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Abstract: Structural anomaly diagnosis, such as damage identification, is a continuously interesting
issue. Artificial neural networks have an excellent ability to model complex structure dynamics. In
this paper, an artificial neural network model is used to describe the relationship between structural
responses and anomalies such as stiffness reduction due to damages. Random acceleration and
displacement responses as generally measured data are used as the input to the artificial neural
network, and the output of the artificial neural network is the anomaly severity. The artificial neural
network model is set up by training and then validated using random vibration responses with
different structural anomalies. The structural anomaly diagnosis method based on the artificial neural
network model using random acceleration and displacement responses is applied to a five-story
building structure under random base excitations (seismic loading). Anomalies in the structure are
denoted by stiffness reduction. Structural anomaly diagnosis using random acceleration responses is
compared with that using random displacement responses. The numerical results show the effects
of different random vibration responses used on the accuracy of predicting stiffness reduction. The
actual incomplete measurements include intensive noise, finite sampling time length, and limited
measurement points. The effects of the incomplete measurements on the accuracy of predicting
results are also discussed.

Keywords: structural anomaly diagnosis; artificial neural network; random response; five-story
building; incomplete measurements

1. Introduction

Structural anomaly diagnosis (SAD) or structural damage identification (SDI) is very
significant for reducing catastrophic failures and prolonging the service life of structures.
Typical SAD or SDI methods, proposed by analyzing dynamic responses of engineering
structures, include the local non-destructive testing-based method and the globe vibration-
based method [1–3]. The vibration-based SAD/SDI method has not limitations such as
certain detection regions and, thus, is increasingly studied. This method is based on the
theory that variations in structural physical parameters such as stiffness cause variations
in the modal parameters (i.e., modal frequencies, damping, and shapes) and vibration re-
sponses, and structural anomalies or damages result in variations in the structural physical
parameters. Changes in the modal parameters, including the modal frequency [4–8], modal
shape curvatures [9–11], modal strain energy [12–15], and modal flexibility [16], have
been used to identify structural damages. However, an SDI method using an individual
modal parameter may result in a mistake [17]. With the rapid development of computer
technologies, a comprehensive SDI method based on artificial intelligence technology is
developing, which has the advantage of using combined modal parameters for damage
identification.
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As one of the popular methods of artificial intelligence, classical artificial neural
networks (ANNs) have been applied to SDI due to their excellent pattern recognition
capability [18–20]. The basic idea of the ANN-based SDI method is to construct the
relationship between structural parameter changes due to damages and modal parameters
or vibration responses using the ANN model. The ANN model is set up by training
and then used to identify damages as the output to input mode or response data. Many
research works have reported using the combinations of modal parameters [21–27], mode
shape differences [28,29], mode shape slope [30], and modal strain energy [31,32] as input
to the ANN model to localize and assess damages. Ni et al. [33] pointed out that the
input construction has significant influence on the performance and efficiency of an ANN-
based SDI method. An integrated neural network framework was also proposed and used
to infer system states [34]. These works have confirmed that ANN-based methods are
powerful tools for SDI/SAD. However, accurate modal parameters, especially higher modal
frequencies and shapes of complex structures, cannot be obtained actually. Actual complex
structures cannot be modeled effectively by simplified systems and random excitations
cannot be predicted; only structural responses can be obtained for use. Therefore, it has
been proposed to extract damage features directly from structural vibration responses
instead of modal parameters. That is both the relationship between structural anomaly
(or damages) and modal parameters and the relationship between modal parameters
and vibration responses are described by the ANN model. As usually measured data,
structural acceleration responses have been used as input for the ANN model to identify
damages [35–37]. Park et al. [38] presented a sequential damage identification method to
identify beam damages based on ANN. Khodabandehlou et al. [39] adopted a convolution
neural network to localize and assess damages of a bridge based on the ANN model using
acceleration responses. Yu et al. [40] adopted a deep convolutional neural network to
identify building structure damages using acceleration responses. However, structural
vibration responses inevitably contain random components due to environmental and
measurement noises. Structural displacement responses have generally less pollution
than acceleration responses with derivatives under random excitations or noises with
short correlation times. The response statistics of beam displacements have been used to
identify damages based on ANN [41,42], but directly using the displacement responses of
structures under random excitations to identify structural damages based on ANN needs
to be studied further, along with the comparison between ANN-based SDI/SAD methods
using displacement and acceleration responses.

In the present work, the SAD method based on the ANN model using random displace-
ment responses is proposed and compared with that using random acceleration responses.
The ANN-based method is applied to a five-story building structure under random base
excitations for SAD by ANN output of anomaly severity. The effects of different random
vibration responses used on the accuracy of predicting anomalies are shown by numerical
results. The effects of the actual incomplete measurements, including intensive noise,
finite sampling time length, and limited measurement points, are also discussed. Section 2
introduces an ANN model and the SAD method. In Section 3, the ANN-based SAD method
is applied to a five-story building structure. Section 4 presents the results and discussions
about the performance of the method using random displacement and acceleration re-
sponses and the effects of incomplete measurements, respectively. A conclusion is given in
Section 5.

2. ANN Model and SAD Method

The ANN model can produce meaningful solutions to complex engineering problems
even if the input data have certain noises and incompleteness. Generally, the ANN model
is composed of many simple computational units in layers. The classical ANN contains
input, hidden, and output layers. The number of hidden layers has a variety of options.
Although ANNs with many layers can represent deep circuits, training a deep network
has always been somewhat of a challenge. Empirical studies have often found that deep
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networks generally perform no better, and often worse, than neural networks with one or
two hidden layers. An ANN with many hidden layers also has a computational efficiency
problem. Thus, the reasonable number of hidden layers may be a small value based on the
assigned accuracy or mean square error between the aim and network outputs. Each unit in
the input layer is assigned values and each unit in the output layer produces results. Units
in the hidden layer are constructed to describe complex relationships by training, and then
the input is connected to the output. The number of units in each layer is determined by the
described problem and requirements. The number of units in a hidden layer has a variety
of options. Some general rules are: (1) the number of hidden layer units is two-thirds of
the number of input layers, and if this is insufficient, the number of output layer units
can be added later on; (2) the number of hidden layer units should be less than twice
that of the number of units in the input layer; (3) the number of hidden layer units is
between the numbers of input layers and output layers [43]. An ANN with more units
in the hidden layers also has a computational efficiency problem. Thus, the reasonable
number of hidden layer units may be a small value based on the assigned accuracy or mean
square error between the aim and network outputs under the general rules. Units between
adjacent layers are connected by activation functions with certain weights [44,45]. An ANN
architecture with two hidden layers is shown in Figure 1, which is used in this study.
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Figure 1. ANN architecture with two hidden layers.

A back-propagation algorithm (BPA) can be applied to train networks to form a mature
ANN model. The mean square error (MSE), as a BPA performance criterion, is calculated
by the difference in the network and aim outputs. The Adam algorithm can be used for the
BPA to minimize the MSE [46]. The MSE [47,48] is expressed as

MSE =
1
n

n

∑
i=1

(VTi − VOi)
2, (1)

where n is the output number, VTi is the aim output, and VOi is the network output.
An ANN model is used to describe the relationship between structural responses

and anomalies such as damages due to stiffness reduction. Random displacement and
acceleration responses as general measured data are respectively used as the input to the
ANN, and the output of the ANN is the anomaly severity. The ANN model is set up by
training and then validated using random vibration responses with different structural
anomalies. The ANN-based SAD method can directly use responses to assess and localize
the anomalies of structures under random excitations. Structural anomaly-sensitive features
can be extracted automatically from raw random acceleration and displacement responses
in real time.
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3. ANN-Based SAD for Building Structure

The SAD method based on the ANN model using random displacement and acceler-
ation responses was applied to identify stiffness reduction due to damages in a building
structure under random excitations. In a numerical study, a five-story building struc-
ture [36] was considered, as shown in Figure 2. The structure was modeled as a ‘shear
building’ with five degrees of freedom (floor translations) and was subjected to random
base acceleration excitation

..
xg. The excitation was a zero-mean random process and its

power spectral density is described by [49]

S ..
xg
(ω) =

1 + 4ζ2
g(ω/ωg)

2

[1 − (ω/ωg)
2]

2
+ 4ζ2

g(ω/ωg)
2

S0, (2)

where ω is dimensionless frequency, the dimensionless excitation intensity S0 = 1, the fre-
quency constant ωg = 5π rad/s, and the damping constant ζg = 0.6. The Kanai–Tajimi spec-
trum (2) is commonly used to represent random earthquake excitations, where constants
are determined by ground characteristics. The structural mass, stiffness, and damping coef-
ficients of the i-th story (i = 1,2, . . . , 5) are mi = 500 kg, ki = 120 kN/m, and ci = 1.0 kN·s/m,
respectively. The structural vibration equation can be expressed in the matrix form

M
..
X + C

.
X + KX = −ME · ..

xg, (3)

where displacement vector X, mass matrix M, damping matrix C, and stiffness matrix K are

X =


x1
x2
x3
x4
x5

, M =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

, C =


c1 −c1 0 0 0
−c1 c1 + c2 −c2 0 0

0 −c2 c2 + c3 −c3 0
0 0 −c3 c3 + c4 −c4
0 0 0 −c4 c4 + c5



, K =


k1 −k1 0 0 0
−k1 k1 + k2 −k2 0 0

0 −k2 k2 + k3 −k3 0
0 0 −k3 k3 + k4 −k4
0 0 0 −k4 k4 + k5

.

(4)

Unit vector E = [1, 1, 1, 1, 1]T, and xi is the i-th floor displacement relative to the base.
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The displacement and acceleration responses of the structure with various stiffness
reductions due to damages are obtained by Equation (3), where the random excitation
samples are generated based on the power spectral density (2). The structural responses
are used as the input and the corresponding relative reductions in stiffness are used as the
output to train the ANN model. The relative reduction in structural stiffness is defined as

γi = 1 −
ki,d

ki,u
, (5)

where ki,u is the structural stiffness of the i-th story for the normal case and ki,d is the
structural stiffness of the i-th story for the anomaly case (i = 1,2, . . . , 5).

Table 1 lists 26 cases with and without anomalies. The structural responses in these
cases were used to train and then test the ANN model for structural anomaly identification,
where the anomaly is represented by the relative stiffness reduction. Case 1 is the structural
normal scenario. Cases 2–14 are the single structural stiffness reductions at different stories.
Cases 15–26 are the multiple structural stiffness reductions at different stories. For each
condition scenario, 124 samples of random excitation produced by Equation (2) were
used to obtain structural responses. A total of 3224 groups of samples were collected and
divided into 124 subgroups. Then, 99 subgroups were used to train the ANN model, and
25 subgroups were used to test the model. The statistics of the output results were used
to evaluate the ANN-based method. In addition, Gaussian white noises were added to
the structural responses to simulate a noisy measurement. Figure 3a,b shows examples
of random acceleration and a displacement responses of the structure in anomaly Case
26 (in Table 1) with a 20 dB signal-to-noise ratio (SNR), respectively. The time interval of
the samples is 0.1 s and the total time is 50 s. The ANN output was the relative stiffness
reduction of every story γi (i = 1,2, . . . , 5).

Table 1. Condition scenarios of building anomalies due to stiffness reduction.

Case No.
Anomaly
Location

(Story No.)

Anomaly
Severity (%) Case No.

Anomaly
Location

(Story No.)

Anomaly
Severity (%)

1 No 0 14 5 25
2 1 5 15 1, 2 10, 25
3 1 15 16 2, 3 15, 40
4 1 20 17 3, 5 20, 45
5 2 10 18 2, 5 25, 45
6 2 15 19 4, 5 25, 25
7 2 25 20 1, 2, 3 10, 15, 10
8 3 20 21 1, 3, 5 40, 10, 20
9 3 30 22 2, 4, 5 10, 20, 45
10 3 40 23 2, 3, 4 10, 20, 45
11 4 10 24 3, 4, 5 10, 10, 20

12 4 20 25 1, 2, 3, 4, 5 5, 20, 30, 10,
20

13 5 15 26 1, 2, 3, 4, 5 10, 5, 15, 5, 40

The ANN model was conducted using PyTorch (in Python). Several important param-
eters, including the number of hidden layer units and the learning rate, were determined
in advance. In this study, the number of hidden layer units was chosen as 50, and the
learning rate was set as 5 × 10−5 according to the MSE of the training results. The ANN
model was trained based on the suitable parameters using the group data, and then the
ANN model was used to predict structural anomalies and its performance was evaluated
by predicting results.
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(b) displacement responses.

4. Results of the Incomplete Measurements of Displacement and Acceleration
Responses

The results of the performance of the ANN-based SAD method using random dis-
placement and acceleration responses and the effects of incomplete measurements, such as
intensive noise, finite sampling time length, and limited measurement points, are shown in
Figures 4–13.

4.1. Comparison of Results Using Random Acceleration and Displacement Responses

The effects of different random vibration responses (displacement and acceleration)
used as the ANN input on SAD results were investigated by comparison. Figure 4 shows
the prediction results of the relative reduction in structural stiffness (mean values) for
various condition scenarios (Table 1) by the ANN-based SAD method using displacement
and acceleration responses. The standard deviations of the relative stiffness reductions
for Cases 8 and 25 are shown at the end for observation. It can be seen that the ANN-
based method effectively predicted the location and severity of structural anomalies due to
stiffness reduction for all cases using acceleration and displacement responses (with a 20 dB
SNR) as the input. However, by comparison, the ANN-based method using displacement
responses as the input roughly produced more accurate results than using acceleration
responses in most cases, including Cases 1, 3, 8, 10–17, 19–22, 24, and 26. The prediction
results using displacement responses had more accurate mean values and smaller standard
derivations. For example, the mean value and standard derivation of the relative stiffness
reduction at the first story for Case 25 were 0.0488 and 0.00418, respectively, and the
confidence interval of 95% was [0.0471, 0.0504] using displacement responses, but the
corresponding values using acceleration responses were 0.0634, 0.0178, and [0.0564, 0.0704],
respectively. For the relative stiffness reduction at the third story of Case 8, the confidence
interval of 95% was [0.199, 0.206] using displacement responses and [0.193, 0.198] using
acceleration responses.
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4.2. Effect of Noise Intensity

The acceleration and displacement responses with different SNRs (representing dif-
ferent noise intensities) were considered as incomplete measurements, and the effect of
noise intensity on the accuracy of the ANN-based SAD method was investigated. Figure 5
shows a comparison of the prediction results (mean values of relative stiffness reduction)
(Cases 11 and 19) using acceleration responses as the ANN input for different SNRs. It
can be observed that the accuracy of the prediction results increased with the SNR from
10 dB to 30 dB. For example, the MSEs of the prediction values are 2.92 × 10−3, 5.93 × 10−5,
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and 4.94 × 10−6 for SNR = 10, 20, and 30 dB, respectively, for Case 19. Figure 6 shows a
comparison of the prediction results (Cases 11 and 19) using displacement responses as the
ANN input for different SNRs. It can also be observed that the accuracy of the prediction
results increased with the SNR from 10 dB to 30 dB. For example, the MSEs of the pre-
diction values are 4.03 × 10−5, 6.09 × 10−6, and 1.57 × 10−6 for SNR = 10, 20, and 30 dB,
respectively, for Case 11. Figure 7 shows the MSEs dependent on the SNR for different
response inputs in Cases 11 and 19. The MSE initially decreased and then remained stable
as the SNR increased. The accuracy of the prediction results using displacement responses
as the ANN input was better than that using acceleration responses for smaller SNRs
(e.g., less than 20 dB). Thus, the ANN-based SAD method using displacement responses as
the ANN input had better robustness [50].

4.3. Effect of Sampling Time Length

The random vibration responses with diffident finite sampling time lengths were
considered and the effect of the sampling time length on the accuracy of the ANN-based
SAD method was investigated. Figure 8 shows a comparison of the prediction results
(mean values of relative stiffness reduction) (Cases 11 and 19) using acceleration responses
with different sampling time lengths as the ANN input (with a 20 dB SNR). It can be
observed that the accuracy of the prediction results roughly increased with the sampling
time length from 10 s to 50 s. For example, the MSEs of the prediction values are 9.83 × 10−4,
5.44 × 10−4, and 5.93 × 10−5 for the time lengths of 10 s, 30 s, and 50 s, respectively, in Case
19. Figure 9 shows a comparison of the prediction results (mean values of relative stiffness
reduction) (Cases 11 and 19) using displacement responses with different sampling time
lengths as the ANN input (with a 20 dB SNR). It can be observed that the accuracy of the
prediction results also increased with the sampling time length. For example, the MSEs
of prediction values are 3.64 × 10−4, 6.95 × 10−5, and 6.09 × 10−6 for the time lengths of
10 s, 30 s, and 50 s, respectively, in Case 11. However, the accuracy of the prediction results
using displacement responses as the ANN input was better than that using acceleration
responses for times longer than 15 s, as shown in Figure 10.

4.4. Effect of Limited Measurement Points

The effect of the random vibration responses measured from the limited measurement
points on the accuracy of the ANN-based SAD method was investigated. Three cases
of limited measurement points were considered as follows: (1) the random vibration
responses were measured from one measurement point (first floor) (DOF = 1); (2) the
random vibration responses were measured from three measurement points (first, third,
and fifth floors) (DOF = 3); and (3) the random vibration responses were measured from five
measurement points (all floors) (DOF = 5). Figure 11 shows a comparison of the prediction
results (mean values of relative stiffness reduction) (Cases 8 and 25) using the acceleration
responses measured from different measurement points as the ANN input (with a 20 dB
SNR). It can be observed that the accuracy of the prediction results roughly increased with
the number of the limited measurement points from 1 DOF to 5 DOF. For example, the
MSEs of the prediction values are 2.55 × 10−4, 4.98 × 10−4, and 4.18 × 10−5 for 1, 3, and 5
measurement points, respectively, in Case 8. Figure 12 shows a comparison of the prediction
results (mean values of relative stiffness reduction) (Cases 8 and 25) using displacement
responses measured from different measurement points as the ANN input (with a 20 dB
SNR). It can be observed that the accuracy of the prediction results also increased with the
number of limited measurement points from 1 DOF to 5 DOF. For example, the MSEs of the
prediction values are 1.01 × 10−4, 2.56 × 10−5, and 2.32 × 10−5 for 1, 3, and 5 measurement
points, respectively, in Case 25. The accuracy of the prediction results using displacement
responses as the ANN input is better than those using acceleration responses for different
numbers of measurement points, as shown in Figure 13.
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5. Conclusions

An SAD method based on the ANN model using random displacement responses was
proposed and compared with that using random acceleration responses. The ANN-based
method was applied to a five-story building structure under random base excitations for
SAD. Structural displacement and acceleration responses were used as the input to the
ANN model and the output was the anomaly severity represented by the relative stiffness
reduction. The effects of different random vibration responses used on the accuracy of
the prediction of stiffness reduction are shown by numerical results and compared. The
effects of the actual incomplete measurements, including intensive noise, finite sampling
time length, and limited measurement points, on the accuracy of the prediction results
using the ANN-based SAD method were investigated. Several meaningful results for the
ANN-based SAD method were obtained as follows:

(1) Using raw acceleration or displacement responses as the input to the ANN model
was more effective for SAD, and the ANN-based method using random displacement
responses as the ANN input was better than that using random acceleration responses;

(2) The accuracy of the prediction results on structural anomalies increased with the
response SNR, e.g., from 10 dB to 30 dB, and the results using random displacement
responses as the ANN input were more accurate than those using random acceleration
responses for smaller SNR (e.g., less than 20 dB); thus, the ANN-based SAD method
using displacement responses as the ANN input had better robustness;

(3) The accuracy of the prediction results on structural anomalies increased with the
sampling time length of random vibration responses (for certain short time lengths),
and the results using random displacement responses as the ANN input were more
accurate than those using random acceleration responses (e.g., for sampling times
longer than 15 s);

(4) The accuracy of the prediction results on structural anomalies roughly increased
with the number of limited measurement points of random vibration responses,
and the results using random displacement responses as the ANN input were more
accurate than those using random acceleration responses for different numbers of
measurement points.

The above results are valuable for utilizing ANN with random vibration responses
as the input and anomaly severity as the output to identify structural anomalies. The
future work will be to incorporate the deep learning technique for improving the method
performance, including robustness and resilience [51], and then to find suitable applications.

Author Contributions: Conceptualization, Z.-G.Y. and Z.-G.R.; methodology, Z.-G.R. and Z.-G.Y.;
software, Z.-G.R.; validation, Z.-G.R.; writing—original draft preparation, Z.-G.R.; writing—review
and editing, Z.-G.R. and Z.-G.Y.; project administration, Z.-G.Y.; funding acquisition, Z.-G.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 12072312.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Doebling, S.W.; Farrar, C.R.; Prime, M.B. A summary review of vibration-based damage identification methods. Shock Vib. Dig.

1998, 30, 91–105. [CrossRef]
2. Worden, K.; Farrar, C.R.; Manson, G.; Park, G. The fundamental axioms of structural health monitoring. P. Roy. Soc. A-Math. Phy.

2007, 463, 1639–1664. [CrossRef]

http://doi.org/10.1177/058310249803000201
http://doi.org/10.1098/rspa.2007.1834


Sensors 2022, 22, 4128 16 of 17

3. Farrar, C.R.; Doebling, S.W. Vibration-based structural damage identification. Philos. Trans. R. Soc. Lond. 2001, 359, 131–149.
[CrossRef]

4. Cawley, P.; Adama, R.D. The location of defects in structures from measurements of natural frequencies. J. Strain Anal. Eng. 1979,
14, 49–57. [CrossRef]

5. Lee, Y.S.; Chung, M.J. A study on crack detection using eigenfrequency test data. Comput. Struct. 2001, 77, 327–342. [CrossRef]
6. Khiem, N.T.; Lien, T.V. Multi-crack detection for beam by the natural frequencies. J. Sound Vib. 2004, 271, 175–184. [CrossRef]
7. Su, W.C.; Huang, C.S.; Hung, S.L.; Chen, L.J.; Lin, W.J. Locating damaged storys in a shear building based on its sub-structural

natural frequencies. Eng. Struct. 2012, 39, 126–138. [CrossRef]
8. Khiem, N.T.; Toan, L.K. A novel method for crack detection in beam like structures by measurements of natural frequencies.

J. Sound Vib. 2014, 333, 4084–4103. [CrossRef]
9. Pandey, A.K.; Biswas, M.; Samman, M.M. Damage detection from changes in curvature mode shapes. J. Sound Vib. 1991, 145,

321–332. [CrossRef]
10. Zhu, H.; Li, L.; He, X.Q. Damage detection method for shear buildings using the change in first mode shape slopes. Comput.

Struct. 2011, 89, 733–743. [CrossRef]
11. Nguyen, K.V. Mode shapes analysis of a cracked beam and its application for crack detection. J. Sound Vib. 2014, 333, 848–872.

[CrossRef]
12. Cornwell, P.; Doebling, S.W.; Farrar, C.R. Application of the strain energy damage detection method to plate-like structures. J.

Sound Vib. 1999, 224, 359–374. [CrossRef]
13. Alvandi, A.; Cremona, C. Assessment of vibration-based damage identification techniques. J. Sound Vib. 2006, 292, 179–202.

[CrossRef]
14. Ooijevaar, T.H.; Loendersloot, R.; Warnet, L.L.; Boer, A.D.; Akkerman, R. Vibration based structural health monitoring of a

composite T-beam. Compos. Struct. 2010, 92, 2007–2015. [CrossRef]
15. Wu, S.; Zhou, J.; Rui, S.; Fei, Q. Reformulation of elemental modal strain energy method based on strain modes for structural

damage detection. Adv. Struct. Eng. 2016, 20, 896–905. [CrossRef]
16. Koo, K.Y.; Sung, S.H.; Jung, H.J. Damage quantification of shear buildings using deflections obtained by modal flexibility. Smart

Mater. Struct. 2011, 20, 045010. [CrossRef]
17. Chen, Y.; Hou, X.B. Applications of different criteria in structural damage identification based on natural frequency and static

displacement. Sci. China Technol. Sci. 2016, 59, 1746–1758.
18. Saeed, R.A.; Galybin, A.N.; Popov, V. Crack identification in curvilinear beams by using ANN and ANFIS based on natural

frequencies and frequency response functions. Neural Comput. Appl. 2011, 21, 1629–1645. [CrossRef]
19. Geng, X.; Lu, S. Research on FBG-based CFRP structural damage identification using BP neural network. Photonic Sens. 2018, 8,

1–8. [CrossRef]
20. Hadi, S.; Saptarshi, D. Structural damage identification using image-based pattern recognition on event-based binary data

generated from self-powered sensor networks. Struct. Control Health Monit. 2018, 25, e2135.1–e2135.21.
21. Yun, C.B.; Yi, J.H.; Bahng, E.Y. Joint damage assessment of framed structures using a neural networks technique. Eng. Struct.

2001, 23, 425–435. [CrossRef]
22. Sahin, M.; Shenoi, R.A. Quantification and localisation of damage in beam-like structures by using artificial neural networks with

experimental validation. Eng. Struct. 2003, 25, 1785–1802. [CrossRef]
23. Bagchi, A.; Humar, J.; Xu, H.; Noman, A.S. Model-based damage identification in a continuous bridge using vibration data. J.

Perform. Constr. Fac. 2010, 24, 148–158. [CrossRef]
24. Nadith, P.; Li, J.; Ling, L.; Hao, H.; Liu, W.; Ni, P. Structural damage identification based on autoencoder neural networks and

deep learning. Eng. Struct. 2018, 172, 13–28.
25. Pagani, A.; Enea, M.; Carrera, E. Component-wise damage detection by neural networks and refined FEs training. J. Sound Vib.

2021, 509, 116255. [CrossRef]
26. Daskalakis, E.; Panagiotopoulos, C.G.; Tsogka, C. Stretching method-based damage detection using neural networks. Sensors

2022, 22, 830. [CrossRef]
27. Gillich, N.; Tufisi, C.; Sacarea, C.; Rusu, C.V.; Gillich, G.-R.; Praisach, Z.-I.; Ardeljan, M. Beam damage assessment using natural

frequency shift and machine learning. Sensors 2022, 22, 1118. [CrossRef]
28. Lee, J.J.; Lee, J.W.; Yi, J.H.; Yun, C.B.; Jung, H.Y. Neural networks-based damage detection for bridges considering errors in

baseline finite element models. J. Sound Vib. 2005, 280, 555–578. [CrossRef]
29. Lee, J.J.; Yun, C.B. Damage diagnosis of steel girder bridges using ambient vibration data. Eng. Struct. 2006, 28, 912–925.

[CrossRef]
30. Bakhary, N.; Hong, H.; Deeks, A.J. Structure damage detection using neural network with multi-stage substructuring. Adv. Struct.

Eng. 2010, 13, 95–110. [CrossRef]
31. Nick, H.; Aziminejad, A.; Hosseini, M.H.; Laknejadi, K. Damage identification in steel girder bridges using modal strain

energy-based damage index method and artificial neural network. Eng. Fail. Anal. 2021, 119, 105010. [CrossRef]
32. Tan, Z.X.; Thambiratnam, D.P.; Chan, T.H.T.; Razak, H.A. Detecting damage in steel beams using modal strain energy based

damage index and Artificial Neural Network. Eng. Fail. Anal. 2017, 79, 253–262. [CrossRef]

http://doi.org/10.1098/rsta.2000.0717
http://doi.org/10.1243/03093247V142049
http://doi.org/10.1016/S0045-7949(99)00194-7
http://doi.org/10.1016/S0022-460X(03)00424-3
http://doi.org/10.1016/j.engstruct.2012.02.002
http://doi.org/10.1016/j.jsv.2014.04.031
http://doi.org/10.1016/0022-460X(91)90595-B
http://doi.org/10.1016/j.compstruc.2011.02.014
http://doi.org/10.1016/j.jsv.2013.10.006
http://doi.org/10.1006/jsvi.1999.2163
http://doi.org/10.1016/j.jsv.2005.07.036
http://doi.org/10.1016/j.compstruct.2009.12.007
http://doi.org/10.1177/1369433216665626
http://doi.org/10.1088/0964-1726/20/4/045010
http://doi.org/10.1007/s00521-011-0716-1
http://doi.org/10.1007/s13320-018-0466-0
http://doi.org/10.1016/S0141-0296(00)00067-5
http://doi.org/10.1016/j.engstruct.2003.08.001
http://doi.org/10.1061/(ASCE)CF.1943-5509.0000071
http://doi.org/10.1016/j.jsv.2021.116255
http://doi.org/10.3390/s22030830
http://doi.org/10.3390/s22031118
http://doi.org/10.1016/j.jsv.2004.01.003
http://doi.org/10.1016/j.engstruct.2005.10.017
http://doi.org/10.1260/1369-4332.13.1.95
http://doi.org/10.1016/j.engfailanal.2020.105010
http://doi.org/10.1016/j.engfailanal.2017.04.035


Sensors 2022, 22, 4128 17 of 17

33. Ni, Y.Q.; Wang, B.S.; Ko, J.M. Constructing input vectors to neural networks for structural damage identification. Smart Mater.
Struct. 2002, 11, 825–833. [CrossRef]

34. Modi, S.; Lin, Y.; Cheng, L.; Yang, G.; Liu, L.; Zhang, W.J. A socially inspired framework for human state inference using expert
opinion integration. IEEE/ASME Trans. Mechatron. 2011, 16, 874–878. [CrossRef]

35. Wu, X.; Ghaboussi, J.; Garrett, J.H. Use of neural networks in detection of structural damage. Comput. Struct. 1992, 42, 649–659.
[CrossRef]

36. Qian, Y.Y.; Mita, A. Acceleration-based damage indicators for building structures using neural network emulators. Struct. Control
Health Mont. 2008, 15, 901–920. [CrossRef]

37. Puruncajas, B.; Vidal, Y.; Tutiven, C. Vibration-response-only structural health monitoring for offshore wind turbine jacket
foundations via convolutional neural networks. Sensors 2020, 20, 3429. [CrossRef]

38. Park, J.H.; Kim, J.T.; Hong, D.S.; Ho, D.D.; Yi, J.H. Sequential damage detection approaches for beams using time-modal features
and artificial neural networks. J. Sound Vib. 2009, 323, 451–474. [CrossRef]

39. Khodabandehlou, H.; Pekcan, G.; Fadali, M.S. Vibration-based structural condition assessment using convolution neural networks.
Struct. Control Health Mont. 2019, 26, e2308.1–e2308.12. [CrossRef]

40. Yu, Y.; Wang, C.; Gu, X.; Li, J. A novel deep learning-based method for damage identification of smart building structures. Struct.
Control Health Mont. 2018, 18, 143–163. [CrossRef]

41. Li, Z.X.; Yang, X.M. Damage identification for beams using ANN based on statistical property of structural responses. Comput.
Struct. 2008, 86, 64–71. [CrossRef]

42. Yang, X.M.; Chen, X.M. Test verification of damage identification method based on statistical properties of structural dynamic
displacement. J. Civ. Struct. Health 2019, 9, 263–269. [CrossRef]

43. Karsoliya, S. Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int. J. Eng. Trends
Technol. 2012, 3, 714–717.

44. Krauss, G.; Kindangen, J.I.; Depecker, P. Using artificial neural networks to predict interior velocity coefficients. Build. Environ.
1997, 32, 295–303. [CrossRef]

45. Momeni, E.; Armaghani, D.J.; Hajihassani, M.; Amin, E.F.M. Prediction of uniaxial compressive strength of rock samples using
hybrid particle swarm optimization-based artificial neural networks. Measurement 2015, 60, 50–63. [CrossRef]

46. Kingma, D.P.; Ba, J.L. Adam: A Method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
47. Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE T. Pattern Anal. 2002, 12, 993–1001. [CrossRef]
48. Talatahari, S.; Mohajer, N. Enriched imperialist competitive algorithm for system identification of magnetorheological dampers.

Mech. Syst. Signal Pr. 2015, 62–63, 506–516. [CrossRef]
49. Alotta, G.; Paola, M.D.; Pirrotta, A. Fractional Tajimi–Kanai model for simulating earthquake ground motion. B. Earthq. Eng.

2014, 12, 2495–2506. [CrossRef]
50. Zhang, W.J.; Lin, Y. On the principle of design of resilient systems -application to enterprise information systems. Enterp. Inf. Syst.

2010, 4, 99–110. [CrossRef]
51. Zhang, W.J.; Yang, G.; Lin, Y.; Ji, C.; Gupta, M.M. On definition of deep learning. In Proceedings of the IEEE 2018 World

Automation Congress, Stevenson, WA, USA, 3–6 June 2018; pp. 232–236.

http://doi.org/10.1088/0964-1726/11/6/301
http://doi.org/10.1109/TMECH.2011.2161094
http://doi.org/10.1016/0045-7949(92)90132-J
http://doi.org/10.1002/stc.226
http://doi.org/10.3390/s20123429
http://doi.org/10.1016/j.jsv.2008.12.023
http://doi.org/10.1002/stc.2308
http://doi.org/10.1177/1475921718804132
http://doi.org/10.1016/j.compstruc.2007.05.034
http://doi.org/10.1007/s13349-019-00331-0
http://doi.org/10.1016/S0360-1323(96)00059-5
http://doi.org/10.1016/j.measurement.2014.09.075
http://doi.org/10.1109/34.58871
http://doi.org/10.1016/j.ymssp.2015.03.020
http://doi.org/10.1007/s10518-014-9615-z
http://doi.org/10.1080/17517571003763380

	Introduction 
	ANN Model and SAD Method 
	ANN-Based SAD for Building Structure 
	Results of the Incomplete Measurements of Displacement and Acceleration Responses 
	Comparison of Results Using Random Acceleration and Displacement Responses 
	Effect of Noise Intensity 
	Effect of Sampling Time Length 
	Effect of Limited Measurement Points 

	Conclusions 
	References

