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Abstract: Alzheimer’s disease (AD) is a chronic disease that affects the elderly. There are many
different types of dementia, but Alzheimer’s disease is one of the leading causes of death. AD is a
chronic brain disorder that leads to problems with language, disorientation, mood swings, bodily
functions, memory loss, cognitive decline, mood or personality changes, and ultimately death due
to dementia. Unfortunately, no cure has yet been developed for it, and it has no known causes.
Clinically, imaging tools can aid in the diagnosis, and deep learning has recently emerged as an
important component of these tools. Deep learning requires little or no image preprocessing and can
infer an optimal data representation from raw images without prior feature selection. As a result,
they produce a more objective and less biased process. The performance of a convolutional neural
network (CNN) is primarily affected by the hyperparameters chosen and the dataset used. A deep
learning model for classifying Alzheimer’s patients has been developed using transfer learning and
optimized by Gorilla Troops for early diagnosis. This study proposes the A3C-TL-GTO framework for
MRI image classification and AD detection. The A3C-TL-GTO is an empirical quantitative framework
for accurate and automatic AD classification, developed and evaluated with the Alzheimer’s Dataset
(four classes of images) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The proposed
framework reduces the bias and variability of preprocessing steps and hyperparameters optimization
to the classifier model and dataset used. Our strategy, evaluated on MRIs, is easily adaptable to other
imaging methods. According to our findings, the proposed framework was an excellent instrument
for this task, with a significant potential advantage for patient care. The ADNI dataset, an online
dataset on Alzheimer’s disease, was used to obtain magnetic resonance imaging (MR) brain images.
The experimental results demonstrate that the proposed framework achieves 96.65% accuracy for the
Alzheimer’s Dataset and 96.25% accuracy for the ADNI dataset. Moreover, a better performance in
terms of accuracy is demonstrated over other state-of-the-art approaches.

Keywords: Alzheimer; artificial gorilla troops optimizer (GTO); convolutional neural network (CNN);
deep learning (DL); metaheuristic optimization

1. Introduction

The prevalence of age-related diseases rises as people live longer, especially brain
diseases, mostly neurodegenerative, such as Alzheimer’s disease (AD) [1]. AD was named
in 1907 by Alois Alzheimer, who delineated a fifty-year-old woman dying of advanced
dementia after four years of rapid memory deterioration [2]. AD is an irreversible, pro-
gressive, and ultimately fatal brain degenerative disorder that affects middle-aged and
older people. When the disease is discovered, most patients have already progressed to an
advanced stage [3]. As a result, AD gradually deteriorates memory and thinking abilities
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and the ability to carry out even the most basic duties of daily life by destroying the brain
cells. Unfortunately, there is no currently available curative treatment for AD. Thus, early
detection can effectively treat cognitive losses at the initial stage.

Various ailments are associated with aging, and AD is a major cause of dementia, also
known as a major neurocognitive disorder, which mainly affects older people and poses the
highest cost to society and healthcare budgets. The estimated annual cost of dementia is
one trillion dollars, and it is expected to double by 2030 [4]. The World Health Organization
(WHO) stated that dementia is a major societal concern, with more than 55 million people
worldwide suffering from dementia, with nearly 10 million new cases diagnosed each year
and 82 million cases in the next ten years [5]. Furthermore, the report [6] pointed out that,
by 2050, patients with dementia will reach 152 million, with a patient being diagnosed
with dementia every three seconds [7]. AD is a progressively developing disease and is
considered the seventh leading cause of death in the USA, with 132,741 deaths in 2020 [8],
which exceeds breast and prostate cancer combined [9]. In addition, AD with unknown
causes endangers the physical health of the elderly [7]. The aging of the world’s population
is increasing year by year [3]. For the first time in US history, the speedup of global aging
will outnumber children (77 million) by 2034. As a result, the incidence of AD will increase
dramatically and become more challenging with this quickening of global population aging.
Figure 1 reports the anticipated number of people above 65 with AD in the US population
from 2020 to 2060 [10].

6.07 6.24
6.47

6.7
6.92

7.16

8.54

11.16

12.73

13.84

0

2

4

6

8

10

12

14

16

2020 2021 2022 2023 2024 2025 2030 2040 2050 2060

Ages 65-74 Ages 75-84 Ages 85+ Total

Pe
op

le
 in

 M
ill

io
ns

Figure 1. The anticipated number of US people above 65 with AD from 2020 to 2060.

There are no viable therapy techniques or medications available for Alzheimer’s
disease at the moment. Therefore, the diagnosis of dementia journey is often complex
and experiences long wait times [11]. On the other hand, AD treatments at early stages
slow down the complications and maintain the residual brain functions. Therefore, early
detection and intervention for this central nervous system degeneration are crucial to
providing timely treatment to patients. In this vein, a complete understanding of its
biomarkers is essential to differentiate AD symptoms from normal aging symptoms and
accordingly slow its progression. Indeed, many neurological disorders directly impact the
brain, particularly the hippocampus, which is essential in forming memories [12], emotional
control, and learning. Hippocampus damage has been linked to various neurological and
psychiatric disorders, including AD [12]. Prolonged AD is linked to tissue loss in various
brain regions [13]. The damage begins in the gray matter (GM) and progresses to the white
matter (WM) before reaching the hippocampus [12].

Figure 2 shows the major signs and symptoms of dementia [5,11] that start with
memory loss and end with death. Early on, AD manifests as a mild cognitive impairment
(MCI) and gradually gets worse. MCI is a condition in which people have more memory
problems than usual and increases the risk of developing AD in some older people than
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others. Mild Alzheimer’s patients are frequently diagnosed with getting lost, difficulty
performing tasks, repeating questions, and behavioral changes. The disease progresses in
stages, ranging from a moderate to severe AD stage [14]. Damage occurs in areas of the
brain that control language, reasoning, and thought in the moderate AD stage. As a result,
memory loss worsens, and people have difficulty recognizing others. Severe Alzheimer’s
disease is distinguished by significant brain tissue shrinkage and plaques and tangles
spread throughout the brain. Patients in this stage cannot communicate and must rely
entirely on others for their care.

Figure 2. The major signs and symptoms of dementia.

The manual diagnosis of AD is based on recent developments in advanced neuroimag-
ing techniques (such as magnetic resonance imaging (MRI), Computed Tomography (CT),
Positron Emission Tomography (PET)), manual feature extraction, and clinical evaluations.
MRI scans are the commonly utilized method that achieved unprecedented progress due
to their non-invasive nature, high resolution, nonionizing radiation, and multidirectional
imaging [15]. However, the brain structure is very complicated, and the imaging modalities
involved are multi-modal and the curse of dimensionality, making the manual diagnosis
time-consuming, error-prone, and tedious.

Recently, the rise of decision support systems based on medical imaging analysis has a
great role in developing intelligent diagnosis systems for AD that can identify the severity
of the patient’s disease and, therefore, keep AD in the initial stage. Furthermore, artificial
intelligence and machine learning appear to be promising solutions that aid radiologists in
an AD diagnosis. Thus, the accurate classification approach of brain images in the different
stages of the disease can be efficiently performed. However, the AD diagnosis based on
traditional machine learning algorithms had different time and space complexity, statistical
data distribution, convergence, and overfitting challenges. Deep learning (DL) has recently
been used in image classification to solve these challenges and introduced an accurate
medical image classification approach. The key elements of a successful DL model are:
the used datasets for training and testing, the design of the network, and the parameters
and hyperparameter optimization [16]. Current deep learning approaches are effective in
medical image evaluation as they do not require great effort for prior preprocessing and
feature selection, resulting in a more objective and less biased process [17]. As a result,
deep learning can efficiently classify brain images at various stages of the disease.

The main objective of this study is to propose an A3C-TL-GTO framework for MRI
image classification and Alzheimer’s disease detection. The proposed framework consists
of four phases: (1) Acquisition Phase, (2) Preprocessing Phase, (3) Classification, Learning,
and Optimization Phase, and (4) Population Updating Phase. The A3C-TL-GTO framework
is based on transfer learning and the Artificial Gorilla Troops Optimizer (GTO). The main
contributions of this study are:
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• Introduce a novel Alzheimer classification framework based on pretrained CNNs.
• A CNN architecture is chosen based on an analysis of an Alzheimer’s patient brain MRI

scans formulated as an optimization problem handled by Gorilla Troops Optimizers
on the list of top algorithms that outperform natural-inspired algorithms.

• The performance of each pretrained model is improved by optimizing a CNN and
transfer learning hyperparameters with Gorilla.

• There is no need to manually configure hyperparameters because this framework
is adaptable.

• The findings of standard performance measurements have been quite promising.

The paper is organized as follows: The background is introduced in Section 2. In
Section 3, related work is reviewed. Section 4 describes the proposed A3C-TL-GTO frame-
work and algorithms. Section 5 discusses the experiments and the results. Section 6
concludes the paper.

2. Background

Alzheimer’s disease (AD) is a type of dementia that progresses over time and is among
the many ailments associated with aging. Alzheimer’s disease develops gradually over
the years, and there is no cure. However, older people are more prone to AD. Early-onset
is rare [18]. However, AD is fatal if left untreated. Diagnosing AD at an early stage is
imperative because existing treatments only slow the progression of symptoms [12,16]. One
of the neurologists’ most difficult issues is classifying Alzheimer’s disease (AD). Methods
using manual classification can be time-consuming and inaccurate. Because the brain is
the most impacted region in AD [19], a precise classification framework based on a brain
imaging dataset may deliver better results. Various research studies use different datasets to
evaluate and compare their proposed methodology with other state-of-the-art research [2];
Figure 3 summarizes the characteristics of well-known AD datasets. Historically, basic
scientific findings concerning neurological disorders have been hard to translate into
effective treatments.

Figure 3. The characteristics of well-known AD datasets.

Nevertheless, gathering and manipulating large datasets has become exponentially
easier with big data. Multi-modal and multidimensional datasets, such as imaging and
genomics analysis, are among these complicated datasets. Analytics become more chal-
lenging as datasets grow. Advanced statistical and mathematical algorithms are being used
to tackle this formidable challenge based on machine learning, deep learning, and deep
reinforcement learning. Computer-aided techniques and medical imaging are the most
reliable means of detecting AD early [20,21]. In recent years, deep learning has received
great success in the medical image field. As well as being used in medical image analysis,
it has also gained wide attention for AD detection [22].

The AI learning model learns directly from the data, and as it is exposed to huge
datasets and trained over time, it gets better. The model can make predictions based on
previously unknown data with this knowledge. AI learning models are classified into three
types: a supervised model for structured and labeled data, an unsupervised model for
unlabeled and unstructured data, and a semi-supervised model, which combines both.
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Machine learning techniques, such as deep learning (DL), simulate the brain’s functions
to create patterns and identify patterns that can be used to make more complex decisions.
DL is the first choice for researchers because of its ability to draw information from even
unstructured and unlabeled data [19]. In DL calculations, many nonlinear layers can
be used to extract features. Each layer contributes to the depth of understanding of a
system. A DL family member, a convolutional neural network (CNN), typically analyzes
images without prior processing [21]. For identifying documents [23], LeCun and others
introduced a deep CNN in 1998. Machine learning has been used as a diagnostic tool by
physicians in recent years, as it offers additional information [20,23].

Deep learning is predicted to be the future of artificial intelligence, but it requires enor-
mous amounts of data. When feature spaces change, algorithms must be rebuilt to address
new problems. In previous studies, the network was generally built from the ground up,
which is rarely achievable, and the training process is time-consuming, labor-intensive,
and ineffective. Because transfer learning is much faster and more effective than traditional
learning, using pretrained networks, such as AlexNet, to identify images changed the
significance of DL networks in the long term. Furthermore, this is inappropriate for small
radiology datasets, and overfitting is prevalent during training [18,24]. Deep learning
layers transferred between datasets could be an interesting research topic for various tasks.
Meta-learning may achieve higher reuse levels in the future. Despite the difficulty of
the process, researchers can use a variety of internet databases and software packages to
identify AD. The depth model can be implemented using Matlab, Keras, Tensorflow, Torch,
and other software programs.

Because deep learning models outperform traditional models on large datasets, the
methods described above are less reliable when applied to clinical cases. In addition,
the models above depend on standard parameters. The chosen hyperparameters and
datasets [25] significantly influence the CNN performance. Hyperparameters are different
from model weights. The former is determined before training, whereas the latter is
determined during training. Hyperparameters can be adjusted in several ways [25]. A poor
choice of hyperparameters can negatively impact the performance of an application [26].
Therefore, hyperparameter values are selected according to an optimization process [25]
instead of being randomly selected for each application.

A proposed framework will typically include numerous layers, intermediate process-
ing elements, and other structural features, necessitating the use of search metaheuristics
to find these hyperparameters. The metaheuristic algorithm provides accurate and robust
solutions to nonlinear, multidimensional optimization problems. Most metaheuristics
derived from natural organisms in nature are used to solve optimization problems [27].
Furthermore, because metaheuristics use a black-box approach, they have high flexibility
and no gradient information, making them simple to use and not reliant on gradient infor-
mation. Regardless of structural characteristics, metaheuristic methods begin with random
trial solutions within their limitations. The algorithm-specific equations then iteratively
evolve candidate solutions until the termination condition is satisfied. As a result, various
optimization algorithms can propose varying degrees of solution improvement [28]. Evo-
lution, physics, and swarms are three commonly used metaheuristic algorithm types [29].
The swarm algorithm simulates a population’s social behavior. Since the early 1990s, vari-
ous swarm-based optimization algorithms, such as particle swarm (PSO) and ant colony
(ACO), have been developed. Swarm intelligence algorithms include firefly, grey wolf,
sparrow, whale optimization, and artificial bee colony algorithms.

The Artificial Gorilla Troops Optimizer is a new algorithm based on gorilla natural
behaviors (GTO). In 2021, Abdollahzadeh et al. proposed the GTO. Gorillas’ social behav-
ior and movement are mimicked in this method [27,30]. Troops of gorillas consist of a
silverback gorilla group and several females and their offspring. Male gorilla groups are
also present. The silver hair that emerges on the silverback’s back during puberty gives
it its name [27,31]. It has a lifespan of about 12 years. Therefore, a group’s attention is
drawn to the silverback. However, it is not just the one who makes all the decisions but
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mediates fights, determines gorilla group movement, guides them to food sources, and is
responsible for their safety and well-being. Blackbacks are young male gorillas who serve
as backup guardians for silverbacks. They are between the ages of 8 and 12, and their
backs are free of silver hairs. Gorillas, both male and female, move from their birthplaces.
Normally, gorillas migrate to new groups. On the other hand, a male gorilla is more likely
to abandon his group and start a new one by wooing a female gorilla who has traveled
outside. Male gorillas may stay in the same group, although they were born silverbacks
and are categorized as such. If the silverback dies, certain gorillas may strive to dominate
the group or stand and fight with the silverback to attain their objectives [32].

The accuracy and efficiency of the GTO were demonstrated [31]. The optimizer is
simple for engineering applications and does not require many adjustments [27]. Further-
more, the GTO algorithm can produce good results for a wide range of system dimensions
by increasing search capabilities. Other optimizers’ performance drop significantly as the
dimensions increase, giving them a significant advantage in all comparable dimensions [32].
For example, gorillas cannot live alone due to their group-living preferences. As a result,
gorillas hunt for food in groups and are led by a silverback leader in charge of group
choices. A silverback is regarded as the best in this algorithm, and any candidate of the
gorillas tends to approach it. The weakest gorilla is excluded because it is the worst.

In this algorithm, gorillas are denoted as X, while silverbacks are denoted as GX.
For example, consider a gorilla on the hunt for better food sources. As a result, the iteration
process generates GX each time and exchanges it with another solution if a better value
can be determined [30]. The GTO flowchart is shown in Figure 4. This algorithm is also
divided into two phases as follows.

Start

Initialize the gorillas in the current
problem space

Set the GTO parameters

Calculate the population fitness scores

t <= T

Update the GTO internal a and C parameters

Yes
i <= Ps

Exploration Phase

Update the positions of the gorillas

Yes

Calculate the population fitness scores
and if the new solutions are better the

previous solutions, replace them

No

Set the best solution as the location of
the silverback (i.e., best location)

j <= Ps
No

Update the positions of the gorillas

Calculate the population fitness scores
and if the new solutions are better the

previous solutions, replace them

Exploitation Phase

Set the best solution as the location of
the silverback (i.e., best location)

Yes

Return the first best gorilla

End

No

Figure 4. The gorilla natural behaviors flowchart.

2.1. Exploration Phase

Silverback gorillas are the best possible choice solutions for each optimization step in
the GTO algorithm, and all gorillas are regarded as potential solutions. Exploration has
been carried out with three operators: the movement to unknown places to expand the GTO
exploration further. The second operator balances the gorilla exploration and exploitation
by moving to other gorillas. With the third operator migrating toward a known site in the
exploration phase, the GTO may explore different optimization spaces more effectively.
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The migration mechanism was selected by using a parameter named p. Before con-
ducting the optimization procedure [30], the factor (p) in the range 0–1 must be specified
to determine the likelihood of adopting a migration strategy to an unidentified location.
A first mechanism is selected when rand < p. However, if rand > 0.5, the mechanism of
approaching other gorillas is chosen. However, if rand < 0.5, a movement to a well-known
site is chosen, and each can deliver a good performance to the algorithm based on the
strategies used. At the end of the exploration phase, all of the results are evaluated, and if
GX(t) is the least expensive option, GX(t) is used instead of X(t) (Silverback). In addition,
Equations (7)–(9) in Section 4.3.3 summarize three different mechanisms [27].

2.2. Exploitation Phase

There are two types of mechanisms for use during this phase. The first mechanism is
“follow the silverback”, while the second includes “adult female competition”. The decision
can be made by comparing the value of D with the random number W chosen at the start
of the optimization procedure [27].

The newly established group’s leader Silverback is a young and fit gorilla whom
the other male gorillas closely follow. Similarly, they follow Silverback’s orders to find
food and travel to various locations. Members of a group can also influence each other’s
movements within the group. For example, Silverback directs his gorillas to travel to
food-supply locations to locate food, and this strategy can also be used with D > W. When
young gorillas reach maturity, they struggle with other adult gorillas for the right to choose
females for their group, which is a frequently violent process. This strategy can also be
used when D < W. If GX(t) has a lower cost than X(t), GX(t) replaces X(t) and is found
to be the best alternative (Silverback) [30].

3. Related Studies

Recently, many researchers studied machine learning in the medical field. Finding
a more accurate and efficient method for diagnosing and predicting AD is a hot research
topic [14]. Deep learning has great potential in diagnosing AD based on imaging or
molecular data. This section explores the current state of the art that uses deep learning
architectures for AD diagnosis and prediction.

Islam and Zhang [33] developed a DCNN model for AD four-class classification
based on MRI images. The Inception-V4 model was trained and tested on the OASIS
dataset. The proposed model achieved an accuracy of 73.75%. However, the proposed
model suffered limited datasets and low accuracy. Zhang et al. [34] introduced an extreme
learning machine (ELM) model for binary AD classification. First, manually segmented
Voxel-based Morphometry images from the ADNI database of 627 patients were used.
Then, feature calculation, simple feature extraction, and classification were performed
using the ELM model. Ten-fold cross-validation was performed to ensure the ELM model
validity, which achieved an accuracy of 96%. However, its major drawbacks are dataset
limitation and poor feature selection.

Martinez et al. [35] studied applying deep learning to discover the relationship be-
tween symptoms, tests, and features extraction using Convolutional Autoencoders (CAEs).
This study began with data acquisition from three data sources: MRI from the ADNI
database, data obtained via the Alzheimer’s Disease Assessment Scale (ADAS), and the
Clinical Dementia Ratio (CDR-SB). After data preprocessing, CAEs were used for feature
extraction and manifold modeling and achieved a classification accuracy of 85%. Saratx-
aga et al. [2] developed an approach for the AD multi-class classification based on deep
learning-based techniques. They used 305 MRI images from the OASIS database and
CDR clinical annotation. They used different pretrained architectures, and the ResNet
achieved the best results with an accuracy of 93%. Raees et al. [36] introduced a light
DL classification and feature extraction approach. They deployed different pretrained
models to build a trinary classifier. Functional MRI (fMRI) images retrieved from the ADNI
database were used for training and testing. The VGG19 achieved the highest accuracy
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of 90%. Buvaneswari and Gayathri [37] introduced a segmentation, feature extraction,
and classification approach based on deep learning. From the ADNI, 240 sMRI images
with SegNet were used to train the ResNet-10 architecture for classification. The proposed
approach recorded an accuracy of 95%.

Katabathula et al. [38] developed a lightweight 3D DenseCNN2 model for AD classifi-
cation. The DenseCNN2 was built on the global shape and visual hippocampus segmenta-
tion. Their proposed model was trained and tested with 933 sMRI images obtained from
the ADNI. The DenseCNN2 model achieved a classification accuracy of 92.52%. Mahen-
dran and Vincent [12] developed a feature selection and classification approach for AD.
They used a DNA methylation dataset that consisted of 68 records. First, preprocessing
was performed to improve the classification performance. The feature selection was then
applied using Ada Boost, Random Forest, and SVM to select useful genes. An Enhanced
Deep Recurrent Neural Network (EDRNN) model was used for classification. They used
the Bayesian optimization technique with five-fold cross-validation for hyperparameter op-
timization. The approach achieved an accuracy of 87% with the Ada Boost. Zhang et al. [39]
introduced an effective CNN-based framework based on T1-weighted structural MRI
(sMRI) images from the ADNI. Data preprocessing was performed using conventional pro-
cedures. An improved framework tresnet of a residual network was used for classification.
The proposed method achieved a classification accuracy of 90%.

Liu et al. [15] developed a multi-scale CNN with a channel attention mechanism for
enhanced AD diagnosis. They used preprocessing and segmentation to obtain the WM
and GM datasets and model training. They extracted multi-scale features and fused them
between channels to obtain more comprehensive information. ResNet-50 was used and
achieved an accuracy of 92.59%. The CLSIndRNN model for AD feature selection and
classification was introduced in [9] using the ADNI dataset, which contains 805 samples of
MRI images. A recurrent neural network regression was used to predict the early diagnosis
clinical score. Image preprocessing, feature selection, and classification techniques proved
the effectiveness of the proposed model in clinical scores prediction. Shanmugam et al. [16]
introduced a transfer learning-based approach for multi-class detection for cognitive im-
pairment stages and AD. They used GoogLeNet, AlexNet, and ResNet-18 networks trained
and tested by 6000 MRI ADNI images. The ResNet-18 network achieved the highest clas-
sification accuracy of 98.63%. Kong et al. [3] developed a deep learning-based strategy
that involved a novel MRI and PET image fusion and 3D CNN for AD multi-classification
methods. The ADNI dataset of 740 3D images was used. The proposed strategy achieved
an accuracy of 93.5%. A study [40] applied network architecture and hyperparameters
optimization based on a Genetic Algorithm. They used an amyloid brain image dataset that
contains PET/CT images of 414 patients. The proposed algorithm achieved a classification
accuracy of 81.74%. A TL-based approach for Alzheimer’s diagnosis based on sagittal
MRI (sMRI) was introduced in [13]. The authors used the ADNI and OASIS datasets and
concluded that sMRI can be used effectively to differentiate AD stages and that TL is
necessary for completing the task.

Helaly et al. [4] developed a deep learning-based framework for the early multi-
classification of AD named the E2 AD2C framework. The E2 AD2C framework consists of
six stages: Data Acquisition, Preprocessing, Data Augmentation, Classification, Evalua-
tion, and Application. For classification, they used two architectures: (1) the light CNN
architectures and (2) transfer learning-based architecture. The ADNI dataset for 300 pa-
tients divided into four classes was used. The E2AD2C framework achieved accuracies
of 93.61% and 95.17% for 2D and 3D multi-class AD stage classifications. In addition,
an accuracy of 97% was recorded via the VGG19 model. Then, the same authors developed
a deep learning-based framework for hippocampus segmentation [41] using the U-Net
architecture. This framework consists of four stages: data acquisition, preprocessing, data
augmentation, and segmentation. The segmentation step was performed via two archi-
tectures: (1) the U-Net architecture with hyperparameter tuning and ResNet pretrained
based on U-Net. They achieved an accuracy of 97% using the ADNI dataset. Andrea [17]
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developed an automatic deep-ensemble approach for AD classification. They used MRI
and fMRI images from the Kaggle, OASIS, and ADNI datasets. They evaluated AlexNet,
ResNet-50, ResNet-101, GoogLeNet, and Inception-ResNet-v2 architectures. The proposed
approach achieved 98.51% and 98.67% accuracy in binary and multi-class classification.
Serkan [17] used different pretrained CNN architecture for the trinary classification of AD.
T1-weighted sMRI 2182 images were used from the ADNI database. After data acquisition,
preprocessing was performed in three steps. For data analysis, he used DL architectures
created with the CNN algorithm. The EfficientNetB0 model achieved the best accuracy
of 92.98%.

CNN and deep learning-based approaches have been widely studied as a key method-
ology for AD diagnosis. However, there are still challenges, such as the MRI image
complexity, CNN-based methods that cannot analyze MRI images on the deep structure,
the empirical design of DL technologies, limited datasets, time and space complexity,
inaccuracy, and large model parameters and hyperparameter optimization.

4. Methodology

The main objective of this study is to introduce a novel framework for automatic
and accurate classification of Alzheimer’s based on MRI images with the help of transfer
learning and an Artificial Gorilla Troops Optimizer (GTO). The framework is called A3C-
TL-GTO. Figure 5 depicts the different framework stages. The stages and processes will be
discussed in the next subsections.
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Figure 5. The suggested A3C-TL-GTO framework.

4.1. Data Acquisition

The datasets can be retrieved from different sources, such as online repositories.
The current study retrieves the datasets from Kaggle and IDA (Image and Data Archive by
LONI). In addition, the experiments are performed on two datasets named Alzheimer’s
Dataset (4 class of Images) and Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Alzheimer’s Dataset (4 class of Images): This dataset consists of MRI images that are
hand-collected from different verified websites [42]. It is partitioned into four classes: Mild
Demented, Moderate Demented, Non-Demented, and Very Mild Demented. It consists of
6400 images. The dataset can be retrieved from [42].

Alzheimer’s Disease Neuroimaging Initiative (ADNI): The DICOM data is down-
loaded from LONI. The current study focused on the MRI T2-weighted axial cases. The data
are partitioned into three classes, AD (Alzheimer), NC (Normal Cohort), and MCI (Mild
Cognitive Impairment), and organically counted, 17,976, 138,105, and 70,076, respec-
tively [43]. The dataset can be retrieved from (accessed on 1 February 2022) http://adni.
loni.usc.edu/ and https://ida.loni.usc.edu/.

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://ida.loni.usc.edu/
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Figure 6 shows samples from each dataset. It shows the “Alzheimer’s Dataset (4 class
of Images)” dataset with its four categories in the first row and the “Alzheimer’s Disease
Neuroimaging Initiative (ADNI)” dataset with its three categories in the second row.

Moderate 
Demented

Mild 
Demented

Alzheimer's Dataset (4 class of Images)

Non 
Demented

Very Mild 
Demented

Alzheimer's Disease Neuroimaging Initiative (ADNI)

Mild Cognitive 
Impairment

Normal 
CohortAlzheimer

Figure 6. Samples from each used dataset in the current study.

4.2. Data Preprocessing

The second stage focuses on preprocessing the datasets by applying four processes.
They are data conversion and cleaning, data resizing, data scaling, and train-to-test splitting.

4.2.1. Data Conversion and Cleaning

The ADNI dataset is subjected to the cleaning process. It means that the noisy images
are ignored, as shown in Figure 7. In this process, the DICOM records are converted
to images, the SNR values are calculated, and the noisy images are removed using a
signal-to-noise (SNR) threshold of 1.15.

Start EndRead 
DICOM

Extract
Image

Calculate
SNR SNR > 1.15

Yes

No
Store 
Image

Ignore 
Image

Figure 7. The data conversion and cleaning steps applied on the ADNI dataset.

4.2.2. Data Resizing

The images in the target dataset have various dimensions; hence, equalizing their di-
mensions (i.e., width and height) is required. The current study uses the size of (128, 128, 3)
using the bicubic interpolation in the RGB color mode.

4.2.3. Categories Encoding

The categories are encoded and converted to numeric values. This process is run
on the two used datasets. For example, the ADNI categories (i.e., NC, MCI, and AD) are
converted to [0, 1, 2].

4.2.4. Data Scaling

This study uses 4 image scaling techniques which are: (1) normalization (Equation (1)),
(2) standardization (Equation (2)), (3) min-max scaling (Equation (3)), and (4) max-abs
scaling (Equation (4)).
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Xoutput =
X

max (X)
(1)

Xoutput =
X− µ

σ
(2)

Xoutput =
X−min (X)

max (X)−min (X)
(3)

Xoutput =
X

|max (X)| (4)

where X is the input image, Xoutput is the scaled image, µ is the image mean, and σ is the
image standard deviation.

4.2.5. Train-To-Test Splitting

The two used datasets are split into training, testing, and validation subsets. The dataset
is partitioned into training (and validation) with 85% images to testing with 15% images.

4.2.6. Dataset Balancing

More records in one category than another, then leads the model to learn, extracting
the features from the model with the highest instances better than the others. Hence, data
balancing is required to overcome that issue. The current study balances the datasets
during the training process using data augmentation techniques that can be applied using
different techniques, including GANs [44].

4.3. Classification, Learning, and Optimization Phase

After preprocessing the datasets and generating the initial population, the learning
phase comes in. This phase utilizes the GTO metaheuristic optimizer to optimize the
different transfer learning hyperparameters, such as the appliance of data augmentation
and batch size. The followed approach is to find the best hyperparameters configurations
for each used pretrained transfer learning model. This stage utilizes three processes. They
are summarized in Algorithm 1 and in Figure 5. As presented in it, the first process runs
only once, while the other two processes run repeatedly for a number of iterations Tmax.

Algorithm 1: The hyperparameters optimization overall process in short.
// Sort the population scores.

1 InitialPopulationGeneration() // Generate the initial population using GTO.
2 i = 1 // Initialize an iteration counter.
3 while (i ≤ Tmax) do
4 MapPopulation() // Map the population to hyperparameters.
5 FitnessFunctionCalculation() // Calculate the fitness function for each solution in

the population.
6 GTOPopulationUpdating() // Update the population using the GTO optimizer.
7 i = i + 1 // Increment the iteration counter.

4.3.1. Initial Population Generation

The population is randomly generated once at the beginning of the optimization
processes. The number of solutions in the population pack is set to Nmax. Each solution is a
vector with a size of 1× D where each element in the solution ∈ [0, 1]. The value of D is
determined according to the number of hyperparameters in the current study. It is set to 16.
Equation (5) shows the population initialization process.

X = rand× (UB− LB) + LB (5)
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where X denotes the whole population solutions matrix, LB is the lower boundaries vector,
UB is the upper boundaries vector, and rand is a random values vector ∈ [0, 1].

4.3.2. Fitness Function Calculation

In the current step, the fitness function score is evaluated for each solution. As de-
scribed earlier, each solution consists of random floating-point numbers ∈ [0, 1]. Hence, it
is required to convert (i.e., map) them to the corresponding hyperparameters as defined
in Table 1.

Table 1. The solution indexing with the hyperparameters definitions.

Element Index Hyperparameter Definition

1 Loss function
2 Batch size
3 Dropout ratio
4 TL learning ratio
5 Weights (i.e., parameters) optimizer
6 Dimension scaling technique
7 Apply data augmentation or not
8 Rotation value (in case of data augmentation is applied)
9 Width shift value (in case of data augmentation is applied)
10 Height shift value (in case of data augmentation is applied)
11 Shear value (in case of data augmentation is applied)
12 Zoom value (in case of data augmentation is applied)
13 Horizontal flipping flag (in case of data augmentation is applied)
14 Vertical flipping flag (in case of data augmentation is applied)
15 Brightness changing range (in case of data augmentation is applied)

How to apply the mapping technique? To recognize the working mechanism of
this mapping process, let us assume that we need to map the batch size (i.e., the second
element) from the solution cell to a corresponding hyperparameter. It is required first
to determine the allowed batch sizes range to select from. The current study utilizes the
“4 → 48 (step = 4)” range. Hence, there are 12 possibilities. With a simple calculation
(Equation 6), the possibility can be determined. For example, if the random numeric value
is 0.75 and there are 12 possibilities, then the index is 9 (i.e., the batch size value of 36). It is
worth noting that ranges of each hyperparameter are presented in Table 2.

Range Index =
⌈

solution[index]× Length(ranges[index])
⌉

(6)

After mapping each element in the solution to the corresponding hyperparame-
ter, the target pretrained transfer learning model is compiled with the hyperparameters.
DenseNet201, MobileNet, MobileNetV2, MobileNetV3Small, MobileNetV3Large, VGG16,
VGG19, and Xception with the “ImageNet” pretrained weights are the utilized pretrained
transfer learning CNN models. Each pretrained transfer learning CNN model will begin
the learning process on the split subsets for a number of epochs that is set to 5 in the
current study. To validate its generalization, the pretrained transfer learning CNN model is
evaluated on the entire entered dataset.

The different utilized performance metrics in the current study are: Accuracy, F1-score,
Precision, Recall (or Sensitivity), Specificity, Area Under Curve (AUC), Intersection over
Union (IoU), Dice, Cosine Similarity, Youden Index, Negative Predictive Value (NPV),
Matthews Correlation Coefficient (MCC), FBeta, False Negative Rate (FNR), False Discov-
ery Rate (FDR), Fallout, Categorical Crossentropy, Kullback Leibler Divergence (KLD),
Categorical Hinge, Hinge, Squared Hinge, Poisson, Logcosh Error, Mean Absolute Error
(MAE), Mean IoU, Mean Squared Error (MSE), Mean Squared Logarithmic Error, and Root
Mean Squared Error (RMSE).
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4.3.3. Population Updating

In terms of fitness scores, the population is arranged in descending order. As a result,
the best solution is at the top and the worst solution is at the bottom. This process is crucial
to determine Xt

best and Xt
worst in the case of them being required in the population updating

process. The current study utilizes the GTO metaheuristic optimizer to determine the best
hyperparameters for each CNN model.

The GTO works on the (1) three exploration mechanisms, (2) an exploitation mecha-
nism, and (3) a competition for adult females mechanism. Equation (7) represents expanded
exploration process, Equation (8) represents the exploitation mechanism, and Equation (9)
represents the competition for adult females mechanism.

XGTO1(t + 1) =


(UB− LB)× r1 + LB, if (rand < p)
(r2 − C)× Xr(t) + L× H, if (rand ≥ 0.5)
X(i)− L× (L× (X(t)− Xr(t)) + r3 × (X(t)− Xr(t))), Otherwise

(7)

XGTO2(t + 1) = L×M× (X(t)− Xsilverback) + X(t) (8)

XGTO3(t + 1) = Xsilverback − (Xsilverback ×Q− X(t)×Q)× A (9)

where r1, 2, and r3 are three random values, Xr(t) is a random solution from the population,
Xsilverback is the silverback gorilla position vector (i.e., best solution), Q simulates the impact
force, and A is the coefficient vector to determine violence degree in conflicts.

4.4. The Suggested A3C-TL-GTO Framework Pseudocode

The steps are iteratively computed for a number of iterations Tmax. After complet-
ing the learning iterations, the best combination can be used in any further analysis.
Algorithm 2 summarizes the proposed overall classification, learning, and hyperparame-
ters optimization approach.

Algorithm 2: The suggested A3C-TL-GTO framework pseudocode.
Input: model, dataset // Model, Dataset
Output: best, bestScore // The best overall score and solution

1 trainX, validationX, testX, trainY, validationY, testY = SplitDataset(dataset) // Partition the
dataset into training, testing, and validation portions concerning the SR.

2 model = CreateTLModel() // Create the initial pre-trained TL model.
3 solutions = InitialPopulationGeneration() // Generate (i.e., create) the initial

solutions.
// Execute the learning hyperparameters optimization process for Tmax iterations

using the GTO metaheuristic optimizer.
4 t = 1 // Initialize the iterations’ counter where t ≤ Tmax.
5 while (t ≤ Tmax) do

// Calculate the scores for the different solutions.
6 i = 1 // Initialize the counter where i ≤ Nmax.
7 scoresList = [] // Initialize the scores list.
8 while (i ≤ Nmax) do
9 mappedSolution = MapSolution(solutions[i]) // Map the solution from random

numbers to hyperparameters.
10 score =

FitnessFunctionCalculation(model, mappedSolution, trainX, trainY, validationX, validationY)
// Calculate the fitness score (i.e., accuracy) for the current solution.

11 Append(score, scoresList) // Calculate the score into the scores list.
12 i = i + 1 // Increment the counter.

// Update the population using the GTO metaheuristic optimizer.
13 solutions = UpdateSolutionsUsingGTO(solutions, scoresList)
14 t = t + 1 // Increment the iterations counter.

15 return best, bestScore // Return the best score and solution
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5. Experiments and Discussions
5.1. Experiments Configurations

The configurations of the experiments performed in this study are described in Table 2.

Table 2. The common experiments configurations.

Configuration Specifications

Apply Dataset Shuffling? Yes (Random)
Input Image Size (128× 128× 3)

Hyperparameters Metaheuristic
Optimizer

Artificial Gorilla Troops Optimizer (GTO)

Train Split Ratio 85% to 15% (i.e., 85% for training (and validation)
and 15% for testing)

Size of Population 10
Number of Iterations 10
Number of Epochs 5

Output Activation Function SoftMax

Pretrained Models
DenseNet201, MobileNet, MobileNetV2,
MobileNetV3Small, MobileNetV3Large, VGG16,
VGG19, and Xception

Pretrained Parameters Initializers ImageNet

Losses Range Categorical Crossentropy, Categorical Hinge,
KLDivergence, Poisson, Squared Hinge, and Hinge

Parameters Optimizers Range
Adam, NAdam, AdaGrad, AdaDelta, AdaMax,
RMSProp, SGD, Ftrl, SGD Nesterov, RMSProp
Centered, and Adam AMSGrad

Dropout Range [0→ 0.6]
Batch Size Range 4→ 48 (step = 4)

Pretrained Model Learn Ratio
Range

1→ 100 (step = 1)

Scaling Techniques Normalize, Standard, Min-Max, and Max-Abs
Apply Data Augmentation (DA) [Yes, No]

DA Rotation Range 0◦ → 45◦ (step = 1◦)
DA Width Shift Range [0→ 0.25]
DA Height Shift Range [0→ 0.25]

DA Shear Range [0→ 0.25]
DA Zoom Range [0→ 0.25]

DA Horizontal Flip Range [Yes, No]
DA Vertical Flip Range [Yes, No]
DA Brightness Range [0.5→ 2.0]
Scripting Language Python

Python Major Packages Tensorflow, Keras, Pydicom, NumPy, OpenCV,
and Matplotlib

Working Environment
Google Colab with GPU (i.e., Intel(R) Xeon(R) CPU
@ 2.00 GHz, Tesla T4 16 GB GPU, CUDA v.11.2,
and 12 GB RAM)

5.2. The “Alzheimer’s Dataset (4 Class of Images)” Experiments

The A3C-TL-GTO framework stages are run on the “Alzheimer’s Dataset (4 class of
Images)” dataset. Table 3 reports the confusion matrix (i.e., TP, TN, FP, and FN) for each
pretrained CNN model. From Table 3, different performance metrics can be reported,
as shown in Table 4. Table 5 reports the corresponding best hyperparameters produced
that lead to the reported results. The “Categorical Crossentropy” is the recommended
loss function from five models. The “SGD” is the recommended parameters’ optimizer
from three models. Applying data augmentation to balance and increase the diversity
of the images during the training process is recommended by six models. Figure 8
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summarizes the performance metrics graphically. The x-axis shows the metrics, while
the y-axis shows the scores. It shows that the “MobileNet” pretrained CNN model
reports the highest performance metrics. Figure 9 shows the confusion matrices for the
used models.

Table 3. The confusion matrix (i.e., TP, TN, FP, and FN) for each pretrained CNN model using the
“Alzheimer’s Dataset (4 class of Images)” dataset.

Model Name DenseNet201 MobileNet MobileNetV2 MobileNetV3Small MobileNetV3Large VGG16 VGG19 Xception Best Score Worst Score

TP 9097 12,360 7055 5642 4307 4317 7258 6324 12,360 4307
TN 35,317 37,953 37,792 34,055 36,976 36,823 33,922 35,897 37,953 33,922
FP 2963 423 608 4333 1424 1577 4478 2503 423 4478
FN 3663 432 5745 7154 8493 8483 5542 6476 432 8493

Table 4. The best performance metrics reported by the “Alzheimer’s Dataset (4 class of Images)” dataset.

Model Name DenseNet201 MobileNet MobileNetV2 MobileNetV3Small MobileNetV3Large VGG16 VGG19 Xception Best

Loss 0.891 0.094 0.702 1.079 0.926 0.795 1.102 0.798 0.094
Accuracy 71.76% 96.65% 66.63% 50.20% 57.19% 63.57% 60.12% 63.78% 96.65%

F1 71.45% 96.65% 56.92% 49.20% 39.04% 42.59% 58.37% 57.90% 96.65%
Precision 71.62% 96.69% 63.06% 56.68% 52.84% 66.83% 60.66% 71.19% 96.69%

Recall (Sensitivity) 71.29% 96.62% 55.12% 44.09% 33.65% 33.73% 56.70% 49.41% 96.62%
Specificity 92.26% 98.90% 98.42% 88.71% 96.29% 95.89% 88.34% 93.48% 98.90%

AUC* 92.52% 99.75% 90.26% 80.36% 84.91% 84.09% 86.17% 88.47% 99.75%
IoU* 79.89% 96.39% 70.62% 59.72% 61.72% 62.56% 67.18% 64.98% 96.39%
Dice 81.06% 96.96% 73.96% 63.97% 66.52% 66.37% 70.82% 69.47% 96.96%

Cosine Similarity 75.09% 97.21% 75.99% 61.93% 68.73% 68.12% 68.24% 72.25% 97.21%
Youden Index 63.55% 95.52% 53.53% 32.80% 29.94% 29.62% 45.04% 42.89% 95.52%

NPV * 90.96% 98.88% 88.19% 82.70% 81.98% 81.58% 86.11% 84.81% 98.88%
MCC * 63.11% 95.54% 54.89% 35.85% 34.92% 37.58% 45.86% 48.89% 95.54%
FBeta 71.35% 96.63% 55.75% 45.94% 35.41% 36.65% 57.32% 52.43% 96.63%
FNR * 0.287 0.034 0.449 0.559 0.664 0.663 0.433 0.506 0.034
FDR * 0.284 0.033 0.129 0.433 0.169 0.268 0.393 0.288 0.033
Fallout 0.077 0.011 0.016 0.113 0.037 0.041 0.117 0.065 0.011

CC * 0.891 0.094 0.702 1.079 0.926 1.086 0.973 0.798 0.094
KLD * 0.891 0.094 0.702 1.079 0.924 1.086 0.973 0.798 0.094

Categorical Hinge 0.506 0.090 0.593 0.926 0.852 0.795 0.802 0.776 0.090
Hinge 0.892 0.773 0.945 1.020 1.001 1.002 0.969 0.979 0.773

Squared Hinge 0.993 0.786 1.039 1.173 1.129 1.138 1.102 1.096 0.786
Poisson 0.473 0.274 0.426 0.520 0.481 0.521 0.493 0.449 0.274

Logcosh Error 0.045 0.006 0.044 0.071 0.060 0.063 0.061 0.055 0.006
MAE * 0.142 0.023 0.195 0.270 0.251 0.252 0.219 0.229 0.023

Mean IoU 0.389 0.424 0.375 0.375 0.375 0.375 0.375 0.375 0.375
MSE * 0.101 0.013 0.094 0.153 0.128 0.135 0.133 0.117 0.013

MSLE * 0.051 0.006 0.046 0.075 0.063 0.066 0.066 0.057 0.006
RMSE * 0.318 0.113 0.306 0.391 0.358 0.368 0.365 0.341 0.113

* AUC: Area Under Curve, IoU: Intersection over Union, NPV: Negative Predictive Value, MCC: Matthews
Correlation Coefficient, FNR: False Negative Rate, FDR: False Discovery Rate, CC: Categorical Crossentropy,
KLD: Kullback Leibler Divergence, MAE: Mean Absolute Error, MSE: Mean Squared Error, MSLE: Mean Squared
Logarithmic Error, RMSE: Root Mean Squared Error.
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Table 5. The best hyperparameters for each pretrained CNN model using the “Alzheimer’s Dataset
(4 class of Images)” dataset.

Model Name DenseNet201 MobileNet MobileNetV2 MobileNetV3Small MobileNetV3Large VGG16 VGG19 Xception

Loss Categorical
Crossentropy

Categorical
Crossentropy

Categorical
Crossentropy

Categorical
Crossentropy

Categorical
Crossentropy

Categorical
Hinge

Squared Hinge Categorical
Crossentropy

Batch Size 44 12 20 28 4 16 40 40
Dropout 0.13 0.24 0.6 0.52 0.33 0.05 0.06 0.22

TL Learn Ratio 97 65 74 54 92 32 52 6
Optimizer SGD SGD SGD Nesterov NAdam RMSProp AdaGrad SGD NAdam

Scaling Technique Standardization Min-Max Standardization Normalization Max-Abs Normalization Standardization Normalization
Apply Augmentation Yes No Yes Yes Yes Yes Yes No

Rotation Range 13 N/A 5 33 4 4 21 N/A
Width Shift Range 0.05 N/A 0.25 0.05 0.17 0.07 0.03 N/A
Height Shift Range 0.07 N/A 0.23 0 0.03 0.02 0.13 N/A

Shear Range 0.2 N/A 0 0.1 0.02 0 0.07 N/A
Zoom Range 0.17 N/A 0 0.1 0.02 0.02 0.23 N/A

Horizontal Flip Yes N/A No No Yes Yes No N/A
Vertical Flip Yes N/A Yes Yes No Yes Yes N/A

Brightness Range 0.54–0.8 N/A 0.5–1.51 1.83–2.0 0.92–1.53 0.63–0.82 0.81–1.93 N/A
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Figure 8. Graphical summary of the performance metrics of the “Alzheimer’s Dataset (4 class of
Images)” dataset.
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5.3. The “Alzheimer’s Disease Neuroimaging Initiative (ADNI)” Experiments

The A3C-TL-GTO framework stages are run on the “Alzheimer’s Disease Neuroimaging
Initiative (ADNI)” dataset. Table 6 reports the confusion matrix (i.e., TP, TN, FP, and FN) for
each pretrained CNN model. From Table 6, different performance metrics can be reported,
as shown in Table 7. Table 8 reports the corresponding best hyperparameters produced that
lead to the reported results. The “KLDivergence” is the recommended loss function from six
models. The “AdaGrad” and “AdaMax” are the recommended parameters’ optimizers from
three models each. Applying data augmentation to balance and increase the diversity of the
images during the training process is recommended by seven models. Figure 10 summarizes
the performance metrics graphically. The x-axis shows the metrics, while the y-axis shows the
scores. It shows that the “Xception” pretrained CNN model reports the highest performance
metrics. Figure 11 shows the confusion matrices for the used models.

Table 6. The confusion matrix (i.e., TP, TN, FP, and FN) for each pretrained CNN model using the
“Alzheimer’s Disease Neuroimaging Initiative (ADNI)” dataset.

Model Name DenseNet201 MobileNet MobileNetV2 MobileNetV3Small MobileNetV3Large VGG16 VGG19 Xception Best Score Worst Score

TP 14,057 14,348 14,187 10,680 11,019 11,292 12,350 14,365 14,365 10,680
TN 29,351 29,407 29,439 27,402 28,027 27,944 28,425 29,511 29,511 27,402
FP 601 593 513 2598 1973 2016 1495 489 489 2598
FN 919 652 789 4320 3981 3688 2610 635 635 4320

Table 7. The best performance metrics reported by the “Alzheimer’s Disease Neuroimaging Initiative
(ADNI)” dataset.

Model Name DenseNet201 MobileNet MobileNetV2 MobileNetV3Small MobileNetV3Large VGG16 VGG19 Xception Best

Loss 0.171 0.112 0.122 0.544 0.495 0.448 0.347 0.106 0.106
Accuracy 94.74% 95.81% 95.63% 75.82% 79.97% 80.81% 85.98% 96.25% 96.25%

F1 94.80% 95.84% 95.58% 75.04% 77.95% 79.56% 85.61% 96.22% 96.22%
Precision 95.86% 96.03% 96.51% 80.22% 84.82% 84.84% 89.18% 96.72% 96.72%

Recall (Sensitivity) 93.86% 95.65% 94.73% 71.20% 73.46% 75.38% 82.55% 95.77% 95.77%
Specificity 97.99% 98.02% 98.29% 91.34% 93.42% 93.27% 95.00% 98.37% 98.37%

AUC * 99.44% 99.59% 99.63% 92.01% 93.68% 94.80% 96.97% 99.68% 99.68%
IoU * 89.56% 96.02% 93.45% 76.22% 75.11% 76.57% 81.72% 94.85% 96.02%
Dice 91.78% 96.58% 94.69% 79.58% 79.15% 80.52% 84.91% 95.78% 96.58%

Cosine Similarity 95.45% 96.61% 96.35% 81.40% 83.62% 84.92% 88.73% 96.79% 96.79%
Youden Index 91.86% 93.68% 93.02% 62.54% 66.88% 68.65% 77.56% 94.14% 94.14%

NPV * 97.02% 97.84% 97.42% 86.62% 87.94% 88.50% 91.68% 97.91% 97.91%
MCC * 92.36% 93.77% 93.47% 64.59% 69.60% 70.91% 79.17% 97.91% 97.91%
FBeta 94.22% 95.72% 95.06% 72.62% 75.08% 76.95% 83.72% 95.94% 95.94%
FNR * 0.061 0.043 0.053 0.288 0.265 0.246 0.174 0.042 0.042
FDR * 0.041 0.040 0.035 0.198 0.152 0.152 0.108 0.033 0.033
Fallout 0.020 0.020 0.017 0.087 0.066 0.067 0.050 0.016 0.016

CC * 0.171 0.112 0.122 0.544 0.495 0.448 0.347 0.106 0.106
KLD * 0.171 0.112 0.122 0.544 0.495 0.448 0.347 0.106 0.106

Categorical Hinge 0.225 0.099 0.147 0.545 0.553 0.529 0.409 0.120 0.099
Hinge 0.749 0.701 0.720 0.871 0.875 0.861 0.818 0.709 0.701

Squared Hinge 0.777 0.721 0.742 0.976 0.970 0.949 0.884 0.728 0.721
Poisson 0.390 0.371 0.374 0.515 0.498 0.483 0.449 0.369 0.369

Logcosh Error 0.013 0.009 0.010 0.049 0.045 0.041 0.031 0.009 0.009
MAE * 0.082 0.034 0.053 0.204 0.209 0.195 0.151 0.042 0.034

Mean IoU 0.333 0.414 0.337 0.333 0.333 0.333 0.333 0.347 0.333
MSE * 0.028 0.020 0.022 0.105 0.095 0.088 0.066 0.019 0.019

MSLE * 0.014 0.010 0.011 0.052 0.047 0.043 0.033 0.009 0.009
RMSE * 0.168 0.142 0.148 0.324 0.308 0.296 0.257 0.139 0.139

* AUC: Area Under Curve, IoU: Intersection over Union, NPV: Negative Predictive Value, MCC: Matthews
Correlation Coefficient, FNR: False Negative Rate, FDR: False Discovery Rate, CC: Categorical Crossentropy,
KLD: Kullback Leibler Divergence, MAE: Mean Absolute Error, MSE: Mean Squared Error, MSLE: Mean Squared
Logarithmic Error, RMSE: Root Mean Squared Error.
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Table 8. The best hyperparameters for each pretrained CNN model using the “Alzheimer’s Disease
Neuroimaging Initiative (ADNI)” dataset.

Model Name DenseNet201 MobileNet MobileNetV2 MobileNetV3Small MobileNetV3Large VGG16 VGG19 Xception

Loss Categorical
Crossentropy

Categorical
Crossentropy

KLDivergence KLDivergence KLDivergence KLDivergence KLDivergence KLDivergence

Batch Size 32 40 36 20 12 28 44 40
Dropout 0.1 0.23 0.3 0.34 0.13 0.11 0.02 0.3

TL Learn Ratio 37 28 41 53 94 71 99 39
Optimizer AdaGrad AdaMax SGD Nesterov AdaMax AdaGrad AdaGrad SGD Nesterov AdaMax

Scaling Technique Standardization Standardization Min-Max Standardization Normalization Min-Max Standardization Max-Abs
Apply Augmentation No Yes Yes Yes Yes Yes Yes Yes

Rotation Range N/A 44 12 15 28 3 12 27
Width Shift Range N/A 0.2 0.17 0.13 0.09 0.16 0.22 0.17
Height Shift Range N/A 0.23 0.16 0.08 0.25 0.23 0.23 0.12

Shear Range N/A 0.07 0.17 0.06 0.25 0.23 0.08 0.21
Zoom Range N/A 0.22 0.19 0.14 0.06 0.03 0.08 0.1

Horizontal Flip N/A Yes Yes Yes No No No Yes
Vertical Flip N/A No Yes Yes Yes Yes Yes No

Brightness Range N/A 0.56–0.68 1.09–1.48 0.85–1.67 1.48–2.0 0.52–1.34 1.23–1.51 0.53–1.82
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Figure 10. Graphical summary of the performance metrics of the “Alzheimer’s Disease Neuroimaging
Initiative (ADNI)” dataset.

Predicted Label

Tr
ue

 L
ab

el

TP = 14,057 FP = 601

FN = 919 TN = 29,351

Using DenseNet201

5,000

10,000

15,000

20,000

25,000

Predicted Label

Tr
ue

 L
ab

el

TP = 14,348 FP = 593

FN = 652 TN = 29,407

Using MobileNet

5,000

10,000

15,000

20,000

25,000

Predicted Label

Tr
ue

 L
ab

el

TP = 14,187 FP = 513

FN = 789 TN = 29,439

Using MobileNetV2

5,000

10,000

15,000

20,000

25,000

Predicted Label

Tr
ue

 L
ab

el

TP = 10,680 FP = 2,598

FN = 4,320 TN = 27,402

Using MobileNetV3Small

5,000

10,000

15,000

20,000

25,000

Predicted Label

Tr
ue

 L
ab

el

TP = 11,019 FP = 1,973

FN = 3,981 TN = 28,027

Using MobileNetV3Large

5,000

10,000

15,000

20,000

25,000

Predicted Label

Tr
ue

 L
ab

el

TP = 11,292 FP = 2,016

FN = 3,688 TN = 27,944

Using VGG16

5,000

10,000

15,000

20,000

25,000

Predicted Label

Tr
ue

 L
ab

el

TP = 12,350 FP = 1,495

FN = 2,610 TN = 28,425

Using VGG19

5,000

10,000

15,000

20,000

25,000

Predicted Label

Tr
ue

 L
ab

el

TP = 14,365 FP = 489

FN = 635 TN = 29,511

Using Xception

5,000

10,000

15,000

20,000

25,000

Confusion Matrices using "Alzheimer's Disease Neuroimaging Initiative (ADNI)" Dataset

Figure 11. The confusion matrices using the “Alzheimer’s Disease Neuroimaging Initiative
(ADNI)” dataset.



Sensors 2022, 22, 4250 19 of 22

Figure 12 presents a graphical summary of the performed work in the current study
concerning the hyperparameters selection process. The best models are added at the right
of the figure. The different hyperparameters are added in a gray color, while the best
hyperparameters are added in a different color.
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Figure 12. Graphical summary of the performed work in the current study concerning the hyperpa-
rameters selection process.

5.4. The Proposed Approach and Related Studies Comparison

A comparison between the suggested A3C-TL-GTO framework and other related
state-of-the-art studies is conducted in Table 9. It is clear that the A3C-TL-GTO framework
outperforms most of the related studies. One of the main objectives of the suggested
approach is to design a general framework that utilizes the pretrained CNN model and
hyperparameters tuning using metaheuristic optimizers. In other words, the framework is
adaptable to the metaheuristic optimizer and the used datasets. Hence, in comparison with
the related studies, the systems are compared as black boxes. One of the main advantages
of the suggested framework is that it is not sensitive to the datasets and their outliers.
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Table 9. Comparison between the suggested approach and related studies.

Study Year Approach Best Metric(s)

Islam and Zhang [33] 2017 DL 73.75% Accuracy
Zhang et al. [34] 2019 Voxel-based Morphometry 96% Accuracy

Martinez et al. [35] 2019 DL + Autoencoders 95% Accuracy
Saratxaga et al. [2] 2021 DL 93% Balanced Accuracy

Raees et al. [36] 2021 DL 90% Accuracy
Buvaneswari et al. [37] 2021 DL 95% Accuracy
Katabathula et al. [38] 2021 3D DL 92.5% Accuracy

Current Study (A3C-TL-GTO) 2022 Hybrid (GTO + DL) 96.65% Accuracy for “Alzheimer’s
Dataset (4 class of Images)” and
96.25% Accuracy “Alzheimer’s
Disease Neuroimaging Initiative
(ADNI)”

6. Conclusions

With the rapid growth of artificial intelligence, computer vision has become increasingly
helpful in identifying Alzheimer’s disease. In recent years, deep learning technology has
increasingly dominated medical imaging and has been successfully used to automate AD
detection by analyzing medical pictures. A deep network model based on transfer learning,
which Gorilla Troops optimizes, has been developed to aid in the classification of Alzheimer’s
disease patients for early diagnosis. In the present study, an empirical quantitative frame-
work for automatic and accurate Alzheimer’s classification is proposed and evaluated using
multi-class MRI datasets. The convolutional neural network (CNN) performance is primarily
affected by the hyperparameters selected and the dataset used. The proposed framework
reduces the bias and variability of the preprocessing steps and optimization hyperparameters
to the classifier model and dataset utilized. Specifically, the proposed framework comprises
CNN, transfer learning (TL), and the Gorilla Troops Optimizer (GTO) for optimizing parame-
ters and hyperparameters. The transfer learning hyperparameters are optimized using the
GTO natural-inspired optimizers. The ADNI dataset, an online dataset on Alzheimer’s disease,
is used to obtain the brain’s magnetic resonance (MR) pictures. When all models are compared,
MobileNet and Xception achieved a top accuracy of 96.65% and 96.25%, respectively.
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