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Abstract: In this work, a novel technique is proposed that combines the Born iterative method, based
on a quadratic programming approach, with convolutional neural networks to solve the ill-framed
inverse problem coming from microwave imaging formulation in breast cancer detection. The aim
is to accurately recover the permittivity of breast phantoms, these typically being strong dielectric
scatterers, from the measured scattering data. Several tests were carried out, using a circular imaging
configuration and breast models, to evaluate the performance of the proposed scheme, showing
that the application of convolutional neural networks allows clinicians to considerably reduce the
reconstruction time with an accuracy that exceeds 90% in all the performed validations.

Keywords: inverse scattering; breast phantoms; convolution neural network; permittivity; strong
dielectric scatterers; Born iterative method

1. Introduction

Breast cancer is the most commonly reported disease in women around the world,
surpassing lung cancer. Its incidence and related mortality rate have been increasing in
recent years, so that, according to the GLOBOCAN worldwide statistics for 2020, it has
been estimated that nearly 2.3 million women were then diagnosed with breast cancer [1].
Periodic controls for an early diagnosis are, thus, always a priority. Mammography is the
most widely used method for diagnosing breast cancer, using X-ray ionizing radiation to
generate images of breast tissue. However, it is not always recommended because exposure
to X-rays can cause damage to cells; in addition, it has limitations when identifying those
lesions with regions of dense glandular tissue. Several alternatives have been developed,
such as ultrasound imaging, breast magnetic resonance imaging, and the automated breast
volume scanner (ABVS) [2], but these methods have their own drawbacks, such as the
presence of several false-positive results.

The use of microwaves to obtain images of the breast is another alternative to the
previous methods, presenting some advantages in terms of non-ionizing radiation, low
implementation costs, and patient comfort [3]. Microwave imaging is carried out in
terms of the contrast in the constitutive electromagnetic parameters, i.e., permittivity and
conductivity, between the healthy breast tissue and cancerous tumors. This contrast implies
that the presence of a tumor in the breast will cause an incident electromagnetic field
to scatter, allowing the location and the reconstruction of the dielectric properties and
geometries of the breast and tumors to be obtained [4,5]. Various different approaches
can be applied within the framework of inverse scattering procedures by addressing data
inversion in various ways that are strictly related to the specific target and/or to the image
setup and the operating conditions [6].
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The inverse scattering approach is complex because it is an ill-posed and non-linear
problem, leading to different numerical solutions [7]. Iterative approaches are generally
used to solve a nonlinear problem, regardless of whether one attempts to directly solve the
original nonlinear equation or to solve an optimization problem within which the original
problem is thrown. As compared to qualitative methods, quantitative approaches are
usually characterized by a fairly high computational cost, but they have the advantage of
providing the most complete information [8].

There have been many advances in the literature over the years, proposing various
methods, such as the Rytov and the Born approximations [9,10], which are used in the
case of weak scatterers. Considering some conditions, the inverse scattering problem (ISP)
can be solved through various non-iterative methods. In this case, the inverse problem
can be decomposed into several linear equations, and each linear equation can be solved
without iteration, as in the case of the extended Born approximation method [11] and the
backpropagation technique [12]. These approaches allow the reconstruction to be carried
out in a very short time but result in low accuracy, especially in the presence of strong
scatterers [8].

Iterative procedures have been also proposed, such as the Born iterative method
(BIM) [13], the distorted Born approximation [14], which is equivalent to the Newton
iteration method [15], and the modified gradient method [16]. This latter has allowed
new investigations to be carried out and, together with the source-type integral equation
method [17], has provided the basis for developing the contrast source inversion method
(CSI) [18]. The above iterative methods, which minimize the objective function that quanti-
fies the mismatch between the calculated and the measured data, are able to reconstruct
the properties of the unknown scatterers, but they have one drawback related to the high
computational cost required for reconstruction.

Researchers have proposed numerous modifications of the previous algorithms by
presenting several extensions and variations, such as in [19–23], with the purpose of
improving their performance in terms of accuracy, decreased signal noise, and reduced
reconstruction time. In particular, a quadratic approach based on the BIM was developed
in [24], with applications to breast image reconstruction by dividing the nonlinear problem
into two linear subproblems and proposing a formulation of the inverse subproblems in
terms of quadratic programming. Even if it demonstrates its effectiveness in terms of
accuracy, the reconstruction time continues to be very high.

In order to overcome the above-mentioned problems, this paper proposes the adoption
of convolutional neural networks (CNN) for a reconstruction scheme based on the BIM,
using a quadratic programming approach. In recent years, research has emerged [25–27]
in which the link between conventional iterative and non-iterative algorithms and deep
learning networks is studied, which has allowed researchers to achieve great performance
within the fields of image classification [28,29] and segmentation [30], showing good results
in inverse problems when performing exact reconstructions by eliminating noise, and
giving very low error rates, thus revealing that the method is very useful for biomedical
applications in terms of diagnosis and therapy.

The paper is organized as follows: in Section 2, the standard inverse-scattering problem
formulation, in terms of integral equations, is briefly outlined; the proposed method
is presented in Section 3 by preliminarily recalling the fundamentals of the quadratic
programming approach and then outlining the machine learning procedure, in terms of
the CNN. Numerical validations on a circular model, as well as on breast phantoms, are
discussed in Section 4. Finally, the conclusions are outlined in Section 5.

2. Problem Formulation

Referring to Figure 1, a circle is considered for the observation domain when obtaining
microwave images. The circle includes the cross-section of the object to be inspected, which
is sequentially illuminated through the application of a set of incident fields. These are
generated either by several transmitting antennas or by a single source moving around
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the target [6], assuming a homogeneous background medium with permittivity εb and
permeability µ0. Non-magnetic scatterers, characterized by the relative dielectric constant
εr(r), are located within the domain of interest D ε R2, and illuminated by the Ni line
sources, located at the point ri

p with p = 1, 2, . . . , Ni. For each incidence, the scattered field
is measured by Nr antennas, located at the point rs

q with q = 1, 2, . . . , Nr.
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The direct problem is described using two well-known equations. The first one is
defined in terms of the electric-field integral equation, which relates the total, incident,
and scattered fields (a time-dependency in the form of ejωt is assumed), describing the
interaction of the wave scatterer in the D-domain. It is also known as the state equation [8],
and is reported as follows:

Et(r) = Ei(r) + k2
b

∫
D

g
(
r, r′
)

J
(
r′
)
dr, for r ∈ D (1)

where:

− Et(r) is the total electric field;
− Ei(r) is the incident electric field;
− kb = w

√
εbµ0 is the wavenumber of the homogeneous medium background;

− J(r) is the contrast current density, defined as J(r) = χ(r)Et(r), where the contrast
function is given by:

χ(r) =
εr(r)− 1

εrb

− j
(σ(r)− σb)

ωεb
. (2)

Here, εr is the relative permittivity, σ is the conductivity [S/m], ω is the angular
frequency [rad/s], and the lower index ‘b’ is used to refer to the background.

In the following equation, g(r, r′) is the 2-dimensional free-space Green´s function,
which is given in terms of a Hankel function of the second kind [6], namely:

G2D
(
r, r′
)
= − j

4
H(2)

0
(
kb
∣∣r− r′

∣∣) (3)

The second equation describes the scattered field in terms of the re-radiation of the
induced contrast current, and is known as the data equation, namely:

Es(r) = k2
b

∫
D

g
(
r, r′
)

J
(
r′
)
dr′, for r ∈ S (4)

where Es(r) is the scattered field on the measurement surface S.
The discretized forms of Equations (1) and (4) are obtained by dividing the domain D

into a square grid of M ×M pixels, introducing the operators GS(·) for r ∈ S and GD(·) for
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r ∈ D. By following the above procedure, the following discretized equations are obtained
for Equations (1) and (4), respectively:

Et
= Ei

+
=
GD ∗ J (5)

Es
=

=
Gs ∗ J (6)

where the vectors Et, Ei, Es represent the discretized forms of the total electrical field, the

incident field, and the scattered field, respectively. The matrices
=

GD and
=
Gs denote the free-

space Green’s functions at domain D and boundary surface S, respectively [27]. Following
the same procedure, the contrast χ(r) of domain D is discretized into an M2-dimensional
form and, from the definition of the contrast current density J(r), the discretized forms of
J(r) can be computed as J = diag( χ)· Et [12].

When solving the above equations, the known quantities are the incident fields Ei, the

matrices,
=

GD and
=
Gs, and the values of the background parameters, εb and σb. The main

goal of ISP is to obtain the contrast χ(r) for r ∈ D, depending on the field Es
(r), for r ∈ S

and the total electric field Et in S. This represents a non-linear problem, since the electric
field depends on the contrast map; it is also considered an ill-framed problem that may not
have a unique solution.

3. Method
3.1. Quadratic Programming Approach

In this subsection, a brief summary of the quadratic programming approach [24] to
solve the BIM method [13] is presented.

The BIM method consists of a linearized iterative procedure, based on an initial
assumption of the contrast map. It sequentially estimates the total electric field and the
contrast function; in each iteration, the integral equations involved in the direct problem,
as well as the integral equation for the contrast function related to the inverse problem, are
solved [24].

The discrete model for the scattered electric field (i.e., the discretized form of Equation (4))
can be expressed as follows [6]:

Es
m =

N

∑
n=1

gmn χn Et
n, m = 1, . . . , M (7)

where:
gmn = − j

2
πkban J1(kban)H(2)

0 (kb|rm − rn|) (8)

and:

• Es
m is the scattered electric field at the position rm on the surface S;

• gmn is the discretization of the Green function, an =
√

∆x∆y/π, J1 is the Bessel
function of the first type, and rn is the vector position of the n-th pixel;

• χn is the contrast value at rn;
• Et

n is the total electric field at rn.

In order to determine the contrast function, denoted by Ẽs
m, the measured scattered

field, the following minimization problem can be set up thus:

min
χ

M
∑

m=1

∣∣∣∣Ẽs
m −

N
∑

n=1
gmn χn Et

n

∣∣∣∣2
χn ∈ C, n = 1, . . . , N.

(9)
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This can be reformulated, in terms of a quadratic programming (QP) problem, as [24]:

min
χ

M

∑
m=1
|dm|2 (10)

s.t : dm +
N
∑

n=1
gmn χn Et

n = Ẽs
m, m = 1, . . . , M

χn ∈ C, n = 1, . . . , N.

dm ∈ C, m = 1, . . . , M.

(11)

This presents one global minimum, for which several efficient resolution methods
exist. However, since all procedures for solving QP problems require real quantities, while
complex terms are present in the problems given in Equations (10) and (11), it is necessary
to perform a rearrangement in order to obtain an equivalent optimization problem, one
in which only real variables and constraints are present. The rearranged problem is based
on the introduction of real auxiliary variables, representing the real and the imaginary
parts of the complex terms involved in Equations (10) and (11) [24]. Furthermore, in order
to limit the ill-framed nature of the problem and to get more information, the L ∈ R+

incident electric fields (i.e., several sources located at different positions), defined at F ∈ R+

frequency values, are considered. Accordingly, a further rearrangement of the problem is
performed, in order to take into account both the frequency dependence of the electric field
and the Green function, as well as to consider multiple incident fields [24].

Although the introduction of more frequencies and more sources tends to limit the
ill-framed nature of the problem, this may not be sufficient in principle to achieve reliable
solutions. For this reason, it is advantageous to apply regularization procedures. In partic-
ular, the Tikhonov regularization method [31–35] is exploited, in which the regularization
term consists of the integral of the gradient norm of the contrast function [24].

Finally, a further aspect is related to the choice of the initial solution (initial guess) for
the contrast function. In an earlier work [24], two types of initial solutions are considered.
The first one is the Born approximation of first-order [8], solved by setting the initial
solution for the contrast at zero. The second one exploits the L incident electric fields, also
taking into account simultaneously the different F frequency values chosen.

3.2. Proposed Machine Learning Method

To solve the inverse scattering problem and perform a reconstruction of the dielectric
profile, a BIM with a quadratic approach is adopted, as proposed in [24,35], but instead
applies a machine-learning approach based on a CNN with U-Net architecture [36]. The
proposed scheme is shown in Figure 2.

The CNN used in this work, originally developed by the authors of [36], has the main
objective of complementing a standard contracting network through successive layers by
replacing the grouping operators with upsampling operators. This approach allows for
perfect segmentation, considering large images and applying the mosaic overlay technique.

The architecture of the network applied in this work is depicted in Figure 3. It is made
up of a contraction part (left side) and an expansion part (right side). The left-side part is a
typical convolutional network, consisting of two 3 × 3 convolutions, batch normalization,
and a rectified linear unit (ReLU) for each convolution, followed by a 2× 2 maximal pooling
operation with step 2. For the purposes of downsampling, at each resolution reduction
step, the number of function channels must be doubled.
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Figure 3. U-net CNN architecture for the proposed scheme.

The right-side part is based on upsampling, with a 2 × 2 convolution halving the
number of feature map channels, a concatenation with the clipped feature map of the
contraction part, and two 3 × 3 convolutions, with one ReLU for each one.

4. Numerical Results
4.1. Circular Model

Prior to carrying out the machine learning procedure with the breast phantoms,
validation tests of the quadratic programming-based microwave imaging method were
performed at a waveform frequency equal to 1 GHz, assuming a circular model for the
breast. A domain of interest, D, having a size equal to 18 × 18 cm2, is assumed. In terms of
discretization, 150 × 150 pixels were considered for the initial image, and 64 × 64 pixels
were assumed for the reconstructed image. With reference to the configuration illustrated
in Figure 4, 18 line sources and 18 line receivers were arranged in a circle with a radius
equal to 10 cm, centered at (0.0) cm.
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Figure 4. The circular breast model, used for validation.

The model includes two large circles and one small one; this smaller circle represents
a tumor, located at different positions within the larger double circle. The parameters
involved in the breast model are detailed as follows:

− large circle diameter = 8 cm, medium with εr = 40;
−medium circle diameter = 6 cm, with εr = 4.5;
− small circle (tumor) diameter = 1 cm, with εr = 57.

A background medium with a relative permittivity value, εr = 10, has been assigned.
For these first validation tests, only the dielectric permittivity was retrieved. Con-

cerning the scattered field sampling, 15 separate frequencies, ranging from 600 kHz up to
600 MHz, were considered, in 30 equispaced positions on the circular array. A set number
of 10 iterations was performed for this configuration. The retrieved numerical results are
reported in Figure 5, where a satisfactory agreement can be observed with the original
values (Figure 5a).
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Figure 5. Numerical results from the quadratic programming-based microwave imaging for the
circular breast model, showing the original (a) and retrieved (b) relative permittivity.

4.2. Breast Phantoms

Full validation of the proposed machine learning approach was performed by using
models of MRI-derived breast phantoms drawn from the University of Wisconsin Computa-
tional Laboratory (UWCEM) numerical breast phantom repository [37], with four different
2D models of phantoms, namely: Class 1, Phantom 1, Breast ID: 071904; Class 2, Phantom 1,
Breast ID: 012204; Class 3, Phantom 2, Breast ID: 070604PA2; and Class 4, Phantom 1, Breast
ID: 012304.

In the validation test, a frequency equal to 1 GHz was assumed, with a domain of
interest, D, having a size equal to 18 × 18 cm2, namely, 3λ/5. In terms of discretization,
150 × 150 pixels were considered for the initial image, and 64 × 64 pixels were considered
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for the reconstructed image. In total, 18 line sources and 18 line receivers were arranged
in a circle with a radius equal to 10 cm, centered at (0.0) cm. Scattered field sampling
was carried out using 15 different frequencies, assuming a background relative permit-
tivity εr = 10 [37–39]. A relative permittivity range of from 2.5 to 67 is assumed for the
breast, with the initial solution of the contrast map using the minimum value. An image
of 150 × 150 pixels was considered, from which the scattered fields were obtained. In the
reconstruction, an image of 64 × 64 pixels was obtained, this being helpful for signifi-
cantly reducing the execution time of the quadratic algorithm to approximately 20 min for
5 iterations. Simulations were performed for the four classes of phantoms mentioned above,
by also adding three false tumors (of 3 mm, 5 mm, and 8 mm in diameter) at different loca-
tions. Specifically, the tumor was placed within the breast model, with coordinates (X cm,
Y cm) in nine different positions, namely: (0 cm, 0 cm), (0 cm, 1.9 cm), (0 cm, −1.9 cm),
(1.9 cm, 0 cm), (−1.9 cm, 0 cm), (1.9 cm, 1,9 cm), (−1.9 cm, 1,9 cm), (1.9 cm, −1,9 cm), and
(−1.9 cm, −1,9 cm), thus obtaining a total of 108 images. These are used as input for the
CNN to be trained.

To perform a quantitative evaluation of the proposed approach, the following expres-
sion for the relative error [12] is adopted:

Re =
1

Nt

Nt

∑
j=1
‖
=
εo

r −
=
εm

r ‖F/‖
=
εo

r‖F (12)

where
=
εo

r is the original relative permittivity,
=
εm

r represents the measured relative permittivity,
Nt is the number of performed tests, and the operator ‖.‖F denotes the Frobenius norm.

Following the approach outlined in [24], a linear regression model was applied to
recover the conductivity σ from the relative permittivity εr retrieved by the adopted
machine learning approach, so as to finally have a full characterization of the breast
phantoms. The conductivity model is expressed by the following equation [24]:

σ(εr) = 0.019εr − 0.047. (13)

In Figure 6, the reconstructed parameters for the four validation phantoms are reported
and compared with the original (expected values). For all cases, the best reconstruction,
which is in perfect agreement with the actual one, was achieved by applying the CNN
to the BIM with a quadratic programming approach. In Table 1, a detailed comparison
in terms of quantification error is reported. In particular, for all considered phantoms,
a successful error decrease (below 10%) can be observed when passing from a standard
quadratic BIM to the proposed approach (BIM + CNN). Furthermore, an accuracy greater
than 90% was achieved with the adoption of the machine learning procedure.

Table 1. Quantification error of the validation tests for the circular model and breast model.

Error Quadratic BIM Error Quadratic
BIM + CNN

Accuracy Quadratic
BIM + CNN

Circular model 44% -
Class 1, Phantom 1 47.1% 7.6% 92.4%
Class 2, Phantom 1 74.9% 9.8% 90.2%
Class 3, Phantom 2 78.8% 7,9% 92.1%
Class 4, Phantom 1 88.5% 7.05% 92.95%
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Figure 6. Permittivity (upper) and conductivity (lower) results, obtained with the CNN method
applied to quadratic programming-based microwave imaging: (a) Class 1, Phantom 1, Breast ID:
071904; (b) Class 2, Phantom 1, Breast ID: 012204; (c) Class 3, Phantom 2, Breast ID: 070604PA2;
(d) Class 4, Phantom 1, Breast ID: 012304.

5. Conclusions

A machine learning approach based on CNNs has been proposed in this work to
solve inverse scattering problems, formulated in terms of a quadratic programming-based
BIM. Compared to most available algorithms, which work easily on weak scatterers,
the introduced method can be applied to strong scatterers, which are very common in
medical applications. Validation tests have revealed that the proposed machine learning
technique is able to reconstruct the relative permittivity and the conductivity from calibrated
experimental data within a time of approximately 15 min, with an accuracy greater than
90%. In future studies, the proposed method will be applied for the relative permittivity
reconstruction of other tomographic images in the medical field, such as those relating to
brain tumor phantoms. Furthermore, to obtain full experimental validation, a test setup
will be implemented in the ERMIAS Laboratory at the University of Calabria, by realizing
laboratory gel-like phantoms [40] and performing scattering measurements.
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