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Abstract: Using an adaptive noise canceling technique (ANCT) and distance ratio principal compo-
nent analysis (DRPCA), this paper proposes a new fault diagnostic model for multi-degree tooth-cut
failures (MTCF) in a gearbox operating at inconsistent speeds. To account for background and
disturbance noise in the vibration characteristics of gear failures, the proposed approach employs
ANCT in the first stage to optimize vibration signals. The ANCT applies an adaptive denoising
technique to each basic frequency segment in the whole frequency response of vibrations. Following
that, a novel DRPCA is used to extract the discriminating low-dimensional features. The DRPCA
initially determines each feature’s relative proximity to fault categories by computing the average
Euclidian distance ratio between similar and dissimilar classes. The most discriminatory features
with the lowest dimensions are selected, as determined by principal component analysis (PCA). The
new DRPCA is created by combining distance ratio–based feature inspection with PCA. The optimal
feature set containing the most discriminative features is then fed to the support vector machine
classifier to identify multiple failure categories. The experimental results indicate that the proposed
model outperforms the state-of-art approaches and offers the highest identification accuracy.

Keywords: fault diagnosis; feature extraction; gearbox fault identification; adaptive noise canceling
technique; principal component analysis; support vector machine

1. Introduction

Gear failures are the most common problems in gearboxes, which are used in many
types of machinery, automobiles, and wind turbines [1–4], because of difficult and con-
stant working conditions. A gearbox failure can cause severe system failures, financial
losses, and workforce risks. Thus, the early detection of gearbox failings is essential. The
condition-based monitoring method provides maintenance tasks based on gearbox data
and can extend gearbox lifespans while reducing maintenance costs [5]. The most effective
technique for diagnosing gearbox failure is vibration-based condition monitoring [6]. The
gearbox vibration signal includes tooth meshing harmonics, sideband frequencies, and free
oscillations. In the ideal case, failure-related oscillations are blended sideband frequen-
cies [7,8]. However, system interconnections, mechanical systems (resonances caused by
a shaft, bearing, gear, etc.), and background noise are major sources of interference [9,10].
Vibration signals have noisy components that dominate and distort the failure-related in-
gredients with their random magnitudes and occurrences. To identify gear failures, the raw
vibration signal must be optimized to reduce uncertainty about protruding fault-associated
elements, such as meshing frequency harmonics and sideband frequencies.
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For rotating-machine fault diagnosis, many signal processing techniques have been
proposed to examine the signal in multiple domains. The Hilbert transform (HT), window
bandpass filters, short-time Fourier transform, empirical mode decomposition (EMD),
and wavelet transform (WT) are some of those techniques [11–15]. Hybrid techniques
use WT-HT and EMD-WT [16,17]. All those techniques reduce the interference noise to
some extent, but they degrade the amplitudes of the sideband and meshing frequency
harmonics, distorting the failure signature information associated with gear failures in the
vibration signals. Therefore, those approaches are unlikely to be useful in identifying the
various types of multi-degree tooth-cut failure (MTCF) in a gearbox using fluctuating speed
operations. Nguyen et al. [18,19] demonstrated that their adaptive noise reduction method
effectively reduced noise in a raw vibration signal. They used the resulting signal to identify
failures in gearboxes with multi-level tooth cut faults. Their adaptive model works by
searching an optimal set of Gaussian parameters linked to filter weights across the whole
frequency range of a vibration signal. However, a non-stationary and complicated vibration
signal can be caused by both random noise and gear stiffness variation. Meshing harmonics,
sideband components, and random noise are all present in gearbox vibration signals, with
different energy distributions in many frequency segments along the frequency spectrum.
Therefore, applying a single optimized Gaussian parameter set to all frequency ranges is
unsatisfactory. To analyze vibration signals from MTCF failures, we propose an adaptive
noise canceling technique (ANCT). The proposed method adopts an adaptive denoising
technique (ADT) from [18] to analyze the frequency domains segmentally. The optimized
vibration signals provide a wealth of information about gear failures after they’ve been
transformed by the ANCT. That is, the ANCT significantly reduces noise while retaining
the original failure information. The proposed gearbox fault diagnostic approach uses the
ANCT outputs to configure feature pools and identify failure types.

In terms of feature engineering and classification, the fault-relevant elements in the
vibration signals of an MTCF gearbox are too similar because the failure categories are
all reflected in the vibration characteristics in the same way. Thus, the output signals of
the ANCT must be evaluated in an enhanced manner. Numerous approaches are used
for feature extraction, including statistical feature calculation, complex envelope analysis,
and wavelet packet analysis [20–23]. We hypothesize that expanding the discrimination
representation of a failure diagnostic system beyond a single feature model will minimize
the possibility of overlooking significant information in the data. In other words, we deem
it preferable to generate as much information about the process state as possible, even if
it is tainted by redundancy, and then filter out the most useful aspects in a subsequent
information processing phase. Therefore, we use three feature computation techniques
(statistics, wavelets, and envelopes) in this study to configure a heterogeneous feature
pool (HFP). Although the HFP increases the effectiveness of gearbox fault expression for
fault detection, the large dimensionality of the feature pool poses a difficulty for machine
learning. To address that issue, feature selection [24], which is a critical technique in
artificial intelligence, can be applied to reduce the dimensionality of the HFP and optimize
system accuracy. This paper analyzes a collection of potential features using multivariate
search methods, with the goal of minimizing duplication in the final, optimized feature
set. Thus, we choose the most differentiating features from the HFP, which include both
relevant and redundant information, by developing a search algorithm. From the many
types of analysis available, including independent component analysis (ICA) [25], linear
discriminant analysis (LDA) [26], genetic algorithm (GA) [27], and principal component
analysis (PCA) [28,29], the PCA technique leverages eigenvalues from the covariance
matrix of the variables to explore the statistical structures of the data and choose the
principal elements (those with the highest eigenvalues). Both supervised and unsupervised
PCA techniques were investigated in [29] for condition-monitoring of rotating machines.
According to that analysis, PCA performed better than the other dimensional reduction
techniques for failure condition classification. However, PCA does not consider the distance
between the attributes of different failure classes. To address this issue, we propose a new
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feature selection approach, the distance ratio principal component analysis (DRPCA). This
new technique starts by performing a PCA on the HFP to compute the average Euclidean
distance parameters between features pertaining to the same and diverse failure categories.
The novel DRPCA combines a relative distance–based evaluation with a PCA.

DRPCA configures a feature set of the most distinct features, which is then used as
input data for machine learning–based classification. Compared with other artificial intelli-
gence techniques, support vector machines (SVMs) have higher generalization, allowing
them to diagnose mechanical defects in a rotating machine with high accuracy [30]. SVMs
can also effectively separate nonlinear datasets using hyperplane mapping functions [31].
To classify multiclass data, SVMs use the one against one, one against all, or hierarchical
strategies. The most accurate approach is a one against one SVM (OAOSVM) [32], which
we thus use in our proposed model.

Moreover, gear fault diagnosis models have been proposed to identify the MTCF gear-
box under variable speed conditions, and they validated the superiority of the classification
accuracies [19,33]. These models were developed using a combination of adaptive denois-
ing approaches and deep neural network architectures (DNAs). Accordingly, the results
of the adaptive denoising process were then used to input to the deep neural network
for the enhancement operation through three execution stages: (1) a high dimensional
feature pool configuration by the automated feature extraction, (2) a fine-tuning process for
selection of the most discriminative features, and (3) a gear fault identification process by
the classifying layer in the deep network hierarchy. The constructed DNAs have effectively
performed feature engineering and classification to obtain highly accurate classification
outcomes. However, since DNAs use more computing resources than machine learning
classifiers, they may not be appropriate for certain applications, particularly in real-time
observation systems. Therefore, we propose the gearbox fault identification model to
perform a manual feature engineering process (i.e., HFP + DRPCA) and a machine learning–
based classification approach (OVOSVM) for achieving the precise identification of the
fault categories.

The following outlines the contributions of this paper.
(1) ANCT is a new approach for signal processing that uses an adaptive method to

identify the appropriate Gaussian parameter set for each basic frequency segment of a
vibration frequency domain. The optimized vibration signal outputs of the ANCT contain
failure-related information with decreased disturbance noise.

(2) Various feature models (statistical computation, wavelet basis decomposition, and
complex envelope decomposition) are used to extract features from the ANCT results. The
resulting HFP offers as many failure signatures as feasible for the condition monitoring
process; it can also represent various fault types.

(3) The DRPCA chooses the most distinctive features in the HFP to identify fault
categories. To compute the distance ratio between features of the failure types, the DRPCA
first performs principal component analysis, examines the distance between the features of
different failure types, and then selects the features with the highest relative distance ratio
to create an optimal feature set with decreased dimensions.

(4) To evaluate the proposed technique, vibration signals from an MTCF gearbox with
various types of failures were acquired from a real-world experimental testbed.

The remainder of this article is organized as follows: Section 2 discusses the underlying
approaches used in this study; Section 3 explains the experimental testbed for an MTCF
gearbox and vibration measurements; Section 4 constructs the proposed diagnostic model
for an MTCF gearbox; Section 5 details the steps of performance assessment and the
experimental results obtained from the proposed model; and Section 6 summarizes the
findings of this study.
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2. The Background of the Techniques
2.1. Adaptive Noise Filtering Technique

The adaptive noise filtering technique uses two key operational functions: digital
filtering and adaptive processing [34], as shown in Figure 1. The adaptive method adjusts
the coefficient parameters of a digital filter to reduce the output error for denoising.
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Assuming that a coefficient vector of an L-tap finite impulse response digital filter is
denoted by ε(n) (i.e., ε(n) = [ε0, ε1, . . . , εL−1]

T), a raw signal d(n) and a reference signal
g(n) (those are the discrete time signals, and n indicates a time variable in the discreteness)
and output error e(n) can be calculated according to [34], as follows:

e(n) = d(n)− εT(n)g(n) (1)

The mean square error (MSE) is used to determine the convergence condition for the
output error:

J ≡ E{e2(n)} = E{
[
d(n)− εT(n)g(n)

]2}
J = εT(n)Cε(n)− 2PεT(n) + E

{
d2(n)

} (2)

where C ≡ E{g(n)d(n)} indicates the cross-correlation parameters of a reference signal and
a raw signal, and P ≡ E

{
g(n)gT(n)

}
signifies the autocorrelation parameter of a reference

signal. As shown in Equation (2), the MSE is a quadratic function, so there exists a unique
global minimum corresponding to an optimal coefficient vector. The least mean square
(LMS) process is the technique most often used to reduce the output error [35], and the
weight parameters can be adjusted as follows:

ε(n + 1) = ε(n) + 2λg(n)ε(n) (3)

Here, the convergence factor (λ), which is used as a step-size parameter to estimate
the minimum MSE, can be adjusted between about 0 and (LSr)

−1 (Sr is the average power
of a reference signal g(n), and L signifies the order of a digital filter).

2.2. Wavelet Packet Transform (WPT)

WPT is a variant of the discrete wavelet transform that exhibits the capacity to decom-
pose signal information in the high-frequency region in depth [36]. WPT divides a signal
into several sub-bands, with great resolution in both the low- and high-frequency domains,
by using a sequence of scaling analysis (low-pass) and wavelet analysis (high-pass) filters,
resulting in 2l sub-bands, where l is the depth level. The following formula encapsulates
the WPT function [36]:

Wn
δ,ρ(t) = 2

δ
2 Wn

(
2δt− ρ

)
, (4)
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where ρ and δ are the transition and scale parameters, respectively. The scaling and mother
wavelet functions are assigned as n = 0 (W0

0,0(t) = Φ(t)), and n = 1 (W1
0,0(t) = Ψ(t)),

respectively. Here, Φ(t) and Ψ(t) are a scaling function and a wavelet function that form
the multi-resolution analysis technique in WPT. The scaling function represented by the
low-pass filters is used to analyze the input signals in the low-resolution approximation
spaces, while the wavelet function is applied to refine those approximation spaces in the
higher frequency zones, implemented by the band-pass filters [36].

Then, other wavelet packet functions can be calculated through a recursive process,
which is represented as

W2n
δ,ρ(t) =

√
2∑

ρ=∞
ρ=−∞h(ρ)Wn(2t− ρ), (5)

W2n+1
δ,ρ (t) =

√
2∑

ρ=∞
ρ=−∞g(ρ)Wn(2t− ρ). (6)

Here, h(ρ) and g(ρ) are low- and high-pass quadrate mirror filters, respectively, which
are associated with the selected mother wavelet and scaling functions. Therefore, the
wavelet coefficients of a signal s(t) obtained by the WPT method can be calculated by the
following inner product formula:

θn
δ (ρ) = < s(t), Wn

δ,ρ > =
∫ ∞

−∞
s(t), Wn

δ,ρ(t)dt. (7)

Using Equations (5)–(7), WPT decomposes each node into two sub-bands using high-
and low-pass filters formed by the wavelet packet coefficients. Each coefficient θn

δ (ρ) is
the specific parameter for each resolution in the frequency domain and thus represents the
scaling parameter and oscillation component in the observed signal.

2.3. Complex Envelope Analysis

The HT is used to analyze the complex envelopes of a signal to expand it into a
complex space and generate an analytical signal in the new time domain. If y(t) represents
the analytical signal of the observed signals s(t) in the time domain, then it can be expressed
as follows [37]:

y(t) = s(t) + js̃(t), (8)

where j =
√
−1, and s̃(t) is defined as the convolution of s(t) and 1/πt in the time domain,

as follows:

s̃(t) = s(t) ∗ 1
πt

=
1
π

∫ ∞

−∞

x(τ)
t− τ

dτ. (9)

In the frequency domain, its frequency spectrum can be calculated as

S̃(ω) = −jsgn(ω)S(ω);−jsgn(ω) =


j, with ω > 0
0, with ω = 0
−j, with ω < 0

(10)

The complex envelope analysis is then performed by computing the attributes of the
observed signal in the complex spaces defined by Equations (8)–(10).

2.4. Principle Component Analysis

PCA is a common procedure for shrinking the dimensionality of a feature pool by
assessing the variances of many extracted features to identify which attributes have the
largest effect on the data structure. By using this statistical technique, it is possible to
exclude weaker-distinctive elements from a high-dimensional pool while retaining the
most fault-related representational components (i.e., the dimensionality of the feature pool
is reduced). In other words, the initial coordinate space of the observed data maps onto
the direction of increasing variance. The computation process of PCA, which is presented
in [38], is explained in detail by the following formulas.
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Consider S ∈ Rm×p as a feature vector with zero mean and unit variance that has been
normalized from an original feature vector consisting of m rows of samples and p variable
columns. The covariance matrix C can be computed as

C =
1

m− 1
STS (11)

By performing single-value decomposition for matrix C, it can be represented as

C = V∆VT, (12)

where V is a matrix of eigenvectors of C, and ∆ signifies a diagonal matrix, which consists of
the downward order eigenvalues of C (i.e., λi ≥ λi+1 ≥ .. ≥ λp ≥ 0). Then, by producing
the transfer matrix L ∈ Rm×k (k < p) with k eigenvectors (k columns of V) equivalent to the
desired number of primary eigenvalues (k), the dimension of the observed variables can be
reduced (k < p). Therefore, several formulae represent the manipulating performance of
a PCA: 

K = SL
Ŝ = KLT

E = S− Ŝ
S = KLT + E.

(13)

where K is a scoring matrix, L is a loading matrix, Ŝ indicates a principal source of the
original feature space, and E represents the redundancy in the process. It is essential to
select k to filter the principal components.

3. The Experimental Gearbox Test-Rig and Dataset Description

Figure 2 depicts the experimental test equipment used to obtain vibration data from a
gearbox system. The functional structure of the test rig is shown in Figure 2a; the gearbox
transfers rotational motion from a three-phase motor to adjustable blades (i.e., the load)
through a 1:1.52 reduction ratio. The non-drive shaft is used to connect the load and a gear
wheel. The driveshaft connects the pinion wheel directly to the three-phase motor. The
pinion wheel and gear wheel are engaged by the teeth (each tooth is 9 mm in length), as
indicated in Figure 2b. The vibration sensor is positioned at the non-drive end to monitor
the vibration characteristics of the gearbox. The displacement transducer is mounted on
the driveshaft to track the rotational speeds of the pinion wheel. The vibration dataset in
this study was collected using a PCI-based data acquisition device that digitizes vibration
signals from the accelerometer. Table 1 summarizes the specifications for the vibration
sensor, transducer, and acquisition board.

Real-world gearbox systems suffer two major sorts of gear failures: those induced
during manufacture or installation (e.g., incorrect tooth sketching, wheel alignment, or
parallelism) and those that occur during operation (e.g., tooth pitting, tooth spalling, tooth
cracking, tooth breakage). Gear failures were simulated in this testbed by cutting one
tooth with several degrees of tooth length (9 mm) to generate multi-degree tooth cut
failures of 6.6% (0.6 mm), 10% (0.9 mm), 20% (1.8 mm), 30% (2.7 mm), 40% (3.6 mm), and
50% (4.5 mm), as shown in Figure 3. These failures were generated to approximate the
operational problems that occur in actual gearbox systems as a result of long-term rotational
performance fatigue.
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Table 1. The specifications of the sensors and the acquisition module.

Devices Specification

Vibration sensor
(Accelerometer 622B01)

Sensitivity (V/g): 10.2 mV/(m/s2)

Operational frequency range: 0.42 to 10 kHz

Resonant frequency: 30 kHz

Measurement range: ±490 m/s2

4-Channel data acquisition PCI-based board
18-bit 40 MHz AD conversion, sampling

frequency of 65.536 kHz is used for each of two
channels simultaneously

Displacement transducer

Distance from the head of the transducer to a
hole: 1.0 mm

Hole diameter: 12.80 mm

Sensitivity: 0 to −3 dB

Frequency response: 0–10 kHz

Analog vibration signals were produced by an accelerometer and transformed into
digital vibration samples at a sampling frequency of 65.536 kHz. Each sample was one-
second long, and we captured 65,536 data points. The acquisition method was performed
150 times for each of the seven failure conditions and alternated over four rotational
speeds (300 RPM, 600 RPM, 900 RPM, and 1200 RPM), which produced the design for the
experimental dataset used in this study (Table 2).

Table 2. The vibration dataset for the MTCF gearbox obtained from the test rig and data
acquisition equipment.

Gearbox Failure Condition Description
Number of Samples for Each

Rotation Speed (RPM) Sampling Frequency (Hz)

300 600 900 1200

Non-Failure (NF) Normal or perfect gearbox 150 150 150 150 65,536

Failure Type 1 (F1) 6.6% of tooth length
(0.6 mm/9 mm) 150 150 150 150 65,536

Failure Type 2 (F2) 10% of tooth length
(0.9 mm/9 mm) 150 150 150 150 65,536

Failure Type 3 (F3) 20% of tooth length
(1.8 mm/9 mm) 150 150 150 150 65,536

Failure Type 4 (F4) 30% of tooth length
(2.7 mm/9 mm) 150 150 150 150 65,536

Failure Type 5 (F5) 40% of tooth length
(3.6 mm/9 mm) 150 150 150 150 65,536

Failure Type 6 (F6) 50% of tooth length
(4.5 mm/9 mm) 150 150 150 150 65,536

The vibration samples gathered fully reflect the vibrational characteristics of the
gearbox. Specifically, a linear and regularly oscillating vibration signal is derived from
a gearbox system in the absence of failure [39]. As helpful identifying information, the
frequency spectrum comprises the tooth meshing frequency (which reflects the stiffness of
the gearbox) and its harmonics. When a pair of gears rotates across a defective tooth, the
angular velocity changes abruptly. When a gearbox fails, its rigidity fluctuates, complicating
the signal structure (e.g., making it nonlinear and nonstationary). In other words, the
nonlinear and nonstationary properties of a faulty gearbox are shaped by its angular
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acceleration, as recorded by a vibration sensor. The frequency spectrum of the vibration
signals contains the meshing frequency harmonics, sideband frequency tones surrounding
each harmonic, and other oscillations, which can each exhibit amplitude-phase modulation
characteristics [40]. The frequency spectrum analysis of vibration samples taken from a
gearbox rotating at 900 RPM under non-failure and failure type 3 conditions is shown in
Figure 4.
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Figure 4. The frequency spectrum analysis of vibration samples acquired from the non-failure (a) and
failure type 3 (b) conditions at 900 RPM.

4. The Proposed Gearbox Fault Diagnosis Model

The novel fault diagnosis approach presented in this article was used to categorize
seven different types of gear failure in an MTCF gearbox running at various rotational
speeds. The processing flow shown in Figure 5 is defined by the function blocks applied.
The data acquisition system described in Section 3 collected vibration signals to create the
dataset for the experiment. Each vibration sample was collected by sampling at the high
frequency of 65.536 kHz for one second (the time required to complete a few rotation cycles)
to generate a rich sample and capture as much failure-related information as feasible. The
ANCT module processes those raw vibration signals. In the first step, a low-pass filter and
three-times down-sampling of the raw vibration signals [18] are used to produce vibration
samples with real operating frequency tones from 0–10 kHz, which the accelerometer can
detect (Table 1). This step attempts to eliminate redundancy in the frequency range of the
raw vibration signal introduced by the high-speed sampling procedure. Later, as shown
in Figure 5, effective denoising approaches, multiple domain feature extraction, DRPCA-
based feature selection, and an SVM classifier are used to construct the proposed failure
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identification model. The following sub-sections contain complete functional descriptions
of those modules.
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4.1. ANCT

The ANCT is based on the adaptive noise filtering technique outlined in Section 2 and
is used to reduce the noise and redundancy of a vibration signal. Accordingly, the raw
signal input is the vibration signal, and the reference signal is composed of the signal that
simulates the noise oscillations in a gearbox vibration signal, termed the noise-pretended
signal (NPS) (Figure 1). Two essential steps operate in the ANCT: the generation of
NPSs and the execution of adaptive algorithms to access and reduce noise in multiple
segments of the vibration frequency domain. The adaptive denoising techniques (ADTs)
developed and verified in [18,19,33] have shown outstanding results in removing noise
and protecting the failure-related signal. The noise in the gearbox vibration signal is
categorized into two forms using those methods: white noise caused by the measuring
system (e.g., data acquisition systems, electronic devices) and waveband noise induced
by unrelated mechanical component resonances. Thus, as shown in Figure 6a, the NPS is
formed by combining two functions of a uniform random distribution to emulate white
noise and a Gaussian distribution to imitate the analogous behavior of waveband noise.
Additionally, the parameters (i.e., mean and standard deviation) of the Gaussian signal,
which are functions of the rotating speed variable, are associated with filter weights to
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be adjusted by the LMS adaptive algorithm [19]. The following formula describes the
Gaussian function part of the NPS:

Ggs(m) = ∑M
m=1e−

(m−Fct)
2

2σ2 . (14)

where M denotes the number of sideband frequency segments or meshing frequency
harmonics. Fct and σ are, respectively, the mean and standard deviation, which are pro-
portional to the rotational speed of the shaft. As a consequence, when a gearbox rotates at
different speeds, a Gaussian signal is created that can provide access to the frequency gap
between two successive sideband frequency tones.
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Next, the LMS technique is used to adaptively adjust the parameters (Fct, σ) of each
generated NPS in conjunction with the filter weights to achieve the optimized parameter
set [18]. Figure 6a illustrates the signal processing flow and function blocks of the ADT
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method. As shown in Figure 6a, the overall procedure of the ADT for each vibration sample
is to determine the general optimal parameter set for an NPS coupled to an optimal filter
coefficient vector for its full frequency domain (0–10 kHz). Nonetheless, the frequency
spectrum of a vibration signal is composed of several basic frequency segments (BFSs),
which have different energy distributions. Thus, we propose the ANCT to segment the
vibration frequency domain into numerous BFSs (the segment width of each BFS equals a
meshing frequency value and is centered on a meshing frequency harmonic) and then apply
the ADT method [19] to each BFS to obtain an optimal parameter set for each BFS, thereby
producing a series of optimized parameter sets for each vibration signal. The ANCT output
is the summation of all the optimized sub-signals, which have been adaptively denoised
using the series of segment-observed optimal parameter sets. Thus, the frequency range of
the resultant signal of the ANCT is reconstructed in the same range as the input vibration
signal. In that way, the ANCT can outperform previous ADT approaches in terms of noise
reduction effectiveness and maintaining the original failure-related frequency tones for
heterogeneous feature extraction in subsequent processes. The function block schematic of
the ANCT is shown in Figure 6b. The ANCT partitions a vibration signal into N sub-signals,
each with a frequency spectrum of one BFS (i.e., the frequency range of each sub-signal,
which equals the range of BFS or the value of a meshing frequency), using N band-pass
filters (Filter 1, Filter 2, . . . , Filter p, . . . , Filter N) simultaneously. Each filter is an IIR
Chebyshev Type-I bandpass filter [41] with an order of 30, a bandwidth that is equal to
the meshing frequency, and a band-pass frequency range in the consecutive series of the
frequency domain of a vibration signal. N is the quotient of the maximum frequency of
vibration signal and the meshing frequency. The ADT is then applied to each sub-signal to
produce optimally segmented sub-signals. The output signal of the ANCT is then formed
by averaging the N-optimized sub-signals. This output signal is referred to as the optimized
vibration signal and is used to configure the HFP to explore failure-related information
across a multiplicity of observation domains.

4.2. Heterogeneous Feature Pool Configuration
4.2.1. Statistical Feature Calculation

The optimized vibration signal, i.e., the output of the ANCT, mostly contains intrinsic
defective symptoms of the MTCF gearbox and is statistically computed and extracted in the
two domains of time and frequency [42]. The calculation produces twenty-one features—
three features in the frequency domain and eighteen features in the time domain—for each
optimized vibration signal. Those features might contain some discriminant failure features
that can be deemed subservient or congruent in the feature selection stage, as described in
Table 3.

Table 3. The statistical features extracted in the time and frequency domains.

Features Equations Features Equations Features Equations

Peak Max(|s|) Shape factor
srms

1
N ∑N

n=1 |sn | Mean (s) 1
N

N
∑

n=1
sn

Root mean square
√

1
N

N
∑

n=1
s2

n
Entropy −

N
∑

n=1
pn.log2(pn)

Shape factor square
mean root

ssrm
1
N ∑N

n=1 |sn |

Kurtosis 1
N

N
∑

n=1

(
sn−s

σ

)
Skewness 1

N

N
∑

n=1

(
sn−s

σ

)3
Margin factor

max(s)
ssmr
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Table 3. Cont.

Features Equations Features Equations Features Equations

Crest factor
Max(|s|)

srms Square mean root
(

1
N

N
∑

n=1

√
|sn|
)2

Peak to peak max(s)-min(s)

Clearance factor Max(|s|)
ssmr

5th normalized
moment

1
N

N
∑

n=1

(
sn−s

σ

)5
Kurtosis factor Kurtoris

s4
rms

Impulse factor
Max(|s|)

1
N ∑N

n=1 |sn |
6th normalized
moment

1
N

N
∑

n=1

(
sn−s

σ

)6
Energy of signal

N
∑

n=1
s2

n

Frequency
center (FC)

1
N f

N f

∑
f

S( f )
Root mean
square frequency

√√√√ 1
N f

N f

∑
f

S( f )2
Root variance
frequency

√√√√ 1
N f

N f

∑
f
(S( f )− FC)2

Here is an input signal (i.e., optimized sub-band), N is the total number of samples, S(f ) is the magnitude response

of the fast Fourier transform of the input signal s, N f is the total number of frequency bins, σ =
√

1
N ∑N

n=1 (sn − s)2,

and pn = s2
n

∑N
n=1 s2

n

4.2.2. Wavelet Package Decomposition (WPD)

As shown in Section 2, WPT is more efficient than other wavelet techniques in analyz-
ing signals in both the low- and high-frequency regions. The entropy and relative energy
of the nodes, decomposed by WPT, reveal significant information about the impulsive
oscillations in a vibration signal [36] and indicate the reflected vibration of various gear
failure conditions. In general, the most difficult aspects of WPD are finding and choosing
the mother function as well as the level of the vibration signal decomposition. The feature
extraction results are greatly influenced by the selection. The method to find the best
wavelet function for analysis of a vibration signal in a rotating machine fault diagnosis
system, which was proposed by Rafiee et al. [43], demonstrated that the Daubechies family
functions are more effective than other family functions, and the optimal level value is
four. Therefore, in this study, we use WPD to execute four-level WPT and produce sixteen
wavelet nodes (Figure 7a), which contribute wavelet-based features to the HFP by comput-
ing the entropy and relative energy of each node using the following two equations [44].

REnode(k) =
∑L

l=1 α2
kl

∑P
p=1 ∑L

l=1 α2
pl

(15)

Enode(k) = −∑L
l=1 pk(l).log2(pk(l)); where pk(l) =

α2
kl

∑L
l=1 α2

kl

(16)

where REnode(k) and Enode(k) are the relative energy and entropy of node k, respectively.
L and P signify the total number of wavelet coefficients (i.e., αkl) for each node and the
number of all decomposed nodes (P = 16), respectively.

The proper mother function of Daubechies 20 exhibits oscillation behaviors. These
approximately homologous oscillations can find the resonance of the tiny variations in vi-
bration, which are characteristic of the investigated failure types, as illustrated in Figure 7b.
As a result, the WPD uses Daubechies 20 as the mother wavelet function to decompose
each optimized vibration signal into 32 wavelet-based features for the HFP.
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4.3. The Novel Distance Ratio Principal Component Analysis

Thus, multiple domain extraction from the output signal of the ANCT is used to
configure the HFP in a high-dimensional feature space. The cardinality of the HFP is
123:21 statistical characteristics, 32 wavelet features, and 70 complex envelope features.
However, the HFP contains redundant attributes that cannot be used to distinguish the
different types of MTCF gearbox defects and therefore reduce the classification accuracy
of the diagnostic model. To solve this problem, we propose a new DRPCA approach for
choosing the discriminative features that express the fault type specifications. The DRPCA
is processed in the following stages.

Stage 1. The average Euclidian distance (Lin) to features of the same failure type is
calculated [45]:

Lin =
1

P.Q ∑P
p=1∑Q

q=1DEuc(p, q); (17)

Stage 2. According to [45], the average Euclidian distance (Lout) between a specific
feature vector of failure type i and other feature vectors of failure type j (i 6= j, and 1 ≤
i, j ≤ T) is computed:

Lout =
1

P.T.Q ∑T
t=1∑P

p=1∑Q
q=1DEuc(t, p, q); (18)
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Stage 3. The distance ratio by normalizing the quotient of the two distances attained
from Equations (17) and (18) is determined:

Rd =

Lout
Lin

max
(

Lout
Lin

) . (19)

where DEuc(u, v) =
√

∑K
k=1(uk − vk)

2 is the Euclidian distance between two feature vec-
tors; P is the total number of features (P = 123, the dimension of the HFP); T denotes
the number of failure types (T = 7); and Q signifies the observed sample count for each
failure type. From Equation (19), Rd is stated in the range of [0, 1] and enlarges as Lout
increases and Lin decreases. This tendency indicates the specification of discriminative
features because it results in less variation within a single failure type and much higher
variation across different types.

Stage 4. Apply a PCA (explained in Section 2.4) to search the features with Rd ≥ 0.9:

DRPCA = PCA(optimal f eatures(Rd ≥ 0.9)). (20)

The DRPCA provides a collection of the most advantageous features, which are the
most discriminative features in the HFP, to configure a new feature pool, dubbed the optimal
feature set.

4.4. Multi-Class Support Vector Machine to Identify Failure Conditions

SVMs were first developed to classify binary data on the basis of statistical processes
and quadratic function learning theory. They work by looking for the special space with
the biggest separation between two binary classes in the observed dataset [46].

We assume the need to train for a binary dataset with N samples of {(αn, γn), n = 1, 2,
. . . , N}, where αn ∈ RQ, Q is the dimension of a feature vector, and the category labels are
γn (γn ∈ {−1,+1}). The special space, designated by w, can be obtained by increasing the
margin width and decreasing the structural risk, as in the following expression [47]:

(w, b) = argmin
w,b

1
2

wTw + R∑N
n=1ζn, (21)

subject to γn(wTΦ(xn) + b) ≥ 1− ζn and ∀n = 1, 2, . . . , N; − ζn ≤ 0, ∀n = 1, 2, . . . , N,
where b denotes bias; ζ = {ζ1, ζ2, . . . , ζN} indicates a collection of slack variables; R is the
trade-off coefficient; and Φ(xn) is the expanded representation space of the feature vectors.
By applying the Lagrange duality method [48] using Lagrange multipliers (µn, µk), the
solution for Equation (21) can be transformed into the following:

Argmax
µ

w(µ) = ∑N
n=1µn −

1
2 ∑N

n=1∑N
k=1µnµkγnγkΦT(αn)Φ(αk) (22)

subject to: ∑N
n=1 µnγn = 0, 0 ≤ bn ≤ R, ∀n = 1, 2, . . . , N. Here, αn and αk are feature

vectors of the input training data, which can be mapped into a new feature space with
a larger dimensionality using the function F (αn, αk) = ΦT(αn)Φ(αk), which is called a
kernel function, such as a sigmoid, Gaussian, radial base, linear, or polynomial function. To
categorize the dataset into several classes (this article uses seven failure classes), the initial
binary SVM can be improved by using one of several network architectures, including hier-
archical, one-against-all, and one-against-one. The OAOSVM architecture showed reliable
classification capability [32,49]. Thus, we applied it to identify the MTCF failure types.
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5. Performance Evaluation Results and Discussion

In this section, we evaluate the performance of the proposed diagnosis model for an
MTCF gearbox under varying speed conditions through three key processes: signal process-
ing, feature pool configuration, and discriminant feature–based failure type identification.

5.1. The Effectiveness of the ANCT Performance

Compared with conventional methods such as the HT, WT, window bandpass filter,
and empirical mode decomposition, the ADT approach proposed in [18] demonstrates
superior ability to process gearbox vibration signals to reduce noise and preserve useful
fault information. Thus, the proposed ANCT was developed to enhance the denoising
performance of the ADT by partitioning a vibration spectrum into many BFSs and then
optimizing the vibration signal for each BFS using the segmented optimum NPS and
filter coefficient set obtained from the ADT technique. To validate the efficacy of the
ANCT method, the spectrum analysis of three vibration signals is shown in Figure 8:
a raw vibration signal, an ADT output, and an ANCT output. In Figure 8, the dotted
green circles represent items associated with failure-related frequency tones that were
previously redeemed in the ADT and ANCT outputs. Furthermore, the ANCT has a
considerably greater denoising capacity than the ADT; the noise regions in the ANCT
output (shown by the dotted red circles) are far more degraded than those in the ADT
output. As a result, ANCT outperforms ADT and other conventional signal processing
techniques. In summary, the ANCT achieves considerable noise reduction while preserving
the failure-related signatures, in this case the tooth meshing frequency harmonics and
sideband frequency tones, in the raw signals. ANCT processed the vibration data of an
MTCF gearbox with seven different failure categories over four different rotation speeds to
provide optimized vibration signals. Those signals were then used to configure the HFP
(which produces 123 features for each sample), as described in Section 4.2.
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5.2. DRPCA-Based Feature Selection and Classification Results

The applied diagnostic model uses a novel DRPCA procedure to capture the most dis-
criminant features from the HFP in a smaller dimension. The PCA technique, as discussed
in Section 2.4, is used to identify the importance of dynamically connected parameters or
principal components, represented by a covariance matrix of eigenvectors. The PCA ap-
proach was used in this experiment to identify the attributes that produce primary elements
with an eigenvalue greater than 80%. This value was chosen to capture the informative
features that associated with the first 30 principal components, whose eigenvalues were
greater than the remainder of the components. Experimental assessments in [28,50] reveal
that the features with the greater eigenvalues contain the most fault-related information
in the sequence of the all input features. The resulting principal components are then esti-
mated using the distance ratios (according to the process given in Section 4.3). As a result of
computing the DRPCA, features with substantial distance ratios (Rd ≥ 0.9) are selected as
the most discriminative features. The new optimal feature set is composed of three outcome
features (designated Feature 1, Feature 2, and Feature 3), which resulted from a statistic
model, wavelet decomposition, and complex envelope analysis, respectively. In Figure 9, a
3D figure based on those three optimal features illustrates the spatial distribution zones
of samples of the seven MTCF failure states under the four different rotation speeds. As
shown in Figure 9, the samples belonging to the same category are clustered together, and
the samples belonging to different fault types are clearly separated in the feature space. The
distance ratio thresholds are experimentally selected to obtain the number of the resultant
features that are capable of representing failure types separately. The visualized spatial
distribution of the categories in Figure 9 demonstrates that the threshold (Rd = 0.9) is an
appropriate selection for configuring the optimal feature subset of the most discriminative
features in this study. The DRPCA output is then used as the input data for the OAOSVM
classifier, which categorizes the data according to the failure types (i.e., NF, F1, F2, F3, F4,
F5, and F6).

The classification evaluation of the proposed model was implemented using two
experiments. In the first experiment, the optimal feature sets of all the samples of the seven
failure types under four rotation speed conditions were combined to create a new feature
set with the size of 4200 × 3. That new feature set was then randomly split into a training
set and a testing set using a ratio of 7:3, respectively, to investigate the general capability
of the proposed model. The second experiment was run to assess the robustness of the
proposed gearbox fault diagnosis method in identifying failure types under inconstant
rotational speed conditions. Therefore, the speed-related datasets (i.e., optimal feature
sets) were used differently for the training set (two speed-related datasets) and the testing
set (a single speed-related dataset). For instance, a training set was created by merging
two speed-related datasets (300 RPM and 600 RPM for a dimension of 2100 × 3), and
then a testing set was configured using the 900 RPM dataset (for a dimensionality of
1050 × 3). The four speed-related datasets (300 RPM, 600 RPM, 900 RPM, and 1200 RPM)
were alternately selected to configure the training and testing sets for the classifier, creating
four classifying executions.

K-fold cross validation (KCV) was used to estimate the generalized performance [51]
of the proposed classifier. The training set was randomly dispensed into K subsets (K = 10
in this study), and then the OAOSVM classified K times based on K subsets to estimate the
average classification accuracy (some of the K subsets were used for the training process,
and the rest were used for the validation process). The average classification accuracy of
the training model with KCV was calculated using the outcomes of the proposed training
model on a validation set:

CKCV =
1
K ∑K

k=1

(
∑T

t=1
STP

t,k

Sk

)
× 100% (23)
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where Sk is the whole quantity of samples in a validation set at the kth iteration; STP
t,k is

the number of true positives (i.e., samples of failure type t that are correctly assigned to
category t).

The proposed fault diagnosis model was trained for various times (N) with the training
set and testing sets of two experiments, and then the average identification accuracy (AIA)
was summarized using Equation (24):

AIA =
1
N ∑N

n=1
∑T

t=1STP
t,n

Sn
× 100%, (24)

where the whole quantity of true positives for failure type t at the nth evaluation process
(STP

t,n) and the total number of the testing set for the nth process (Sn) (the output results from
the testing process) are used to calculate AIA. The proposed learning model architecture
using an OAOSVM is depicted in Figure 10.
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To validate the efficacy of our novel fault diagnosis method, we compared its per-
formance with those of conventional fault diagnosis models, including M1 (ADT + HFE
+ DRPCA + OAOSVM), M2 (ANCT + HFE + PCA + OAOSVM), M3 (ANCT + HFE +
GA + OAOSVM), M4 (ANCT + HFE + ICA + OAOSVM), M5 (ANCT + HFE + LDA +
OAOSVM), M6 (LHTIS + HFE + DRPCA + OAOSVM), and M7 (WSET + HFE + DR-
PCA + OAOSVM). M1 is constructed by replacing the ACNT module of the proposed
method with the ADT [18], which outperformed conventional signal processing methods
for gearbox vibrations signals to explore the effect of noise reduction on the classification
process. The other models were used to examine the ability of the DRPCA-based feature
selection method by changing the proposed framework to use simple PCA (M2), GA [45]
(M3), ICA (M4), and LDA (M5) instead of DRPCA. In addition, the other vibration signal
analysis methods were applied as a replacement for the ANCT module in the proposed
framework to establish models of M6 and M7. The local maximum high order time it-
erative synchro-squeezing (LHTIS) [52] and wavelet-based synchro-extracting transform
(WSET) [53] techniques were used in M6 and M7, respectively.

The classification results of the proposed and reference models are tabulated in Table 4.
The AIA results of M1 showing 14.31–24.37% are less than those of the proposed method.
This is because the random disturbance noise elements in the vibration signals disorga-
nize the feature engineering process and cause misclassification. ANCT provides better
denoising performance than that specified in Section 5.1, demonstrating its high efficiency.
In addition, when other signal processing approaches (LHTIS and WSET) are replaced with
ANCT, the classification accuracies of the models are significantly lower than those of the
proposed identification framework, showing 46.49–51.2% of M6 and 30.88–53.5% of M7.
Furthermore, our DRPCA-based feature selection method outperforms M2 (13.75–31.9%),
M3 (8.1–14.5%), M4 (17.79–30.18%), and M5 (17.83–36.57%), which verifies that the dis-
criminant fault representation features of the optimal feature pool are very important for
distinguishing the failure types of an MTCF gearbox under variable operating speeds.
Overall, DRPCA is a suitable feature selection method for establishing the gearbox fault
diagnosis model in this paper.
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Table 4. Diagnostic performance results from the proposed and reference models in
different experiments.

Experiment
Dataset (Samples) Average Identification Accuracy (AIA%)

Training Set Testing Set Proposed M1 M2 M3 M4 M5 M6 M7

Experiment 1 2940 (70% of dataset) 1260 (30% of dataset) 100 75.63 72.79 85.50 81.68 70.18 62.70 68.54

Experiment 2

2100 (300 RPM, 600 RPM) 1050 (900 RPM) 100 80.31 72.54 86.65 69.82 63.43 63.51 46.50

2100 (600 RPM, 900 RPM) 1050 (1200 RPM) 100 79.17 81.87 89.51 72.85 75.31 61.39 51.29

2100 (900 RPM, 1200 RPM) 1050 (300 RPM) 100 81.71 86.25 87.30 81.21 67.62 48.80 69.12

2100 (1200 RPM, 300 RPM) 1050 (600 RPM) 100 85.69 68.10 91.90 75.49 82.17 52.10 55.37

5.3. Discussion

The proposed model outperforms conventional state-of-the-art methods for identi-
fying the failure types of an MTCF gearbox operating in inconstant speed conditions,
yielding an average identification accuracy of 100% through two experiments. Denoising
complex gearbox vibration data using a robust technique is critical for effective condition
monitoring systems. Disturbance noise has a detrimental effect on feature engineering and
identification performance. We developed our novel fault diagnosis model for an MTCF
gearbox operating at changing speeds using ANCT for denoising, HFP and DRPCA for
configuring the optimal feature set, and an OAOSVM classifier. During research and testing,
our proposed approach achieved the highest classification performance, demonstrating
its applicability.

In order to precisely identify the MTCF failure types in a gearbox system, the distur-
bance noise in the non-linear and non-stationary vibration signals should be eliminated in
the first stage. As illustrated in Figure 4, the noise frequency tones are distributed in the
whole range of the frequency spectrum, especially in the vicinity of the defect frequency
tones. The high noise amplitudes might lead to misclassification of the failure categories
and a deterioration in fault identification accuracy. The key technique of the ADT and
ANCT methods is to use the adjustable Gaussian windows to adaptively access a zone
between two consecutive sideband frequency tones along whole vibration spectrum to
remove noise elements. Experimental results show that the ADT and ANCT outperforms
the other conventional signal analysis approaches in [18] as well as M6 and M7 in re-
ducing noise and preserving the failure-related ingredients. In addition, the proposed
ANCT outperforms ADT in term of noise elimination, as shown in Figure 8. The next step
of the fault diagnosis development process is the feature engineering and classification
approach. In this paper, manual feature extraction and feature selection techniques are
utilized to identify the most discriminant features that can be used as input to the machine
learning–based classification algorithm. Experimental results show that the combination
(HEF + DRPCA + OAOSVM) is the optimal solution for identifying seven MTCF gearbox
failure types under different speed conditions, as shown in Table 4.

On the other hand, the deep neural network architectures are also applied for au-
tomated feature extraction, feature selection, and classification in the posterior phase of
the signal analysis. The sensitive and stable fault diagnosis frameworks are proposed by
combining ADT and deep learning architecture; the stacked spare autoencoder-based deep
neural network (SSA-DNN) in [19] (this model is referred to as model M8) and the deep
convolutional neural network (DCNA) in [33] (M9) provide successful results (100%) for
the identification seven failure types of an MTCF gearbox under variable speed operations.
However, the computational time of the deep learning architectures in M8 and M9 requires
more time than that of the proposed model (ANCT + HFE + DRPCA + OAOSVM), as
shown in Figure 11.
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6. Conclusions

In this paper, a novel model was proposed for identifying the fault types of multi-
degree tooth-cut failures (MTCFs) in a gearbox system operating under inconsistent
speed conditions.

(1) Vibration signals acquired from gearboxes have noisy components that dominate and
distort the failure-related signal information, such as meshing frequency harmonics
and sideband frequencies. To extract this information, a novel adaptive noise reduc-
tion method, ANCT, was proposed. ANCT uses an adaptive method to identify the
appropriate Gaussian parameters for each segment of the vibration frequency domain.
ANCT significantly reduces the noise in the vibration signal while retaining maximal
failure-related information.

(2) Since multi-level tooth-cut failures are essentially the same type of faults that only
differ in their relative size, a heterogeneous feature pool was constructed by calculating
more than a hundred statistical parameters of the denoised vibration signal in multiple
domains using wavelet packet decomposition and complex envelope decomposition
to ensure the collection of maximal information on each type of MTCF fault.

(3) To reduce the dimensionality of the feature pool and select the most discriminative
features for identifying the MTCF faults, a novel feature selection method, DRPCA,
was proposed. DRPCA combines principal component analysis with relative distance
ratio analysis of features of different fault types. The optimal feature set is constructed
by selecting features with the highest relative distance ratio. This provides lower
dimensionality, thereby improving the diagnostic performance of the OAOSVM,
which was employed as a classifier.

(4) Finally, the performance of the proposed methodology was evaluated using a real-
world experimental testbed and two different experiments based on the operational
speed, where the vibration data were collected. In the first experiment, datasets for
all the operational speeds were merged into a single set. Then, training and test
subsets were constructed by randomly collecting features from this set. In the second
experiment, the training dataset consisted of data recorded with one speed, while the
testing dataset consisted of data recorded with other speeds. The proposed model
outperformed the state-of-the-art approaches, with an average identification accuracy
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of 100% in both experiments. Moreover, our proposed model showed three times the
speed-up over the relevant models, including the deep neural architectures.
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Nomenclature

ANCT adaptive noise-canceling technique
MTCF multi-degree tooth-cut failures
HFP heterogeneous feature pool
EMD empirical mode decomposition
ADT adaptive denoising technique
LDA linear discriminant analysis
SVM support vector machines
WPT wavelet packet transform
KCV K-fold cross validation
DRPCA distance ratio principal component analysis
PCA principle component analysis
HT Hilbert transform
WT wavelet transform
ICA independent component analysis
GA genetic algorithm
OAOSVM one-against-one SVM
DAQ data acquisition
AIA average identification accuracy
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