and 10−18 cm2, respectively, per molecule, for Raman spectroscopy, the corresponding
cross-sections are as low as ca. 10−29 cm2. This shortcoming can be overcome with the
application of an alternative mode of Raman spectroscopy called surface-enhanced Ra-
man scattering (SERS) [30,31] SERS is performed by placing the molecules to be detected
in contact with a plasmonically active (metallic) nanostructure, often called the “SERS
substrate” [32]. In SERS, when a molecule is adsorbed onto nano-roughened noble metal
surfaces such as silver, gold, and copper, Raman spectra will be considerably amplified.
Plasmonic nanoparticles (PNP), which are usually Ag, Au, or Cu, show strong surface
plasmon resonance (SPR) in the visible to the infrared region and can generate a strong
localized SPR (LSPR) effect. Hence, at the nanoparticle surface, the energy of the inci-
dent light is effectively coupled into the metal nanoparticles resulting in a considerable
enhancement in the local electromagnetic field intensity, which is key to SERS intensity. The
electromagnetic field enhancement preferentially appears in the sharp features, crevices,
and gaps of the material’s surface. SERS can theoretically produce up to a 1014-fold signal
enhancement, thus reaching single-molecule detection capabilities [33]. Unlike fluores-
cence, which exhibits broad adsorption/emission bands of the molecules, SERS has narrow
spectral peaks. Moreover, the signal enhancement provided by SERS is necessary for the
detection and identification of many drugs. For example, fentanyl and its analogues are
often cut in less than 5.0 wt.% of the total sample, thereby becoming undetectable with
conventional Raman. Moreover, the metabolite-to-parent drug concentration ratio helps
determine the period the drug remained in the body, hence the time of last consumption.
For the purpose of drug detection, SERS is a potential tool to instantly identify samples
present in various forms, such as fiber textiles, nails, fingerprints, hairs, and beverages,
which prevents the destruction of criminal evidence.

In the present article, we review the state-of-the-art use of SERS for chemical analysis of
illicit drugs in aqueous and complex biological samples, including saliva, urine, and blood.
We also include a review of the types of SERS substrates used for this purpose, pointing
out recent advancements in substrate fabrication towards quantitative and qualitative
detection of illicit drugs. Finally, we conclude by providing our perspective on the field
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of SERS-based drug detection, including presently faced challenges. Overall, our review
provides evidence of the strong potential of SERS to establish itself as both, a laboratory
and in situ, analytical method for fast and sensitive drug detection and identification.

2. Applications of SERS in Drug Detection
2.1. SERS Substrates for Drugs Detection Applications

Substrate choice is a critical factor in SERS. The intensity of the SERS signal depends
highly on the geometrical features of the metallic nanostructure and its interaction with
the molecule of interest [34]. Therefore, a great deal of effort has been invested into better
understanding the effects of nanoscale features present on SERS-active substrates [35]. In
particular, plasmon couplings in small gaps (1-10 nm) between plasmonic nanoparticles
produce an intense electric field [36]. Ideally, a SERS substrate should produce a uniform
and reproducible response, generate high enhancement, and be robust and straightforward
to fabricate [14]. The SERS substrates that have so far been used for drug detection appli-
cations can be classified into two general categories: (i) colloidal systems and assemblies;
(ii) and metallic nanostructures on flat, solid supports.

2.1.1. Colloidal Systems and Assemblies

The most commonly used SERS substrates are colloid-based due to their high sta-
bility, low cost, and ease of fabrication and implementation. Owing to the advances in
nanotechnology and nanoscience, metallic nanoparticles with different shapes and sizes
have been synthesized through chemical replacement [37], chemical reduction [38], thermal
deposition [39,40], chemical deposition [41] and ultrasonic decomposition methods [42].
Due to their high surface plasmon resonance effect in the visible and the near-infrared
wavelength ranges, colloidal silver and gold with sizes ranging from 10–150 nm are the
most common metallic particles used for SERS-active substrates [29].

A typical chemical process for substrate fabrication is by reducing a metallic salt in the
presence of sodium citrate [43]. However, other reducing agents such as hydrochloride,
hydroxylamine, hydrazine, and sodium borohydride have also been used [44–47]. Gener-
ally, weaker reducing agents result in larger nanoparticles, while stronger reducing agents
produce smaller nanoparticles. Colloidal substrates prepared by chemical reduction are
commonly used to detect alkaloids such as cocaine, morphine, methamphetamine, and
some structurally similar cannabinoids [47–49].

Yan et al. prepared high-density hotspots with the optimum arrangement and excel-
lent reproducibility through Dynamic Surface-enhanced Raman spectroscopy (D-SERS)
(Figure 1) [50]. Dynamic Surface-enhanced Raman spectroscopy is based on two methods:
solution-based and dry nanostructure film-based methods. The solution-based method
involves transforming the nanoparticles from the wet state to the dry state, resulting in
ordered three-dimensional (3D) hotspots, allowing for SERS detection with excellent repro-
ducibility. Dry nanostructure film-based SERS detection is based on placing the colloidal
nanoparticles on a solid substrate and sample drying on the substrate [51,52]. Using
4-mercaptopyridine as the internal standard, the resulting substrate exhibited great poten-
tial for the quantitative analysis of MDMA. Employing Ag colloidal particles produced by
reducing silver nitrate hydroxylamine, Berg et al. showed differences in SERS and normal
Raman spectra of amphetamine and amphetamine-H+ and between various conformers
using ab initio model calculations [53]. Using silver hydroxylamine as the colloidal solution,
Alharbi et al. detected tramadol in water and artificial urine with a limit of detection of
5.0 × 10−4 M and 2.5 × 10−6 M, respectively [54]. Carter et al. fabricated a SERS substrate
from a colloidal silver solution to show the spectrum of freebase cocaine [24]. Haddad et al.
reported the detection of fentanyl alone and as an adulterant in heroin using a paper-based
substrate impregnated with silver nanoparticles [55]. Aggregation caused 1 to 2 nm gaps
between silver nanoparticles, producing hotspots with 1010 enhancement factors. Burr et al.
integrated Raman spectroscopy and paper spray ionization mass spectrometry (PSI-MS)
with dual-purpose plasmonic paper substrates on a single-instrument platform [56]. Plas-
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monic papers were prepared by embedding paper swabs into the AgNPs colloidal solution.
The modification resulted in a low detection limit of 0.6 ng and 1.0 ng for cocaine and
fentanyl, respectively. The addition of Ag nanoparticles into polymer microgels gave rise
to flexible SERS substrates, which can be further engineered into “smart” sensors with the
incorporation of electrostatically charged or temperature-responsive molecules [57,58].
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3D hotspots, and aggregate of Au NPs, respectively [50].

2.1.2. Nanostructures on Flat, Solid Supports

Although metal nanoparticles are easy to produce, the fabrication of SERS substrates
based on aggregated and dispersed metal nanoparticles for analytical applications is limited
due to poor reproducibility and low enhancement factor. SERS substrates fabricated by
immobilizing plasmonic nanostructures on planar surfaces provide a means of bringing
nanoparticles in the vicinity of one another [59,60]. Planar substrates are suitable for inte-
gration in microfluidics and miniaturized devices. For some configurations of particles,
such as spherical ones, aggregation is the critical factor in increasing the magnitude of the
SERS effect [61]. In addition, type, size, orientation, interparticle distance in aggregated
nanoparticles, roughness, and thickness of the film are critical factors for SERS perfor-
mance [62,63]. In the following paragraphs, the assembly of metallic nanostructures on flat,
solid supports is discussed.

Nanoparticle self-assembly. Self-assembly of nanoparticles over large areas (up to
a few cm2) offers advantages such as high amounts of captured analyte. A variety of
methods have been employed to self-assemble nanoparticles on solid surfaces. For example,
the self-assembly of nanoparticles can be achieved through the chemical attachment of
nanoparticles to a solid substrate. Zhang et al. achieved controlled self-assembly of
gold nanoparticles into a 3D hotspot structure by regulating the addition of halogen
ions [64]. Kang et al. implemented a bottom-up approach to achieve self-assembly of a
close-packed gold octahedral array that exhibited an intense electric field at the edges and
sharp corners of the nanostructure [65]. Ye et al. fabricated densely-packed, 2D arrays of
plasmonic nanoparticles via nanoparticle self-assembly at the water-oil interface [66]. Small
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interparticle distances created highly stable, reproducible plasmonically active materials,
enabling accurate quantitative SERS measurements.

Normally, bifunctional molecules are used to form a compact layer with the surface
by one chemical moiety while having the other moiety interact with metal nanoparticles
through chemical or electrostatic interactions. In this technique, capping agents play an
essential role in preventing the aggregation of nanoparticles and forming a uniform layer.
This method can also be employed to fabricate multi-layered nanoparticle structures [67].
After the deposition of the first layer, the surface is immersed in a ligand solution to act
as a linker for the immobilization of subsequent layers [68,69]. The ligand molecules
help control the interparticle distance to ∼1 nm and bring the nanoparticles close to one
another [70]. However, the layers’ homogeneity cannot be totally controlled since the
nanoparticles tend to cluster after the deposition of each extra layer [71].

Directed assembly of nanoparticles. Dies et al. presented a novel approach that pro-
vides ultrasensitive detection of illicit drugs [72]. Extended and interconnected dendritic
nanostructures were fabricated through an electric field-guided assembly process of Ag
nanoparticles, resulting in high hotspot density (Figure 2A). Additionally, the prepared
substrate could act as a concentration amplification device by actively capturing analyte
from the solution via electric field effects, thereby improving the detection of trace levels
of illicit drugs. With the aid of statistical analysis methods (PCA and SVM), ultrasensitive
identification and quantification were performed with almost 100% accuracy in detecting
four different illicit drugs (heroin, THC, cocaine, and oxycodone). Dies et al. also employed
electrokinetics to assemble nanoparticles on a scratched conductive surface [73]. Through
the assembly of Ag nanoparticles on a scored conductive surface using an alternating
current electric field, the formed substrate could detect trace levels of drugs, including
cocaine and methanol, with high sensitivity.

In a novel work, Han et al. proposed a portable kit for in-field detection of am-
phetamine in human urine [74]. Highly reproducible two-dimensional (2D) Au nanorods
were assembled by methoxymercaptopoly (ethylene glycol) (mPEG-SH) capping to enhance
the adsorption of amphetamine to the gold surface, resulting in an excellent uniformity and
reproducibility. The package consisted of a mini-Raman device and a platform for sample
preparation to separate the analyte from human urine (Figure 2B). The detection limit for
amphetamine was 0.1 ppm, and the device was employed for the accurate detection of
MDMA and methcathinone in human urine, as well.

Meng et al. also provided a way to quantitatively detect cocaine in human urine
samples with self-assembled 2D gold nanoparticle films [75]. The nanoparticles were
functionalized with CTAB, forming uniform close-packed nanoparticle films as a SERS
substrate. High signal enhancement was achieved by producing sub-10 nm gaps for
trapping the analyte. The device could detect cocaine with a limit of detection of 100 ppm
and 500 ppm in an aqueous solution and a urine sample, respectively. Si et al. reported
self-assembled soft and optically semi-transparent plasmene nanosheets to detect trace
amounts of drugs [76]. Owing to their sharp edges, nanocubes were employed as the
building blocks, offering additional SERS enhancement by means of the optical antenna
effect. The resulted platform detected benzocaine with a detection limit of 0.9 × 10−6 M.

Han et al. presented a paper-based SERS substrate decorated with uniform gold
nanospheres for detecting fentanyl citrate in urine and serum [77]. The substrate was
prepared by a liquid/liquid self-assembly technique, and chloride ions were applied to
clean and modify the substrate surface. The resulting solid substrate had an enhancement
factor and limit of detection of 1.64× 105 and 0.59 g/mL for the detection of fentanyl citrate
in artificial urine, respectively (Figure 2C).

Electrostatic interactions are another means of assembling metal nanoparticles on solid
supports [78]. This can be achieved by employing polymers as adhesives, e.g., polyelec-
trolytes [79], polyvinyl pyrrolidone (PVP) [80], polyvinyl pyridine [81], and polystyrene [82].
Biomolecules, such as DNA [83] and proteins [84], are used as linkers, sometimes acting as
recognition elements.
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Figure 2. (A) (i) Schematic presentation of SERS-active substrates and detection process. (ii) Spectra
obtained for illicit drugs tested and blank sample (water deposited on Ag dendrites). (iii) Plot of
first three principal components used to cluster the spectra from different illicit drug analytes for
identification. Each cluster consists of 20 spectra, and ellipsoids indicate a 95% confidence interval
for each group [72]. (B) Illustration of a portable kit for rapid SERS detection of drugs in real
human urine [74]. (C) Steps involved in the fabrication of gold nanoparticle cluster arrays using
polystyrene-block-poly(2-vinylpyridine) (PSb-P2VP) templates on a silicon or glass surface [77].

Yap et al. demonstrated the self-assembly of citrate-stabilized gold nanoparticles
onto 2D, highly ordered arrays of uniform polyelectrolyte templates. Self-assembly was
driven by electrostatic interactions between the negatively charged Au nanoparticles and
the positively charged pyridinium groups on the silicon substrate prepared through the
self-assembly of polystyrene-block-poly(2-vinyl pyridine) [85].

Electrochemical growth of nanostructures. Other methods, such as reducing ions on
the substrate, have been employed to prepare solid SERS substrates [86,87]. Wilson et al.
introduced a novel silver SERS substrate, assembled by electrochemically reducing silver
ions onto a silicon chip with planar photolithographed gold electrodes, for the sensitive
detection of fentanyl [88]. Through submerging Si-Au microchips into an aqueous solution
of Ag+ and citrate ions and applying an AC potential to the microchip, SERS active silver
nanostructures were formed onto the electrodes’ edge (Figure 3). The reported limit of
detection for fentanyl was 0.078 ppm.
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2.2. Experimental Factors That Influence Substrate Performance

The performance of a SERS system is subject to a number of parameters, which,
if tuned properly, can enhance the plasmonic resonance of the metallic structure. Such
parameters include the size, shape, surface modification, capping agent, type of solvent, and
aggregation state of nanoparticles, all of which depend on metal salt, surfactant, reductant,
pH, and reaction time [89]. However, the aforementioned factors can be interdependently
addressed towards improving detection sensitivity (see also summary in Table 1).

Using a systematic approach, Mabbott et al. studied the effect of pH, aggregation
time, and aggregation agent in SERS signal optimization to detect 5,6-methylenedioxy-
2-aminoindane (MDAI) at very low concentrations [90]. The combination of KNO3 as
the aggregation agent, pH 7.0, and aggregation time of 1800 s were found to produce the
best SERS performance. Kline et al. also developed a colloidal SERS platform integrated
into a microfluidic device to detect illicit drugs including methamphetamine, codeine,
and morphine. The performance of the device was optimized by exploring the role of
nanoparticle material, nanoparticle size, capping agents, and excitation wavelength on
SERS signals and drugs’ detection limit [49].

Although colloidal assemblies can be physically adjusted to gain higher enhancement
factors, the proximity of the analyte to the hot spot of the metallic structure also has a
major effect on SERS detection ability. Enriching the analyte concentration in the proximity
of SERS-active plasmonic surfaces through analyte manipulation or fabrication of hybrid
materials can enhance SERS performance by 10–104 fold [91]. Naqvi et al. fabricated a
SERS substrate by reduced graphene oxide nanosheet decorated with silver nanoparticles
(rGO/Ag NPs) through a simple wet chemical method [91]. The homogenous, stable
substrate provided high-density hotspots for the SERS analyses.

Employing a novel approach, Liu et al. prepared a 3D hotspot matrix through evap-
oration of a droplet containing citrate and Ag ions on a silicon wafer to detect methy-
lamphetamine (MAMP) and MDMA [51]. They concluded that their structure produced
hotspots between every two nearby particles in 3D space and provided an excellent struc-
tural basis to trap analytes and molecules. In another work, a SERS-active substrate was
prepared by assembling individual Au nanoparticles onto the surface of Ag nanowires
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using spontaneous capillary imbibition [92]. In addition to the ease of fabrication and the
ability to form evenly spatially distributed hotspots, the Ag nanowires coupled with Au
nanoparticles acted as an optical antenna. The single hotspot prepared a nanochannel to
trap the molecules to the capillary imbibition, resulting in the high-sensitivity detection of
cysteamine and adenosine-50-triphosphate down to 10.0 nM.

Surface functionalization is a practical approach for ensuring the selectivity of col-
loidally assembled SERS substrates. Employing molecules or chemical groups that can
exclusively bind moieties (i.e., viruses, proteins, and antibodies) have been employed and
resulted in more selective detection of target analytes in the presence of interferents that
can overlap with the specific target signals [93].

Masterson et al. reported a sensitive substrate for detecting cocaine, heroin, fentanyl,
and their binary mixtures [94]. The substrate was prepared by first functionalizing trian-
gular nanoprisms with poly(ethylene glycol)-thiolate in the solid-state and, subsequently,
by generating flexible plasmonic patches and forming high-intensity electromagnetic hot
spots (Figure 4). Sebok et al. proposed a selective substrate by adsorption of L-cysteine and
L-glutathione on the surface of gold substrates for the selective detection of Ibuprofen and
Dopamine, respectively [95]. Chen et al. introduced a reagent-less aptameric sensor based
on SERS with “signal-on” architecture using a model target of cocaine [83]. The sensor was
modified by self-assembly of 3-mercaptopropionic acid (MPA) and a 5′-terminal thiolated
oligonucleotide aptamer with tetramethylrhodamine (TMR) in the presence of cocaine. Yu
et al. proposed a selective substrate for quantitively monitoring the level of dopamine [96].
Citrate, as both the capping agent of Ag nanoparticles and the sensing agent of dopamine,
was self-assembled on the surface of Ag dimers by reacting with carboxylic groups on the
surface of Ag nanoparticles, forming a stable amide bond. A high SERS hotspot region
with an intense electric field generated at the gap of the Ag nanoparticle dimers allowed
for highly selective detection of dopamine. Stewart et al. modified the surface of metallic
nanoparticles with different mixed thiol ratios for the selective detection of amphetamine
derivatives such as MDMA [97]. The modification provided a strong covalent bond be-
tween the metallic surface and the thiol groups, resulting in a high selectivity for MDMA
and a detection limit of 1.5 × 10−5 M. Sulk et al. used substrate functionalization for simul-
taneous quantification and identification of methamphetamine and amphetamine [98]. The
amines functionalized with 2-mercaptonicotinic acid (2-MNA) bound to the substrate and
pentachloro thiophenol (PCTP). The intensity of the Raman bands of analyte was measured
relative to the Raman band of internal standard.

Table 1. Summary of experimental factors, studied in terms of their influence on the performance of
SERS substrates.

Experimental Factor Investigated Reference

Nanoparticle aggregation agent, aggregation time, pH [90]
Nanoparticle size, capping agent, excitation wavelength [49]

SERS substrate material [49,91]
3D structure and surface topography of substrate [51,92,94]

Chemical surface functionalization of SERS substrates [83,93–98]

2.3. Drug Identification in Biological Fluids Using SERS
2.3.1. Saliva

Saliva sampling is a practical approach that lends itself to noninvasive, sensitive,
and in situ screening for illicit drug consumption. Oftentimes, the concentration of some
common drugs of abuse is higher in saliva than in plasma. In comparison with other
biofluids such as urine or blood plasma, saliva provides a faster, more straightforward, and
more controllable sampling and its testing can be performed by nonmedical personnel. It
could be used to detect recently ingested drugs since the average residence time of a drug
in the saliva is comparable to that in blood plasma (24–48 h). There have been multiple
reports regarding saliva sampling to explore illicit drugs in forensic toxicology [99–101].
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Spectroscopy is particularly suited for the development of drug detection techniques due
to its high sensitivity and ability to discriminate between drug analogues. A comparison
of various spectroscopic methods in terms of their ability to detect illicit drugs in saliva
samples is offered by D’Elia et al. [101]. According to that report, SERS emerges as one of
the most sensitive spectroscopic techniques for drug detection in oral fluids.
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tape is placed on the Au TNP-containing a glass substrate (D) Au TNPs are lift off from the glass to 

Figure 4. Schematic presentation of SERS substrate functionalization and drug detection process.
(A) Chemically synthesized Au TNPs in acetonitrile are immobilized onto an APTES-functionalized
glass substrate through incubation. (B) Au TNPs are functionalized with PEG-thiolate. (C) Adhesive
tape is placed on the Au TNP-containing a glass substrate (D) Au TNPs are lift off from the glass to
the tape. (E) human biofluids drop-casted directly onto the nanosensor resulting in physisorption of
drugs onto TNPs. (E) SERS spectra collection. (F) Bluish gray area in the photograph is the plasmonic
patch and the overall construct resembles with Band-Aid [94].

The amount of consumed cocaine can be correlated to its metabolite concentration
in saliva samples. In addition, it is possible to predict the last time of cocaine use by the
metabolite-to-parent drug ratio [102]. Inscore et al. described a method that could consis-
tently detect 50 ppb of cocaine and other drugs of abuse such as diazepam, amphetamine,
and phencyclidine in saliva using silver and gold doped sol-gel immobilized in glass
capillaries [103]. The improvement in signal intensity was provided by electropositive
silver and electronegative gold nanoparticles to alter the interaction between the drugs and
the plasmonic nanostructures via attracting charged chemical groups. Farquharson et al.
proposed a SERS substrate for testing 150 different drugs in saliva samples [104]. In this
work, fused gold colloids trapped in a porous glass matrix contained in glass capillaries,
made possible the detection of trace amounts of the target analyte. A search-and-match
method was used to better screen the results, which compared the SERS spectra of the
experiment to those already available. The method allowed the detection and identification
of 50.0 ng/mL cocaine, 1.0 µg/mL diazepam, 10.0 µg/mL acetaminophen, and 1.0 µg/mL
of phencyclidine.

Compared to traditional SERS detection in saliva samples, integration of microfluidics
with SERS results in improved signal reproducibility, allowing for the direct detection
of an analyte through the interaction of the surface plasmons and the target analyte in a
liquid environment.

Through integration with microfluidics, Andreou et al. developed various SERS plat-
forms to detect drugs of abuse in saliva within minutes using Ag colloidal nanoparticles
as a sensing medium (Figure 5) [105]. The device provided partial separation through
analyte diffusion from the complex matrix. The concentration gradient of the chemi-
cals, raised by laminar flow in the device, was used to control the interactions between
the analyte in a saliva sample, Ag nanoparticles, and a salt. The target molecules first
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diffused laterally into the side flows and salts diffused into the colloid flow, allowing
nanoparticles to aggregate, resulting in a sensitive detection with strong signals. In another
report, D’Elia et al. proposed a solid substrate made of gold nanorods fabricated by a
seed-mediated, surfactant-assisted method for identifying ultra-traces of cocaine in saliva
without any sample treatments [106]. Using Orthogonal Projections to Latent Structures
Discriminant Analysis (OPLS-DA) as a multivariate analysis method on samples analyzed
by SERS, it was possible to categorize various cocaine concentrations without any sam-
ple preparation. The proposed device could identify cocaine at a concentration as low
as 1.0 ng/mL.
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Figure 5. Flow-focusing microfluidic device used for controlled Ag-NP aggregation [105]. (A) Ag-NP
suspension, a saliva sample, and salt solution are loaded in the device and driven through it by
a vacuum pump. (B) At the flow-focusing junction, the sample stream is enveloped by the side-
streams and diffusion drives lateral mass transport between the laminar flows, here visualized with
a fluorescent dye. (C) Ag NP, analyte, and salt solution are introduced to the channel from the left
and flow toward the right. Analyte molecules resident in the focused stream diffuse laterally into the
side flows. Salt ions also diffuse into the colloid stream inducing controlled nanoparticle aggregation,
creating SERS-active clusters that convect downstream [105].
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The combination of SERS with solid-phase extraction (SPE) can assist in the separation
of various types of illicit drugs with low concentrations in saliva [107,108]. Employing
sample pretreatment methods such as physical separation, chemical separation, and SPE,
Dana et al. detected concentrations of less than 25 ng/mL of cocaine in saliva. They used
gold sol-gel SERS-active capillaries to fabricate SERS substrates [109]. In addition, because
of the added chemicals during the experiments (chemical buffer solution amongst others),
they showed that it could serve as a potential procedure to detect basic drugs and acidic
drugs present in the saliva matrix.

2.3.2. Urine

Urine composed of about 95% water can be used to screen for illicit drugs that entered
the body 1–4 days earlier. Most synthetic drugs, including amphetamine and metham-
phetamine, are removed through urination [110]. Moreover, illicit drug use can also be
detected by screening for the metabolites of the parent drug, which frequently remain
present in urine for many hours, or even days. Despite these advantages, there are some
shortcomings in analyzing urine samples for drug detection. Raman signals of uric acid,
albumin, and creatinine, some of the significant urine components, can heavily interfere
with the signals of low concentrations of drugs in the sample [111,112].

Because of multiple issues with urine drug testing, Riordan et al. proposed a novel
method of sheath flow SERS to identify benzoylecgonine, the primary metabolite of cocaine,
in urine samples [113]. This method uses hydrodynamic focusing to confine analyte
molecules eluting out of a column onto a SERS planar substrate, where the molecules are
detected by their unique SERS signals. Although successful in benzoylecgonine detection,
the process is complex and lengthy due to the presence of more than 2000 compounds in
the sample.

Portable Raman spectrometers are gaining ground rapidly in forensic analysis applica-
tions. Although less efficient than their bench-top counterparts housed in the laboratory,
they are easier to use by law enforcement personnel and health professionals. An overview
of different modes of Raman spectroscopy, including spatially offset Raman spectroscopy
(SORS), Resonance enhanced Raman spectroscopy (RERS), SERS, and their in-the-field
applications in the homeland security and detection of chemical and biological hazards
can be found in [114]. Miniaturized Raman systems capable of performing in situ analysis
of forensic, pharmaceutical and art samples have been around for over ten years [115].
More recently, Han et al. proposed a portable kit for on-site detection of amphetamine in
human urine [116]. The package included a sample-preparation platform to extract the
analyte from urine by cyclohexane (CYH) and a transportable Raman device (Figure 6).
Simultaneously, spherical colloidal superstructures were formed by assembling monodis-
persed Ag nanoparticles in the CYH aqueous phase creating SERS hotspots between every
two adjacent particles in 3D space. An enhancement factor greater than 107 combined
with high enrichment of drug molecules in 3D hotspots, excellent stability, and high re-
producibility turned the device into a suitable SERS platform for quantitative analysis of
amphetamine in both human urine and aqueous solutions. Amphetamine was detected
with a detection limit as low as 10 ppb, corroborated by UPLC (Ultra Performance Liquid
Chromatography) assays.

In work conducted by Dong et al., the advantages of sample preparation and portable
systems were combined with the SVM classification method for the trace detection of
MDMA and methamphetamine in human urine samples [117]. Urine samples containing
methamphetamine and MDMA were mixed with gold nanorods (GNRs) stabilized with
polyethylene glycol methyl ether thiol (PEG-SH). GNRs caused a considerable enhancement
in SERS signals using a D-SERS platform. SVM enabled identification in complex matrices
without sample pretreatment. The model identified the target analytes in the urine of drug
users with an accuracy higher than 90%. The importance of D-SERS for the detection of
illicit drugs has been highlighted elsewhere [52,118]. Mostowtt et al. demonstrated a SERS
platform for identifying four synthetic cannabinoids with relatively similar structures in hu-



Sensors 2022, 22, 3877 12 of 22

man urine and aqueous solution samples [48]. Mixing the analytes with gold nanoparticles
prepared in alkaline or alkali earth salt solutions resulted in the nanoparticles’ aggregation
and formation of spectral hotspots. The method resulted in distinct SERS spectra for each
of the cannabinoids with the limit of the detection of as low as 18 ng/mL. Alharbi et al.
developed a SERS substrate to detect tramadol, a narcotic painkiller, in a urine sample [54].
Aggregating agents, aggregation times, incubation times, and pH were optimized step
by step to define the best parameters. Finally, hydroxylamine silver nanoparticles, 0.5 M
NaCl as an aggregating agent, and neutral pH were chosen as the optimum parameters.
The limits of detection for tramadol in water and artificial urine were calculated to be
5 × 10−4 M and 2.5 × 10−6 M, respectively.
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Figure 6. (A) Schematic and the corresponding optical images of the self-assembly of Ag NPs into
spherical Ag colloidal superstructures. (i) The addition of CYH-dispersed Ag NPs into SDS aqueous
phase. (ii) An oil-in-water emulsion through vigorous stirring. (iii) The as-prepared sols of spherical
superstructures after the evaporation of oil. (B) Schematic of SERS platform for sensing analytes
located in the 3D geometrical gaps of colloidal superstructures. (C) TEM image of a single 3D colloidal
superstructure [116].

A combination of liquid-liquid chromatography with SERS was also used for identify-
ing drugs in urine samples [44,119]. Cocaine, heroin, amphetamine and pharmaceuticals
such as procaine and (nor-) papaverine extracted with HPLC were detected in quantities
down to 1 µg with SERS performed in the wells of microtiter plates containing the analyte
and a gelatin matrix-stabilized silver halide dispersion [120]. The same research group also
showed that the combination of HPLC extraction and SERS-based detection can be used for
the characterization of small quantities (1 µg/domain) of several drugs (Carbamazepine,
Methadone, etc.) and some of their degradation products found in blood and urine [44].
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2.3.3. Blood

Contrary to urine and saliva samples, detecting and quantifying illicit drugs in human
blood is complex and challenging. Blood plasma produces strong SERS spectra that interfere
with drug signals, requiring rigorous sample extraction procedures [121].

Trachta et al. took advantage of the combination of HPLC as the separation tech-
nique and SERS to analyze drugs in human blood samples from silver halide disper-
sions deposited in the wells of microtiter plates [119]. A gradient technique based on a
methanol/buffer mixture was developed to lower the limit of detection of the investigated
drugs into the 1 µg/sample domain. Using HPLC to extract drugs from the blood serum of
patients, Zhao et al. also showed that quantities as small as a few hundred nanograms can
be detected for eight different analytes of the benzodiazepine family by using “gold films
over nanospheres” (AuFONs) SERS-active substrates with an FT-NIR (1064 nm wavelength)
Raman spectrometer [120]. Subaihi et al. employed SERS combined with multivariate
statistical analysis to detect and quantification of ß-blocker propranolol in human plasma
samples [1]. Followed by PCA and PC-DFA, the SERS spectra clearly distinguished pro-
pranolol in a concentration range of 0 to 120 µM, spiked into human plasma. The limit
of detection for the propranolol was 0.53 µM. In more recent work, they added a definite
quantity of isotopically labeled codeine as an internal standard to enhance the accuracy
of the detection of codeine in blood plasma [122]. A silver colloidal system with sodium
chloride as the aggregation agent was used for SERS enhancement. Particularly, partial
least squares regression (PLSR), as a multivariate statistical approach, was used to ana-
lyze data. The limit of detection of codeine in plasma and water were 416.12 ng/mL and
209.55 ng/mL, respectively. The results are shown in Figure 7.
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Table 2 summarizes the methods reported above, along with their detection and
performance characteristics.
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Table 2. Applications of SERS analyses of illicit drug detection.

Drug Matrix Analysis Type SERS Substrate Laser Line
(nm)

Limit of
Detection Reference

Amphetamine Aqueous solution Quantitative Ag colloidal solution 532 5 µg [23]

Benzocaine Aqueous solution Quantitative Au@Ag nanocube-based plasmene nanosheets 514 0.9 × 10−6

gr·cm−2 [91]

Cannabinol Aqueous solution Quantitative vertically aligned hexagonally close-packed AuNR arrays 632.8 1 µM [86]
Cannabinoids Aqueous solution Quantitative Colloidal AuNPs 785 18–60 ng·mL−1 [74]

Chrysoidin Aqueous solution Quantitative AuNSt-GO-AuNSt sandwich structure 785 1 nm [120]

Cocaine Saliva Semi-
quantitative Au doped sol-gel capillary 785 50 ppb [80]

Cocaine Human saliva Semi-
quantitative

fused gold colloids trapped in a porous glass
matrix 785 50 ng·mL−1 [75]

Cocaine Saliva Quantitative gold nanorods colloidal solution 780 10 ng·mL−1 [54]
Cocaine Aqueous solution Quantitative (AuNP)-embedded paper swab 785 0.6 ng [23]
Cocaine Saliva Quantitative Dendritic silver nanostructures 632.8 100 ppb [90]

Cocaine Human Urine Semi-
quantitative Self-assembly of 2D AuNPs film 633 nm 500 ppb [121]

Cocaine Aqueous solution Semi
quantitative

Colloidal AuNPs integrated with microfluidic
device 633 4.6 ng·mL−1 [122]

Cocaine Aqueous solution Quantitative Ag colloidal
solution 532 5.0 µg [122]

Codeine Human Saliva Quantitative Au doped sol-gel capillary 785 25 ng·mL−1 [109]
Codeine Human Plasma Quantitative Colloidal AgNPs 633 1.39 µM [123]

Dopamine Aqueous solution Quantitative Colloidal ANPs 532 20 pM [113]
Erythrosine B Aqueous solution Quantitative AuNSt-GO-AuNSt sandwich structure 785 1 nm [121]

Fentanyl Aqueous solution Quantitative (AuNP)-
embedded paper swab 785 1.0 ng [80]

Fentanyl Aqueous solution Quantitative Dendritic silver nanostructures 632.8 0.078 ppm [103]

Fentanyl Urine Quantitative AuNPs assembled on filter
paper 785 10 ppb [92]

MDMA Aqueous solution Quantitative D-SERS 10 µM [76]
MDMA Human Urine Quantitative 2D-GNR assembled by (mPEG-SH) capping 785 0.1 ppm [45]

MDMA Aqueous solution Quantitative Colloidal AgNPs modified by
thiols 785 1.5 × 10−5 M [89]

MDMA Human Urine Semi-quantitative Au nanorods stabilized with SH-PEG 785 0.1 ppm [55]
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Table 2. Cont.

Drug Matrix Analysis Type SERS Substrate Laser Line
(nm)

Limit of
Detection Reference

Meperidine Aqueous solution Quantitative Ag colloidal
solution 532 3 µM [23]

Methadone Human plasma Semi-quantitative Silver halide dispersed into the wells of
microtiter plates - 1 µg/sample [44]

Methamphetamine/
2-MNA Aqueous solution Quantitative Etched Ag foil 633 nm 17 ppm [45]

Methamphetamine Human Urine Semi-quantitative Au nanorods
stabilized with SH-PEG 785 0.1 ppm [55]

Methamphetamine Human saliva Semi-quantitative Colloidal AgNPs integrated with microfluidics 633 10 nm [106]

Morphine Aqueous solution Semi-quantitative Colloidal AuNPs integrated with microfluidic
device 633 13 ng·mL−1 [75]

Tramadol Artificial Urine Quantitative Hydroxylamine AgNPs 633 nm 2.5 × 10−6 M [78]
Tramadol Aqueous solution Quantitative Hydroxylamine AgNPs 633 nm 5 × 10−4 M [78]

Phencyclidine Human saliva Sem-quantitative
fused gold

colloids trapped in a porous glass
matrix

785 1 µg·mL−1 [106]
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3. Summary and Outlook

Over the past couple of decades, SERS has emerged as a promising analytical tool for
clinical and forensic applications. The technique combines the advantages of high sensitiv-
ity with fluorescence background quenching, thus overcoming many of the shortcomings
of conventional Raman spectroscopy. SERS is a mode of vibrational spectroscopy that
offers the sensitivity required for detecting and quantifying trace levels of illicit drugs in
biological fluids or aqueous samples. Moreover, it lends itself to applications that require
rapid, in situ, non-destructive, and accurate detection of target compounds in various
samples. The ability to implement SERS by employing a variety of nanoparticles and
substrates that can be created in many ways also adds to the method’s versatility.

Despite all the advancements, challenges still exist regarding the application of SERS
in routine forensic analyses. Uniform and reproducible SERS signals depend highly on the
optimization and stabilization of the substrates. Colloidal substrates lack reproducibility
but have high enhancement factors for SERS signals. Nowadays, there is more control over
the shape of the nanoparticles and hotspots, making the creation of reproducible substrates
possible. The proximity of the nanoparticles to the plasmonic surface and surface coverage
are other issues that must be addressed to enhance SERS detection performance. Moreover,
drug samples often exist in small quantities and rarely as pure compounds. Since the
adsorption of molecules on the surface is highly competitive, there must be effective
strategies such as functionalization of the substrate to selectively capture the target analyte
on the surface.

SERS also has certain limitations that may reduce its sensitivity. Most biological
samples exhibit strong fluorescence in the visible light region, which lowers sensitiv-
ity. Moreover, target molecules in complex matrices, such as biological fluids, are often
masked by the presence of other components in the sample that prevent their accurate
characterization through vibrational spectroscopy [121,123]. One way to overcome such
obstacles is the integration of SERS with separation techniques, such as thin-layer chro-
matography (TLC) [124,125], HPLC [119], chemical separation [98], and solid/liquid-phase
extraction [126]. Another way is to use capture methods for selective detection and recog-
nition of the target molecules combined with SERS. Common capturing techniques for
illicit drug detection are molecular imprinting [127] and employing aptamer [128,129] and
antibodies [128]. Other techniques, such as the incorporation of microfluidics [130,131]
for enhancing the interaction between the analyte and SERS substrate and colorimetric
assays [132] as a prescreening step, have been employed to enhance SERS signals. When
used together with other analytical methods, such as fluorescence spectroscopy and col-
orimetry, SERS can significantly improve the sensitivity and discriminatory power of
chemical analysis [133–135]. Finally, integration of SERS with powerful analytical ma-
chine learning techniques helps extract relevant, fast, and more accurate results for on-site
drug detection, thus popularizing its use even among non-expert users. Such techniques
include artificial neural networks (ANNs) [136], support vector machines (SVM) [53,54],
partial least squares (PLS) [137], principal component analysis (PCA) [138], and principal
component-discriminant function analysis (PC-DFA) [134]. Moreover, the combination of
SERS with chemometric algorithms facilitates quantification analysis by extracting and
comprehending complex SERS fingerprints [139,140].

The increasing rate of illicit drug use, its devastating consequences for the health of
people who use drugs, and its broader risk to the well-being of our societies create the
urgent need to adopt sensitive yet simpler, analytical drug detection methods. The purpose
of this article was to summarize the contribution of SERS-based strategies on that front by
reviewing the progress made to date towards the detection of drugs of abuse in various
samples, including biological fluids, such as urine, blood, and saliva. An overview of the
SERS-active substrates employed to date for demonstrating drug detection has also been
presented. Recent work in the field has established the great potential of SERS to serve
not only as a standard laboratory method but also as a mobile platform for drug detection,



Sensors 2022, 22, 3877 17 of 22

owing to recent advances in the performance of handheld Raman spectrometers. Similar to
many other chemical analysis methods, SERS is also not devoid of shortcomings, and there
are still unresolved challenges regarding its widespread application. Current efforts to
integrate SERS with chemically functionalized substrates and statistical analysis methods
are a step in the right direction and are expected to dramatically improve the selectivity
and discriminatory ability of this spectroscopic technique.
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munoassay and Enzyme Linked Immunosorbent Assay as Effective Immunomethods for the Detection of Synthetic Cannabinoid
JWH-200 Based on the Newly Synthesized Hapten. Toxicol. Rep. 2018, 5, 65–75. [CrossRef]

http://doi.org/10.1021/acs.analchem.6b02041
http://www.ncbi.nlm.nih.gov/pubmed/27731981
http://doi.org/10.3390/su13020531
http://doi.org/10.1186/s12954-017-0179-5
http://www.ncbi.nlm.nih.gov/pubmed/28760153
http://doi.org/10.1016/j.talanta.2018.12.005
http://www.ncbi.nlm.nih.gov/pubmed/30683346
http://doi.org/10.1016/j.aca.2019.12.051
http://doi.org/10.1002/mas.21525
http://doi.org/10.1007/s10904-021-02118-7
http://doi.org/10.1007/s11419-016-0346-5
http://doi.org/10.4103/jmedsci.jmedsci_124_19
http://doi.org/10.1016/j.chroma.2017.04.028
http://doi.org/10.1016/j.ijpharm.2011.01.022
http://www.ncbi.nlm.nih.gov/pubmed/21256941
http://doi.org/10.1016/j.watres.2020.116759
http://www.ncbi.nlm.nih.gov/pubmed/33360618
http://doi.org/10.1016/j.trac.2020.116122
http://doi.org/10.1016/j.snb.2021.130659
http://doi.org/10.1016/j.toxrep.2017.12.004


Sensors 2022, 22, 3877 18 of 22
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