
����������
�������

Citation: Dushku, E.; Østergaard,

J.H.; Dragoni, N. Memory Offloading

for Remote Attestation of

Multi-Service IoT Devices. Sensors

2022, 22, 4340. https://doi.org/

10.3390/s22124340

Academic Editors: Nicholas

Kolokotronis, Stavros Shiaeles and

Emanuele Bellini

Received: 30 April 2022

Accepted: 4 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Memory Offloading for Remote Attestation of Multi-Service
IoT Devices †

Edlira Dushku * , Jeppe Hagelskjær Østergaard and Nicola Dragoni

DTU Compute, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark;
jeppe.jho@gmail.com (J.H.Ø.); ndra@dtu.dk (N.D.)
* Correspondence: edldu@dtu.dk
† This paper is an extended version of our paper published in J. H. Østergaard, E. Dushku and N. Dragoni,

“ERAMO: Effective Remote Attestation through Memory Offloading”. In Proceedings of the 2021 IEEE
International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26–28 July 2021; pp. 73–80.

Abstract: Remote attestation (RA) is an effective malware detection mechanism that allows a trusted
entity (Verifier) to detect a potentially compromised remote device (Prover). The recent research
works are proposing advanced Control-Flow Attestation (CFA) protocols that are able to trace the
Prover’s execution flow to detect runtime attacks. Nevertheless, several memory regions remain
unattested, leaving the Prover vulnerable to data memory and mobile adversaries. Multi-service
devices, whose integrity is also dependent on the integrity of any attached external peripheral devices,
are particularly vulnerable to such attacks. This paper extends the state-of-the-art RA schemes by
presenting ERAMO, a protocol that attests larger memory regions by adopting the memory offloading
approach. We validate and evaluate ERAMO with a hardware proof-of-concept implementation using
a TrustZone-capable LPC55S69 running two sensor nodes. We enhance the protocol by providing
extensive memory analysis insights for multi-service devices, demonstrating that it is possible to
analyze and attest the memory of the attached peripherals. Experiments confirm the feasibility and
effectiveness of ERAMO in attesting dynamic memory regions.

Keywords: IoT security; remote attestation; dynamic attestation; multi-service IoT device; memory
offloading

1. Introduction

Nowadays, tiny electronic devices are increasingly deployed online and exist almost
everywhere: from smart homes and smart cities to smart industrial systems. The re-
cent Internet of Things (IoT) revolution is empowering the so-called multi-service devices
that can provide multiple functionalities, for instance, a set of sensing capabilities. Such
multi-service devices are supported by various well-known development kits (e.g., ST [1],
Arduino [2]) that simplify the development of multi-sensor solutions. With the increasing
number of services provided by IoT devices, smart infrastructures are expected to offer
large-scale applications powered by an enormous number of interacting services (e.g., au-
tonomous vehicles, traffic management services). However, with such exponential growth,
IoT devices pose serious security and privacy concerns mainly due to their poor security
design. IoT security is not prioritized throughout the product development process, result-
ing in devices with weak passwords, unencrypted communication, and or vulnerabilities to
certain attacks. Actually, critical vulnerabilities can even be found on medical devices, such
as insulin pumps not authenticating the legitimacy of the user or blood refrigeration units
being protected by only a hardcoded password [3]. Further, traditional security solutions
are not suitable for IoT devices because of their low-cost design and deployment in remote
environments with limited physical accessibility.

Remote attestation (RA) has been proposed in the literature as a viable security solution
for detecting malware presence remotely by providing a lightweight security mechanism

Sensors 2022, 22, 4340. https://doi.org/10.3390/s22124340 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124340
https://doi.org/10.3390/s22124340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4974-9739
https://orcid.org/0000-0002-0441-4644
https://orcid.org/0000-0001-9575-2990
https://doi.org/10.3390/s22124340
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124340?type=check_update&version=1

Sensors 2022, 22, 4340 2 of 28

through remote access. RA allows an external trusted party called the Verifier to verify the
integrity of a potentially untrusted device called the Prover. Typically, existing RA protocols
aim at detecting malware presence in program memory. This is done by computing the
hash or the checksum of the program binary, which then an external Verifier can compare
with the expected valid hash values. However, the hash computation is impractical for the
attestation of dynamic memory regions (e.g., RAM) that change at runtime.

1.1. Motivation

IoT devices are exposed to a wide variety of rapidly evolving attacks, in particular,
runtime attacks, where attackers exploit buffer overflow vulnerabilities or leverage Return-
Oriented Programming (ROP) [4] to hijack the execution flow of a running program without
injecting a new malicious code in the device. This has lead researchers to propose different
dynamic RA approaches (e.g., [5–7]) to detect compromised devices. Such dynamic RA
approaches use complex algorithm to trace the runtime execution flow of IoT devices,
introducing high overhead or external hardware to the Prover. However, some attacks
still remain undetected. For instance, Data-Oriented Programming (DOP) attacks [8] can
compromise variables without deviating the control-flow execution of the running software.
Additionally, existing RA schemes do not cover the entire memory of IoT devices, exposing
the devices to mobile attacks [9,10] that can relocate themselves during attestation and
exposing devices to be purposefully misconfigured, compromising their integrity without
detection. This is especially crucial for multi-service devices. Indeed, the integrity of such
devices depends also on the integrity of any attached external peripheral devices. For ex-
ample, if an adversary successfully alters the configuration of a peripheral temperature
sensor to provide an inaccurate representation of the temperature, any internal process that
relies on this data, as well as any other system to which this inaccurate data is propagated,
may behave in an unexpected way. As a result, in order to accurately verify the device, all
attached peripheral devices must also be verified.

In order to verify the runtime integrity of IoT devices, including the verification of
the external peripheral register, we rely on memory offloading. Specifically, rather than
building complex RA algorithms for resource-constrained IoT devices, we propose of-
floading Prover’s memory to a powerful platform with more resources and computational
capabilities, which will subsequently execute the attestation. The approach leverages the
opportunities offered by the emerging Fog computing paradigm [11], where a layer of
distributed powerful computing entities (i.e., Fog nodes) can enable the deployment of RA
services. This allows the Verifier, deployed and running on a Fog node, to perform a much
more accurate remote attestation of the IoT devices (Provers) the Verifier is responsible for.

1.2. Contribution

This paper brings the following main contributions to the research field of remote
attestation:

• The paper proposes a novel RA protocol (ERAMO—Effective Remote Attestation
through Memory Offloading) that takes into account both static and dynamic memory
regions of an IoT device and checks the integrity of all memory-mapped peripherals.

• This paper successfully implements and evaluates secure memory offloading as a
means for enhancing remote attestation. ERAMO has been implemented and evalu-
ated on an ARM Cortex-M33 based microcontroller, leveraging the security features
provided by ARM TrustZone.

• The paper expands the remote attestation procedure to attest multi-service devices by
using offloading. We provide comprehensive memory analysis details, demonstrating
that the flash memory, RAM, boot ROM and peripheral device registers adhere to
some patterns.

• The paper evaluates the protocol on various metrics, e.g., transmission time, data
authentication time, energy consumption. The conducted experiments confirm the

Sensors 2022, 22, 4340 3 of 28

feasibility of ERAMO and demonstrate that offloading technique increases the RA
effectiveness in attesting dynamic memory regions.

This paper is an extension of our previous preliminary work entitled “ERAMO: Ef-
fective Remote Attestation through Memory Offloading” presented in 2021 at the IEEE
International Conference on Cyber Security and Resilience (CSR) [12]. Apart from minor
extensions and rephrasing in all the sections, we have extended the contribution of the
paper mainly in two ways:

• The proof-of-concept implementation is significantly enhanced by considering a multi-
service device with two sensor nodes. We present comprehensive details about the
implementation setting, including the memory layout of the sensor nodes. In addition,
we provide extensive analysis of the memory patterns of multi-service devices.

• The evaluation is extended to include additional results for energy consumption
measurement which are important and were absent in the previous work.

In particular, we have included the following novel material in this paper:

• Section 3.3 has been added to include the most recent RA protocols for attesting IoT
services. These state-of-the-art IoT service RA protocols are particularly relevant to
the current paper.

• A detailed background related to ARM TrustZone functioning and working method-
ologies has been added in Section 4.

• Section 9 provides exhaustive implementation details for multi-sensor devices. In ad-
dition, we include the detailed memory analysis of the new approach.

• Section 10.1 provides with energy consumption evaluation. The evaluations prove the
lightweight nature of the proposed scheme.

• Section 12 is extended to provide a comprehensive discussion about the memory
locking, as a promising mechanism in improving the security and performance of
memory offloading approach.

• New figures have been added throughout the manuscript to enhanse the representa-
tion of our proposed mechanisms.

1.3. Organization

The remainder of this paper is organized as follows. We explain the problem statement
in Section 2. Section 3 presents different RA approaches and compares ERAMO with
the existing RA schemes. Section 4 provides background knowledge on ARM TrustZone
technology. The paper describes the system model in Section 5 and explains the adversary
model in Section 6. Next, the paper presents security requirements in Section 7 and the
protocol details in Section 8. The implementation details are presented in Section 9 the
performance evaluation in Section 10. We highlight the protocol limitations in Section 11.
Finally, we present a discussion in Section 12 and concluding remarks in Section 13.

2. Problem Statement

Consider an attacker that discovers and exploits a program vulnerability such as
a buffer overflow. By leveraging Return-Oriented Programming (ROP) technique [4],
the attacker alters at runtime the execution flow of legitimate code already loaded on the
device’s memory to produce a malicious operation. Additionally, the attacker can use
Data-Oriented Programming (DOP) technique [8] to compromise variables’ values and
manipulate data pointers. Such attacks are common in IoT as resource-constrained IoT
devices are exposed to many well-known vulnerabilities e.g., format string and integer
overflow.

The dynamic RA protocols in the literature (e.g., [5–7]) which aim to detect control-
flow attacks rely on tracing the software execution inside an IoT device and representing
each execution flow as a single hash value. Since these approaches detect the control-flow
subversion, they do not detect data attacks which do not maliciously deviate from the
legitimate control-flow executions. The RA schemes presented in [9,10] aim to detect mobile

Sensors 2022, 22, 4340 4 of 28

adversaries, which during the attestation, relocate to different memory blocks of a memory
region (i.e., memory blocks that comprise the program memory). However, the existing RA
schemes do not attest all the memory regions of an IoT device. Thus, at the attestation time,
a mobile adversary could also move to the unattested memory regions and relocate again
on the original memory once the RA procedure has finished.

In the context of the attacks described above, we propose a new protocol that uses
memory offloading to shift the attestation from low-end devices to nearby devices with
more powerful computational capabilities. This approach is aligned with and leverages the
emerging Fog computing paradigm, which extends the Cloud by bringing computational
resources next to IoT devices [11].

3. Related Works

This section summarizes the single-device and dynamic state-of-the-art RA protocols
in the IoT domain.

3.1. Remote Attestation Overview

RA approaches are generally classified into three main categories: software-based,
hardware-based and hybrid approaches. Software-based schemes (e.g., SWATT [13], Pio-
neer [14]) do not make any hardware assumption and purely rely on the strict execution
time of the RA protocol. Despite their advantages, software-based RA schemes do not
provide strong security guarantees [15,16]. Hardware-based schemes (e.g., [17,18]) use
a tamper-resistance hardware module as a Trusted Execution Environment (TEE). While
hardware-based designs provide strong security guarantees, they are not suitable for low-
cost resource-constrained IoT devices. To provide lightweight secure RA protocols, hybrid
designs (e.g., SMART [19], TrustLite [20], TyTan [21]) rely on minimal hardware changes to
ensure that the RA protocol and associated authentication keys cannot be tampered with.
All these schemes perform attestation on a single device. Collective attestation schemes
(e.g., SEDA [22], SANA [23], SHeLA [24], PADS [25,26], PERMANENT [27]) aim to provide
scalable RA solutions that attest efficiently large-scale IoT networks.

SMARM [9] aims to detect mobile adversaries that, during attestation, relocate to
different memory blocks of the program memory. SMARM uses a probabilistic approach to
compute memory measurements in a random order, which cannot be predicted by malware.
However, the probabilistic random (shuffled) measurements increase the attestation time.
ERASMUS [10] is a non-interactive RA protocol that allows the Prover to self-initiate the
attestation procedure at pre-defined times. The attestation results are stored locally, and the
Verifier retrieves a set of attestation results. The sequence of the attestation results allows
the Verifier to detect mobile adversaries that may leave or get relocated during attestation.

3.2. Dynamic Remote Attestation

While the aforementioned RA schemes perform only static attestation, dynamic RA
schemes aim to attest dynamic data memory. C-FLAT [5] is the first dynamic RA protocol
for resource-constrained devices, and it focuses on detecting control-flow attacks. C-
FLAT relies on software instrumentation to trace the execution of a running software and
generates an accumulative single hash value for each execution flow. At the verification
phase, the Verifier compares the generated hash value with a set of expected legitimate
values to determine whether the device is trustworthy or not. C-FLAT is implemented
in a TEE such as TrustZone. However, C-FLAT introduces a high overhead because at
runtime each instrumented code instruction is intercepted and redirected to the TrustZone
secure world. LO-FAT [6] enhances C-FLAT by replacing software instrumentation with
a hardware module, implemented on an external FPGA, which intercepts the executed
instructions at runtime. Likewise, ATRIUM [7] extends C-FLAT and LO-FAT by attesting
both executed instructions and the control-flow. However, these schemes detect control-
flow deviations and do not consider data attacks which leverage DOP technique [8] to
corrupt data variables without altering control-flow information. LiteHAX [28] aims to

Sensors 2022, 22, 4340 5 of 28

detect both control-flow and data-attacks. However, LiteHAX detects only the memory
operations load and store, thus, it works only on RISC-based architectures.

3.3. Service Attestation in IoT Swarms

Some recent RA protocols in the literature consider the attestation of IoT devices that
contain one or more services (also called as modules) [29–32].

DIAT [30] aims to perform the attestation of modules in the embedded devices of
an autonomous collaborative system. For each pair of interacting IoT modules, DIAT
performs control-flow attestation and authenticates the exchanged data between each pair.
In this way, DIAT ensures that the data sent from one module to another has not been
maliciously changed. RADIS [31] attests a group of interacting services that compose a
distributed IoT service. In order to detect malicious services that impact the behaviour of
other legitimate services in the network, RADIS performs the control-flow attestation of the
entire distributed service. SARA [33] aims to attest distributed IoT service communicating
by a publish/subscribe scheme. By using logical vector clocks, SARA allows the verifier
to construct a historical graph of the occurrence of service interactions and identify the
maliciously influenced provers. While SARA relies on static attestation, ARCADIS [34]
extends SARA by performing control-flow attestation. In particular, ARCADIS detects IoT
devices that have (directly or indirectly) been maliciously influenced by runtime attacks on
asynchronous distributed IoT services.

3.4. Memory Offloading

Beside RA protocols, some works within the field of offloading are of interest. In par-
ticular, CloneCloud [35] allows a resource-constrained mobile device to offload its execution
threads to a clone of itself operating in a virtual machine with more computational capabilities.

In the context of remote attestation it will, however, be more useful to gather an accu-
rate clone of the device memory, on which the memory forensics can be performed, rather
than replicating the functionality of the device. Additionally, certain security guarantees
not considered by offloading techniques must be provided by RA designs, as they are
intended to be used on potentially malware-infected platforms. Due to these differences in
security requirements and their purpose, the works within the field of offloading are not
directly applicable.

The possibility of offloading in the RA context is first mentioned in RAaS [36], where
RA is proposed as a cloud service. While this proposal is mostly focused on increasing
the efficiency of the protocol and reducing its associated downtime, the proposal has not
been implemented and evaluated. Furthermore, we want to investigate whether offloading
the memory is feasible and how this technique can be used to improve the effectiveness of
remote attestation.

3.5. Discussion

Table 1 summarizes the works discussed so far. In short, the static RA approach does
not consider runtime attacks, while recent dynamic approaches are limited to detecting
control-flow attacks. Thus, even if the approaches are combined, data attacks will still
remain undetectable.

This paper proposes a new protocol (ERAMO) aimed at addressing the limitations
of current attestation designs. Instead of relying on the control-flow attestation or check-
sum/hash comparisons, we propose to transmit the entire memory to the Verifier. This
allows the Verifier to employ sophisticated methods of attesting the dynamic memory (e.g.,
the open-source Volatility memory forensics framework [37]), while expanding the protocol
to also cover the Prover’s peripherals (e.g., ADC and I2C configurations). ERAMO design
is based on ARM TrustZone [38], which is a hardware-enforced isolation method. However,
as opposed to other hardware-based methods, TrustZone is built into the CPU, providing a
TEE without the need for external specialised hardware.

Sensors 2022, 22, 4340 6 of 28

Table 1. Related work summary.

Scheme Static Memory RAM Peripheral Verification Type Attestation

SWATT [13], Pioneer [14] Program checksum One-to-one On-demand

SMART [19], TrustLite [20], TyTan [21] Program checksum One-to-one On-demand

C-FLAT [5], LO-FAT [6] Control flow integrity (CFI) One-to-one On-demand

ATRIUM [7], LiteHAX [28] Program checksum & CFI One-to-one On-demand

SMARM [9] Program checksum & Shuffled Measurements One-to-one On-demand

ERASMUS [10] Program checksum One-to-one Self-initiated

SEDA [22], SANA [23], SARA [33] Program checksum One-to-many On-demand

DIAT [30] Program checksum & CFI Many-to-many On-demand

RADIS [31], ARCADIS [34] Program checksum & CFI One-to-many On-demand

CloneCloud [35] One-to-one

ERAMO Memory offloading One-to-one On-demand

4. Background

This section summarizes some relevant background information regarding the con-
cepts and technologies used in this paper.

4.1. Runtime Attacks

Runtime attacks exploit a memory corruption vulnerability to manipulate the control-
flow or data-flow of a program. The most common types of runtime attacks are (1) code-
injection attacks and (2) code-reuse attacks. Figure 1 illustrates a code-injection attack on
a Control-Flow Graph (CFG) of a benign program, where CFG represents the compiled
program’s code including all possible legitimate control-flow executions of the program’s
statements (Nodes 1-5 in Figure 1). In particular, in code-injection attacks, the adversary
exploits a vulnerability (Step 1 in Figure 1), directly injects malicious code (node X) into
the memory space of an application (Step 2), and manipulates the control-flow to point
towards the malicious code (Step 3). Code-injection attacks can be prevented by enabling
security policies such as Data Execution Prevention (DEP) which guarantees that writable
memory locations are non-executable. However, DEP does not prevent the attacker from
reusing the legitimate code already loaded on the device.

ADVERSARY

1

X

2 3

4

5

1 Exploit memory-corruption
vulnerability

2 Inject new

malicious code

Hijack control-flow3

Control-flow Graph (CFG) of

a benign program

Figure 1. Code-injection attack. The Control Flow Graph (CFG) represents the legitimate execution
flows of a benign software, where each graph node (Nodes 1–5) denotes a software instruction. A
code-injection adversary performs the actions 1–3.

In code-reuse attacks, the adversary exploits a memory corruption vulnerability and
compromises the intended behaviour of the program by manipulating the execution order
of the legitimate sequences of the code (called gadgets) already present on the device.
For instance, in Figure 2, the code-reuse attack diverts the control-flow from (3, 4) to (3, 2)
to execute code in the other branch. The most common variants of code-reuse attacks are
Return-Oriented Programming (ROP) [4] and Jump-Oriented Programming (JOP) [39,40].

Sensors 2022, 22, 4340 7 of 28

ADVERSARY

1

2 3

4

5

1
Exploit memory-corruption

vulnerability

Hijack control-flow
2

Control-flow Graph (CFG) of

a benign program

Figure 2. Code-reuse attack. The Control Flow Graph (CFG) represents the legitimate execution
flows of a benign software, where each graph node (Nodes 1–5) denotes a software instruction. A
code-reuse adversary performs the actions 1–2.

4.2. Fog Computing

Fog is a relatively new architecture that shifts computation from the cloud to the
network edge, closer to the data producers [41,42]. The computational, networking, storage,
and acceleration elements in a fog computing paradigm are known as fog nodes. Figure 3
illustrates a logical hierarchy of the computing resources in an IoT system, consisting of
three main layers:

• Sensors and actuators: Sensors and actuator devices are the physical things that pro-
duce data. These IoT devices are heterogeneous with different processing capabilities,
ranging from very simple devices with minimal resources to more powerful devices
that can support wired or wireless protocols, such as BTLE, ZigBee, USB, Ethernet, etc.
Many IoT devices can be associated with a single fog node.

• Fog nodes: Fog nodes at the edge are often used for sensor data collection, data
standardization, and command/control of sensors and actuators. Fog nodes in the
higher layer typically focus on data filtering, compression, aggregation, and turning
the data into knowledge.

• Cloud: The traditional backend cloud remains an important part of a fog computing
paradigm, performing tasks that are not completed by the fog devices.

CLOUD

Fog Node Fog Node

Fog Node

Sensors and
actuators

Fog devices

Traditional
backend cloud

Figure 3. Fog Computing paradigm.

Fog computing, that distributes computational resources to the network edge, is
a promising paradigm for dealing with the performance and network congestion issues

Sensors 2022, 22, 4340 8 of 28

brought by the exponentially growing volume of data created by connected devices. Further,
fog computing addresses performance, security, bandwidth, reliability issues in the systems
where cloud-only solutions are unsuitable [43].

Many major cloud providers have adopted the fog computing paradigm, providing
edge-oriented frameworks such as Azure IoT Edge [44], AWS Greengrass [45], EdgeX [46],
etc. These frameworks can be designed to filter device data and only send necessary
information to the cloud.

4.3. Arm Trustzone

ARM TrustZone technology is centered around splitting the system into a secure and
a non-secure (also called normal) domain and enforcing this separation by hardware. Both
domains are completely hardware separated and have their own privileges. At any given
time, the processor will operate either exclusively in the secure or non-secure domain.

While TrustZone for ARMv8-A (Cortex-A) and ARMv8-M (Cortex-M) are very similar,
both being built on the same foundation, there are slight differences. TrustZone for ARMv8-
M extends the architecture with new features and further separates the secure parameters
from the rest of the application. There are also changes to the state transition between
secure and non-secure, as the ARMv8-M performs the transition in hardware, unlike the
ARMv8-A, which employs secure monitor software [47]. With the separation done in
hardware, new opportunities arise to constrain the OS to the normal domain, while the
secure methods can reside in the secure world without the need for OS interference such
that we do not rely on a the OS being secure.

A visualisation of the differences between ARM Cortex-A and ARM Cortex-M is
depicted in Figure 4. ARM Cortex-A performs the transition to the secure world through
the secure monitor, which acts as a context switch triggered by a hardware interrupt or
the software instruction SMC. This transition will set the processor’s Non-Secure (NS) bit,
readable from the Secure Configuration Register (SCR) and propagated throughout the
system. In short, the security state in Cortex-A is determined by this bit.

On the other hand, the Cortex-M does not have the secure monitor, it does not need to
go through any transitional mode and does not have an NS bit deciding its state. Instead,
Cortex-M’s security state is entirely decided by whether the code being executed is in
a secure region or a non-secure one. As shown in Figure 4b, the transition is possible
anywhere in the application. The software can be brought to the secure world by an
interrupt request (IRQ) or with a function call and return in the same manner whether
the software is operating in thread or handler mode. Avoiding the transitional state also
improves the transition speed in Cortex-M over the Cortex-A [48].

Secure World

Secure OS

Normal World

Non-secure
Application

Non-secure OS

Secure Monitor

Secure

Application

(a)

Secure WorldNormal World

Handler
mode

Handler
mode

Thread
mode

Thread
mode

(b)
Figure 4. Differences between TrustZone on Cortex-A and Cortex-M. (a) TrustZone Cortex-A.
(b) TrustZone Cortex-M.

When discussing TrustZone henceforth it will implicitly be the Armv8-M (Cortex-M)
version unless stated otherwise, as this is the platform available for the low-end devices
relevant in the context of remote attestation.

Sensors 2022, 22, 4340 9 of 28

The processor will either run in a secure or non-secure state with access to either secure
or non-secure firmware, data, peripherals, memory and resources. This is visualised in
Figure 5 that shows how each area is either designated to the trusted or the non-trusted
domain. The memory space is separated into secure and non-secure addresses. The non-
secure addresses can be accessed by all the software on the system, while the secure memory
space is split into secure and non-secure callable (NSC). Secure addresses are only accessible
by secure software, while NSC are addresses reserved for instructions allowing the software
to transition from the non-secure state to secure [38]. Non-secure code calling the a secure
functions directly will result in an exception, so to avoid this non-secure software can call
permitted secure functions through the NSC section. This NSC section will be addressable
by the non-secure software through using its veneer table, which will maps the entry-points
to the secure domain.

Figure 5. TrustZone view of a system address space and resources.

It should also be noted that TrustZone itself does not ensure that the system will be
secure. TrustZone provide the means to which a secure system can be developed, but it has
to be implemented correctly with respect to cybersecurity principles. If the software is not
properly written and the separation between secure and non-secure states is not properly
implemented, an attacker may still able to exploit this and attack the system. As code
gets more difficult to evaluate as it grows, it is recommended to keep the secure code as
minimal as possible and keeping the amount of entry-points few, while performing most
operations in the non-secure state. Several critical vulnerabilities have been discovered
in popular TrustZone implementations spanning over several systems and OSs [49]. This
vulnerabilities range from compromising the kernel using buffer overflow exploits to lack
of isolation between secure and non-secure due to debugging channels. It should also be
noted that while TrustZone may be secure in software, a physical adversary could possibly
still attack the system. Fault injection attacks have been successfully performed on several
ARMv8-M TrustZone microcontrollers [50].

5. System Model

We consider an IoT system which adopts Fog computing paradigm [11]. In this
system, an untrusted resource-constrained IoT device interacts with a nearby powerful
device named Fog node. To design a RA protocol in this setting, we consider the presence
of the following two entities as shown in Figure 6:

• The Prover (Prv) is an untrusted IoT device. We assume the Prover to be a multi-
service device, e.g., a multi-sensor IoT device that provides a set of sensing capabilities
using external peripheral. This device can be infected by malware or can be miscon-
figured as a result of previous attacks. Prover’s memory consists of a set of memory
regions as shown in Figure 7. Each memory region can be seen as a set of smaller units
called memory blocks.

Sensors 2022, 22, 4340 10 of 28

• The Verifier (Vrf) is responsible for checking the integrity of the Prover. In our system
model, the Verifier is a fog node resided next to the IoT device. For simplicity, we
consider a system with only one layer with fog devices, assuming that a fog node is a
powerful device that has all the required resources and computational capabilities to
perform complex operations. Alternatively, the Verifier’s task can be distributed in a
set of hierarchical fog nodes where some degree of analysis is done by the fog node
next to the IoT devices, while the other part of the task is performed by the nodes
at the higher layers (as depicted in Figure 3). Besides, the Verifier has the required
resources to adopt advanced security and trust techniques (e.g., it is equipped with a
Trusted Platform Module (TPM) [51]); thus, it is assumed to be trusted. Additionally,
aligned with other RA schemes in the literature, we assume that the Verifier knows
in advance the legitimate program binaries and has the ability to detect irregularities
in dynamic memory or peripherals of the Prover. The Verifier randomly initiates the
attestation on the Prover, after which it can perform memory forensics techniques to
determine the Prover’s integrity.

The Verifier initiates the attestation by sending a request to the Prover (Step 1 in
Figure 7). After obtaining the attestation request, the Prover copies the content of its
entire internal memory associated with the device application (Step 2) and offloads it to
the Verifier (Step 3). Upon receiving the Prover’s memory, the Verifier will perform the
verification (Step 4) to check the Prover’s trustworthiness. The verification process includes
two main parts: a comparison of the static memory (e.g., flash memory) with the legitimate
program binaries known in advance and a detailed investigation of the transferred data
memories (e.g., SRAM).

Fog node / LaptopMicrocontroller

1 Request attestation
2

Copy memory
on chip, m 3 Send memory contents m 4

Verify m

PROVER (Prv) VERIFIER (Vrf)

Figure 6. System model of the memory offloading protocol.

SRAM0 SRAMX Flash Boot
ROM

SRAM
1..n

Internal
memory-mapped

peripheral

External
peripheral
registers

Internal
memory

External
memory

Figure 7. Memory on chip of a Prover device.

6. Threat Model

In the following, we define the adversarial capabilities w.r.t. the system model de-
scribed in Section 5.

Sensors 2022, 22, 4340 11 of 28

6.1. Adversarial Actions

In line with the adversary model described in [36,52,53], we consider an adversary
with the following capabilities.

• Software attack: A software adversary compromises the Prover’s program memory
by injecting and executing malicious code. Additionally, this adversary can exploit
a software vulnerability to compromise data memory, for instance, by modifying
variable’s value, corrupting control-flow pointers, data pointers. This can also be
exploited to misconfigure internal or external peripheral to cause unintended device
behaviour.

• Communication attack: The communication adversary can fully control communica-
tions between the Prover and the Verifier by forging, dropping, delaying, eavesdrop-
ping the exchanged messages.

• Mobile attack: A mobile adversary is a smart adversary that tries to avoid detection
by deleting itself during the attestation time or relocating itself to different memory
blocks or memory regions which have already been transmitted to the Verifier.

• Replay attack: An adversary precomputes a valid attestation response and sends this
old legitimate response to hide an ongoing attack.

6.2. Attack Capabilities and Limitations

We assume that a remote software attacker can read and write arbitrary memory.
In particular, the attacker is able to perform a runtime attack by exploiting a memory-
corruption vulnerability. However, we assume that the adversary does not compromise
the hardware-protected memory. Further, we assume that the adversary has computation
capabilities to perform computations at runtime. The main goal of the adversary is to com-
pute a valid attestation response to hide an ongoing attack and remain undetected. Thus,
following the assumptions of other RA schemes [5,19,22], we rule out physical adversaries,
Denial of Service (DoS), and Time-Of-Check Time-Of-Use (TOCTOU) attacks. While we
do not consider TOCTOU attacks, we limit these attacks by transmitting complete device
memory to a powerful Verifier that performs advanced analysis or historical comparison
over the memory contents.

6.3. Defense Capabilities

In line with common assumptions of the state-of-the-art RA schemes, we assume the
presence of two trusted components inside a Prover device.

• Read-Only Memory (ROM). A ROM memory region contains the code of ERAMO
protocol. The protocol code resided in this memory region cannot be tampered with
by a software adversary.

• Secure key storage. A secure memory region stores the Prover’s keys. Only ERAMO
protocol has read permissions in this memory region.

7. Security Requirements

Based on the adversarial actions described in Section 6, in the following we define the
required security properties.

• Integrity. The protocol should provide reliable evidence guaranteeing that the trans-
mitted memory contents correspond to the Prover’s memory at the time of the attesta-
tion request.

• Authenticity. The protocol should provide verifiable evidence for the origin of the
memory contents transmitted.

• Integrity of communication data. The protocol should ensure that any memory
contents transmitted cannot be altered without it being detectable.

• Freshness. The protocol should ensure that any given response to an attestation
request can be reliably linked to that request.

Sensors 2022, 22, 4340 12 of 28

8. Eramo: Protocol Proposal

ERAMO protocol consists of three main phases: (1) Setup phase, (2) Attestation phase,
and (3) Verification phase. In the following, we describe each phase in detail.

8.1. Setup Phase

A network operator guarantees the secure bootstrap of the software deployed on each
Prover. Considering the limited capabilities of Provers, the Verifier and the Prover establish
a shared symmetric attestation Message Authentication Code (MAC) key k. To prevent
untrusted parties from using Prover’s key, the shared attestation key k is stored in a
hardware-protected memory. Alternatively, a Prover can establish a secure communication
channel with the Verifier by possessing an asymmetric key-pair (pk, sk) and knowing the
Verifier’s public key. Note that the key management details are out of scope of this paper.
The protocol description is independent of the key management, thus, the symmetric key
usage can be easily replaced by an asymmetric key-pair. For simplicity, preserving our
work’s generality, we assume that the Prover and the Verifier share a symmetric key k.

8.2. Attestation Phase

Figure 8 illustrates the protocol. To initiate the attestation, the Verifier generates a
nonce N and sends it to the Prover (Step 1 in Figure 8). The Prover then relinquishes
control to the RA protocol residing in the hardware-protected component. The Prover’s
RA protocol reads the device memory contents m (Step 2) and computes a hash h =
hash(m). Next, the Prover concatenates the computed hash h with the received nonce N
and authenticates it by computing a keyed Hash Message Authentication Code (HMAC)
over the obtained result s = HMAC(k, (h||N)). Finally, the memory m and HMAC s are
transmitted to the Verifier (Step 3), which checks whether it corresponds to the transmitted
data. The transmission may be split into smaller chunks, e.g., by authenticating individually
memory blocks or regions. In that case, integrity, authenticity and temporal freshness must
be ensured for each transmitted memory chunk, e.g., by adding a unique extra byte for
each chunk or securely generating a pseudo-random number inside the Prover.

1 Request attestation, N
2

Copy memory
on chip, m

3 Send s and m
4

h' = hash(m);

s' = HMAC(k, (h' || N));
Verify: s == s' ∧ m ∈ M

- Shared key, k

- Set of valid memories, M

Input
- Memory on chip, m

Input

Trusted

memory

- Shared key, k

- Acces to memory on chip

Input

N = generateNonce();

h = hash(m)
s = HMAC(k, (h || N))

Untrusted

memory

PROVER

VERIFIER

Figure 8. ERAMO protocol.

8.3. Verification Phase

The verification phase starts when the Verifier receives an attestation response from
the Prover. By using the shared attestation key k, the Verifier checks the authenticity and
integrity of the attestation result (Step 4). Assuming that the Verifier knows all valid combi-
nations of memory M, the Verifier has the ability to determine whether a given memory
m is in the set M. A powerful Verifier that is able to perform advanced memory forensics
analysis (e.g., by using the open-source Volatility Framework [37]) can use the offloaded

Sensors 2022, 22, 4340 13 of 28

dynamic memory contents to provide a detailed attestation and precisely determine the
Prover’s integrity.

8.4. Attested Device Memory

Figure 9 shows the attested memory regions verified by ERAMO protocol for a device
with a flash memory and a memory-mapped peripheral region. A certain portion of
the flash region allocates data memory, whereas the memory-mapped peripheral region
contains both readable and write-only registers. All readable memory can be attested apart
from the secure memory allocated to the trusted component performing attestation.

The inclusion of the aforementioned memory regions in the attestation result is crucial
to ensure Prover’s integrity. In particular, the attestation of the memory-mapped on-chip
peripheral address space guarantees that any on-chip peripheral in use works as intended,
and an adversary has not altered the device’s peripheral configurations. These configu-
rations may range from the ADC channel chosen, the I2C communication speed, or the
internal timer setup. However, due to its dynamic status and configuration registers, this re-
gion cannot be attested by the comparison of hashes as each combination of configurations
and status bits will produce a unique hash, resulting in a large amount of legitimate hashes.
Additionally, registers may have unused or reserved bits with undefined read-values,
which further complicates the hash verification. Therefore, this memory region should
instead offloaded to the Verifier.

Furthermore, if a region of the flash/EEPROM is used for data, such as calibration
values or network information, this region may also be verified through offloading. This
data may change during runtime and may depend on the electrical characteristics of
the specific device, and thus may not be verifiable through hashing. Assuming that the
Verifier has some notion of what differentiates legitimate values of this region, the integrity
verification of this region is possible through offloading.

Program flash

Data flash

Readable registers

Write-only registers

Secure RAM

SRAM0

SRAM1..N

SRAMX
Secure Flash

Flash

Boot ROM

Internal
memory-mapped

peripheral

Microcontroller Peripheral device

Configuration registers

Data registers

Status registers

Inaccesible software
and memory

(cannot be verified)

Peripheral Devices
IoT device

Fully attested

Partially attested

Unattested

Figure 9. Memory regions attested by the ERAMO protocol.

Attestation of Multi-Service Devices

When the Prover is a multi-service device, its integrity also depends on the integrity
of any attached external peripheral devices. The peripheral devices are typically not
programmable but rely on limited interfaces, such as SPI, I2C, and UART, to read or write
to their register contents. These registers, in the same manner as the on-chip peripherals,
determine the peripheral configurations and contain their data. Consequently, the contents
of these external peripheral registers should be verified to guarantee Prover’s integrity.

Before authenticating and offloading the registers’ content, first, the trusted component
should read the registers. To accomplish this, an extra step is added to the attestation

Sensors 2022, 22, 4340 14 of 28

procedure within the trusted component. The Prover uses the peripheral interface (such
as SPI or I2C) to read every accessible register on the external peripherals. The contents
of these registers now reside within the trusted component and can be offloaded to the
Verifier. The Verifier then verifies these external peripherals as it verifies the internal
ones. The configuration bits and other data of the peripheral device can be evaluated by
considering legal combinations or through more rigorous analysis.

9. Proof-of-Concept Implementation

We implement ERAMO protocol on a TrustZone-capable LPC55S69 running an IoT
sensor application on FreeRTOS (https://www.freertos.org, accessed on 29 April 2022).
To investigate an multi-service IoT system with different peripherals, we choose two
sensors: a temperature sensor and a water sensor.

As an illustrative use case, we can imagine a temperature and water sensor IoT device
in a server room. Every 100ms, the device reports the temperature and water level of the
room. This IoT system may function as an anti-fire system, turning on the sprinklers if an
increasingly high temperature is measured over a number of samples. Another device may
be reading the water level the device reports, ready to turn off the servers and enable a
countermeasure if a water leak happens. In such scenario, it could have disastrous if the
temperature sensor node was hacked, reporting a high temperature to the sprinkler system,
flooding the room, while in turn the water sensor was not reporting the water level.

9.1. Sensors

In our experimental setup, the temperature sensor is a digital sensor, namely Bosch
BME280, to integrate a component with it’s own memory in the form of registers and to
integrate some digital intra-device communication (as in I2C, SPI, I2S etc.). The water
sensor was chosen as an analog sensor, a simple non-brand sensor that gives a voltage
output depending on the water level. The peripheral sensors can be seen on Figure 10.

(a) (b)

Figure 10. The two sensors used for the sensor node application. (a) Digital temperature sensor.
(b) Analog water level sensor.

9.1.1. Water Level Sensor

The water level sensor is an analog sensor, and it gives a voltage output depending on
how immersed it is in water. It works as a resistor whose resistance varies by the water
level. As it is purely analog, it has no internal memory and consequently cannot directly
be attacked by malware. It is supplied with voltage and ground using two of the sensors
pins, while the last pin will output a voltage depending on the water level. The output is
equal to the supply voltage when the sensor is immersed in water and fully conducting,
while it is equal to ground when the sensor is dry and is not conductive. This output
voltage can then be converted to a digital value representing the water level using the
microcontroller’s analog-to-digital converter (ADC). This PoC assumes a linear correlation
between the analog voltage output and the water level.

However, the converted digital output still depends on the ADC configuration, which
can be written to and read using the memory addresses of the ADC peripheral. The ADC

https://www.freertos.org

Sensors 2022, 22, 4340 15 of 28

must be configured to use the correct input, number format and conversion mode. In this
case, it is configured to be triggered by a specific interrupt, which ensures that sensor
readings are done at a regular interval. If these settings are misconfigured, the sensor
may report incorrect readings, which would cause this device to behave incorrectly. Fur-
thermore, the misreadings could propagate errors to other devices in the IoT network,
whose behaviour depends on the accurate sensor readings. As a consequence, the memory
associated with the peripheral will need to be offloaded and validated in order to fully
attest the state of the device.

9.1.2. Temperature Sensor—Bosch BME280

The Bosch BME280 is a digital humidity, pressure and temperature sensor. In the
context of this PoC implementation, the sensor represents of a typical digital sensor in a
IoT device.

While the sensor functions by either SPI or I2C communication, we choose I2C for
this PoC implementation, considering that the transmission speed is not of importance.
The datasheet strongly recommends that data is read using a burst read, which is specified
as sending the slave address, the desired register address, after which the sensor starts
reading out data from that address and on-wards until it no longer receives an ACK [54].
An example of this can be seen in Figure 11, where register 0xF6 and 0xF7 is read, after which
the master stops the read by no longer replying ACK. The write is done in the simple
manner of sending the slave address, the register address then the data. Note that correct
configuration of the I2C peripheral must be verified in the same manner as for the water
sensor. However, in this case the external memory residing on the digital sensor must also
be verified to ensure correct readings.

Figure 11. Sensor I2C burst read of register 0xF6 and 0xF7 [54].

The sensor consists of a variety of registers, 8 read-only registers containing raw
humidity, temperature and pressure data. 3 read-write registers for configuration, 2 read-
only for calibration data and 1 read-only each for the status, chip id and reset registers.
The memory map of the sensor can be seen in Figure 12. Worth noting, is that the shown
registers are not necessarily contiguous, there are registers in between the mapped register,
which are not documented in the datasheet. By experimentation it is found that these
registers can be read without issues and do not disturb the burst read of the memory.

Worth noting, is that the device starts in sleep mode and requires that the mode-register
is set to normal mode and the oversampling registers are set to a nonzero value before the
sensor will give accurate results.

If this sensor has a wrong value in its mode or oversampling register it would report
back an incorrect result. As these registers are not checked by traditional remote attestation,
a device could report back as being in a correct state with a legal memory hash, while having
a corrupt sensor reporting incorrect temperature values to other IoT devices on its network.
As external digital sensors are not directly linked to the Prover’s memory addresses,

Sensors 2022, 22, 4340 16 of 28

they will not be taken into account in a traditional remote attestation, even though their
state is essential to the performance of the sensor node. If a mobile adversary exploits a
vulnerability to change the state of this peripheral sensor, then deletes all traces of itself
from memory, the invalid state cannot be detected by current methods of remote attestation.

Figure 12. Temperature sensor BME280 memory map [54].

9.2. Eramo Protocol

To isolate the RA protocol from the non-trusted device application, we use the Armv8-
M release of ARM TrustZone. TrustZone is available on various platforms, and unlike
other approaches to hardware-based attestation, does not require any external hardware.
In general, TrustZone separates the device application into a trusted component allocated
to the TrustZone secure world and a non-trusted component allocated in the TrustZone
non-secure world. The LPC55S69 board setup with the sensors connected can be seen in
Figure 13.

Figure 13. IoT device setup consisting of the TrustZone-enabled LPC55S69 evaluation board and the
two connected sensors.

In ERAMO’s proof-of-concept implementation, the application is separated as follows:

Sensors 2022, 22, 4340 17 of 28

• The trusted component includes the RA procedure and the LPC55S69 hash engine.
Additionally, a section of the RAM and flash is allocated to the secure world. The attes-
tation code and key are located in the secure flash, and the key is handled exclusively
in secure RAM.

• The non-trusted component includes FreeRTOS, the IoT sensor application tasks,
and associated interrupts and peripherals. The remaining RAM, flash, and any unused
peripheral are also allocated to the non-secure world.

The trusted attestation protocol is initiated by calling it from the non-secure commu-
nications thread with the nonce N as an argument (fixed to a length of 8 bytes to prevent
inputs of arbitrary length). The protocol performs the authentication using the LPC55S59
on-chip hash-engine because this significantly speeds up the hash computation. The chip
supports SHA-1 and SHA-2 with a 256 digest (SHA-256). As SHA-1 has certain vulnerabili-
ties [55,56], we use SHA-256 for hashing and the HMAC. To prevent key leakage, the hash
engine is assigned to the secure world.

To illustrate the attestation of multi-service devices, the accessible registers of the
BME280 external peripheral sensor are offloaded to the Verifier. The trusted attestation
procedure on the device performs an I2C burst read on the BME280, resulting in the
register contents being transferred to the trusted component’s I2C buffer. The burst read
is performed using polling to not rely on the interrupts associated with the non-trusted
component. The procedure then transmits the memory to Vrf in the same manner as
its internal memory. While offloading the memory allows Vrf to verify with a variety
of methods, the current implementation will confirm that certain bits of register 0xF2
(ctrl_hum), 0xF4 (ctrl_meas), and 0xF5 (config) (depicted in Figure 12) are configured as
intended. The dynamic and reserved register are ignored. Additionally, the device-specific
calibration values (0xE1-0xF0 and 0x88-0xA1) are read and logged such that they can be
compared with internal values used in the device.

9.3. Memory Analysis of Sensor Nodes

We perform a memory analysis to investigate how the memory of the sensor node
application is being utilised. This analysis will reveal whether the flash, RAM, boot ROM
and peripheral device registers adheres to some structure, which can be predicted and used
in the verification process. The device consists of boot ROM, flash memory, the temperature
sensor registers and 4 different RAM regions SRAM0, SRAM1, SRAM2 and SRAMX.

The program flash is expected to remain static throughout the use of the application.
The application is programmed into the flash and no part of the application is programmed
to write to the flash. Consequently, the program flash can still be verified using hash values,
since the Verifier would only have to know a limited amount of legal hashes corresponding
to all legal program versions. On the other hand, the RAM of the application will have
too many legal states to realistically keep hashes of. This does however not mean that
there will not be patterns in the RAM and possible structural features which can be used to
tell a legal use of RAM from an illegal one (one hijacked by malware). This analysis will
therefore mainly involve the RAM used by the applications.

Before the analysis, the application was modified with tools to aid the analysis. FreeR-
TOS has internal tools for this cause, notably a timer for runtime stats using a hardware
timer on the processor and the trace facility which adds additional structure members and
functions to the FreeRTOS structures, enabling the extraction of information regarding the
task/queue state, stack etc.

First, we used the FreeRTOS memory analyser, built into MCUXpresso IDE, to extract
the memory addresses allocated to each task and queue. The addresses of these were noted
for the following analysis. Using these it was possible to get information about where in
the memory the different structures lie.

The analysis showed that the different FreeRTOS structures (the tasks and queues)
consistently allocate the same memory spaces. This is due to the structures being allocated
statically and before the scheduler has been started. As an example, for this version of the

Sensors 2022, 22, 4340 18 of 28

application, the UART Transmit Queue will always occupy address 0x3EC and the LED
task address 0xD94 in RAM.

Then, using this information, the queues, tasks and the timer was plotted into the
memory map in the address and information columns, Figure 14. As the application for
the moment does not require much space in RAM, it is entirely located in SRAM0 (64 KB),
with the heap start being set to 0x2000 0000 and the stack start (not to be confused with the
FreeRTOS stacks, which are task-specific) being set to 0x2000 F000.

A problem may arise with dynamic allocation of FreeRTOS structures after the sched-
uler has begun. If a task is allocated dynamically, the Vrf will not know where in memory
it is located, making the process of attesting the RAM and memory-locking even more
complex. Some trusted scheme of exchanging the structure location could perhaps be
derived, but this PoC implementation will instead be limited to statically created structures,
such that Vrf has knowledge of the layout beforehand.

To perform the analysis, the memory had to be offloaded from the device. Complete
readings of the memories were taken once an hour over the course of 16 h in order to get
an accurate representation of the memory regions used. To further analyse the memory
activity throughout these memory readings, we wrote code to calculate how many times
each memory region changed over the course of the readings. This program compares
each reading of the memory with each other: the first reading is compared with the second,
the second with the third etc. Each block of memory (of 0x10 bytes) which changes value
between two readings is noted. This process is done for each memory-region of the device,
the RAM, flash, boot ROM etc. The results showed that the only memory regions changing
during runtime were SRAM0 and the temperature sensor registers, meaning that the flash,
boot ROM and SRAM1, SRAM2, SRAMX were static.

The SRAM0 information can be seen in the column “Changes” in Figure 14, where the
memory is split into chunks of 0x100 bytes. The results show how the first 6KB (0x0000–
0x1700) are being actively used by the device. There a some inactive blocks in-between,
but most of it changes between each offload. After 0x20001700 there is a large gap without
any activity until the last block of SRAM0, where the stack is located. Even though each
FreeRTOS task has their own stack, the normal stack is still used by main and by any
interrupts. The first memory space is occupied by the heap and the last space after the
software timer hosts the scheduler. The scheduler is 236 bytes, each queue is 76 bytes plus
storage area and each task is 64 bytes plus the size of its stack. Each task stack is set to
256 bytes, which is the default of this implementation’s FreeRTOS port.

In addition to researching the memory consumption of the whole system, it is also of
interest to research the memory consumption of a scenario with a single task running. This
is helpful to see if memory locking, a concept that will be elaborated in Section 12, can be
applied to some regions of the system, while running tasks in others.

The experiment will be to observe how much of the memory space a single task would
use, in a situation where all the tasks and RTOS structures have been created, but have
been suspended. Meaning that they are allocated, but the scheduler will be ignoring them
and their stack will remain static. To test this, the application was edited to suspend all
tasks except the button task, the task which monitors the state of the MCU board’s button.
The button-task was chosen as it does not use any queues, timers or rely on any other
tasks. The offloading procedure and analysis was repeated for this new application and the
results can be seen in the column Changes (1 Task) in Figure 14. It’s seen how the stack is still
active and along with the top of the heap to addresses 0x640, where the UART Transmit
task starts. While the queues themselves are not active, the memory surrounding them are.
Additionally the memory allocated for the button task, the idle task, software timer and
scheduler remains active.

Sensors 2022, 22, 4340 19 of 28

UART Transmit Queue (0x3EC - 0x4CC)

Timer Queue(0x514 - 0x634)

UART Transmit Task (0x644 - 0x7E4)

Temperature Sensor Task (0x8B4 - 0xA8C)

Water Sensor Task (0xB24 - 0xCF4)

LED Task (0xD94 - 0xF74)

Button Task (0x1004 - 0x11E4)

IDLE Task (0x1274 - 0x145C)

Service Timer (0x14E4 - 0x16C4)

Scheduler (236B)

Stack (main and ISR)

Heap start

(No specific info)

No change in this area

Figure 14. SRAM0 memory map with amount of changes between 16 memory offloads.

The following registers on the external BME280 sensor 0xBD, 0xBE, 0xC1 and 0xF3
also changed throughout the offloads. The last register, 0xF3, is the status register of
the sensor containing a bit indicating whether the sensor is busy measuring and a bit
indicating whether the sensor is busy copying data. As this register is read-only and
cannot be changed maliciously, it will be have to be ignored by the attestation process.
The first three registers however are not described in the sensor datasheet as they are in
the region between calibration (0x88 to 0xA1) and id (0x0D). Presumably these registers are
used internally by the sensor, but it can’t be said what they are for and how they affect
the temperature readings. If these registers are read-only they can be safely ignored in the
attestation, however if they can be written to they may affect the device and could be an
attack vector for transient malware creating lasting damage which is not detectable. To
ensure safety it may be best to ensure that any undocumented registers of the sensor used
in a device are read-only or do not have any negative effect if written to.

As a consequence to the observe patterns in the device’s memory, there are some
opportunities and challenges for the attestation procedure. First of all, program flash,
the boot ROM and the unused RAM are all static throughout the use of the program. This
opens up the possibilities of memory locking while attesting these regions as they are not
used by the application. The sensor values are also somewhat predictable with most of
registers being verifiable depending on how they were initially set, however with certain
areas which cannot be predicted as they lack documentation. The RAM does however pose
some challenges to interruptible procedures. There are certain areas of the memory being
used by FreeRTOS even when the system is idle, such as the idle task and any created
software timers. The application also constantly uses the heap and the stack to handle
system interrupts. It should however be noted that while these parts of the RAM are

Sensors 2022, 22, 4340 20 of 28

problematic for the procedure, only 10% of SRAM0 (about 6KB) is actually used by the
application. The remaining SRAM0 and the SRAM1, SRAM2 and SRAMX is completely
static and is therefore very predictable.

In conclusion, only the RAM in use by the application will give issues during offload-
ing. This part of the RAM does however adhere to a predictable structure regarding the
placement of FreeRTOS objects (tasks, queue, timers). While the content of these objects
may be difficult to verify, the structure itself is predictable, as long as the objects are stati-
cally allocated. The program flash and boot ROM remain static and therefore verifiable by
hash and the analysis of the BME280 sensor reveals that most of the registers remain static,
thereby opening some possibilities of peripheral device verification.

Attested Memory and Device Integrity

The developed attestation procedure successfully offloads the RAM, the boot ROM,
and the flash memory. Certain sections of the memory-mapped peripheral are write-
only, thus, only the readable addresses are transmitted. For this implementation, the I2C
peripheral is offloaded, and the Verifier verifies that the I2C interface is configured as
intended by verifying the configuration (CFG) register, the interrupt settings (INTENSET),
and the settings for the clock and timings (CLKDIV).

The Verifier successfully then verifies the boot ROM and the region of the flash memory
containing the program binary by comparing the hashes, before moving on to the dynamic
areas of the memory. Currently, no memory forensics is performed on the RAM, however
we discuss its feasibility in Section 12.

10. Evaluation

The efficiency of ERAMO highly depends on the choice of hardware. The mem-
ory transmissions depend on the choice of communication and its transmissions speed.
The time required for authentication depends on Prover’s computational capabilities and
its available hardware to assist with the process.

We conducted the experiments, and the runtime measurements of the procedure were
measured on the LPC55S69 running at 150 MHz. To simplify the connection to the Verifier,
a serial connection was established using the on-chip UART configured to a baud rate of
806,400. The LPC55S69 hash engine was used to compute the necessary authentication
using SHA-256 for hashing and the HMAC. The procedure was tested on different memory
sizes, increasing in steps of 1 KB. The memory offloaded was the 240 KB of non-secure
RAM associated with the IoT application.

The time used for the offloading procedure is proportional to the offloaded memory
size, as shown in Figure 15. Furthermore, the time used for memory authentication scales
the memory size, but it is negligible compared to the time required by data transmission.
The duration also scales w.r.t. size but is slightly noisy and requires at least 0.23 ms,
as shown in Figure 16. In Figure 16, the similarity to a step function is due to the processor’s
internal hash engine. The maximum input we give to the hash-engine is 32 KB, this
means that memory chunks larger than 32 KB requires multiple rounds of the hash-engine
to be processed. This results in the engine handling inputs of 0–32 KB, 32–64 KB, etc.,
in approximately the same time frame.

This offloading RA approach can be combined with current methods of static attes-
tation through program checksum comparison. In that case, the code memory (and boot
ROM) can be attested through hash comparisons, while offloading the dynamic memory:
the RAM, any data region of the flash/EEPROM and internal/external peripheral registers.
When combining these methods on the aforementioned IoT sensor application, offloading
the RAM, external peripheral registers, and the I2C peripheral, while only transmitting the
hash of the flash and boot ROM, the entire process takes 3.94 s using the previously speci-
fied hardware and communication setup. The experimental results are overall comparable
with other RA schemes [53] and confirm the feasibility of ERAMO.

Sensors 2022, 22, 4340 21 of 28

0 32 64 96 128 160 192 224 256
Input size [KB]

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
us

ed
 [m

s]

Figure 15. Time used to transmit memory.

0 32 64 96 128 160 192 224 256
Input size [KB]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
us

ed
 [m

s]

Figure 16. Time used to authenticate memory.

10.1. Energy Consumption

In this section, we provide the energy consumption measurements for the offload-
ing procedure. Voltage is measured over the shunt resistor (resistance of shunt resistor
R = 2.43 ohm) on the evaluation board (during normal operations and during offloading).
This is a method suggested by the LPC55S69 evaluation board user manual [57]. Having
the voltage and resistance allows us to calculate the power: P = V2

R . Comparing the power
during offloading to the power during normal operations allows us to calculate the excess
power usage caused by running ERAMO. The duration of the offloading procedure is also
measured. Having both the power usage and the duration allows us to calculate the energy
usage: E = P · t. Calculating the energy usage with the excess power allows us to calculate
the excess energy usage caused by running ERAMO. The results are summarized in Table 2.
The power consumption of the offloading is 208 mW and takes 23.3 s at a baud rate of
460,800. Given that the normal power consumption is 190 mW, the excess power will be
18 mW, resulting in an excess energy consumption of 419 mJ (116 µWh). This does however
vary with baud rate as the process will be longer and thus more energy consuming at lower

Sensors 2022, 22, 4340 22 of 28

baud rates, an excess 16 mW was measured at 115,200 with the procedure taking 89 s,
resulting in an excess 1424 mJ, more than three times as much the procedure at a baud rate
of 460,800.

Note that the power measured is the power used by the entire evaluation kit (MCU,
DC-DC converter, IO etc.) and would be lower if a simpler device was produced including
only the necessary hardware. However, hardware used for wireless communication would
in turn increase the energy consumption.

Table 2. Energy usage in ERAMO for different communication rates.

Communication
Rate

[bytes/second]

Voltage over
Shunt Resistor

[mV]
Power [mW] Excess Power

[mW]

Duration of
ERAMO

Offloading [s]

Excess Energy
[mJ]

Normal
operation (no

offloading)
NAN 679 190 NAN NAN NAN

Offloading
using ERAMO 460,800 711 208 18 23.3 419

Offloading
using ERAMO 115,200 708 206 16 89.0 1424

10.2. Verification Process: Fog Node’S Perspective

During the offloading procedure, the fog node, acting as the Verifier, performs the
verification. Listing 1 shows a simplified example for the verification where for each
memory region processed, its hash is computed and compared to its previous hash, and the
information regarding the offloading is written to the terminal.

Listing 1. The Verifier receiving and attesting the offloaded memory.

1 ****
2 OFFLOAD SENSOR
3 SENSOR offloaded (110 B). time elapsed: 10 ms.
4 SENSOR hash is identical to previous.
5 SENSOR has a valid configuration
6

7 OFFLOAD FLASH
8 FLASH offloaded (256 kB). time elapsed: 22.71 s
9 FLASH hash is identical to previous.

10 FLASHCODE hash is identical to previous.
11 FLASHDATA hash is identical to previous.
12

13 OFFLOAD SRAM
14 SRAM offloaded (160 kB). time elapsed: 13.954 s
15 SRAM hash differs from previous!
16

17 OFFLOAD BOOTROM
18 BOOTROM offloaded (32 kB). time elapsed: 2.641 s
19 BOOTROM hash is identical to previous.
20

21 OFFLOAD SRAMX
22 SRAMX offloaded (32 kB). time elapsed: 2.811 s
23 SRAMX hash is identical to previous.
24

25 ****

However, attestation of a sensor peripheral necessitates a more complicated verifi-
cation than a simple hash comparison. For example, we tried to verify the integrity of
the peripheral temperature sensor while also offloading the sensor’s registers. Since the
microcontroller does not have direct access to these registers, it starts the procedure by
initiating an I2C burst read starting from the first mapped register, 0x88 the calibration

Sensors 2022, 22, 4340 23 of 28

register, to the last, 0xF5 the configuration register, following the previously-described sensor
memory map (depicted in Figure 12). As a result, 110 byte-sized registers are offloaded.
Once the MCU has read the data using an I2C burst read, it is then sent byte-by-byte to
the fog node. To verify the state of the temperature sensor, we construct a white-list of
allowed data values per register. This is a relatively simple way for performing verification,
but it serves as a proof-of-concept of verification without the use of hashes. The white-list
is formatted to have the address followed by the allowed values as shown in Listing 2.

Listing 2. Register white-list for digital temperature sensor.

1 de : *
2 df : *
3 e0 : 00 #Calibration data 2 START
4 e1 : 81
5 e2 : 01
6 e3 : 00
7 e4 : 10
8 e5 : 2b
9 e6 : 03

10 e7 : 1e
11 e8 : 00
12 e9 : 41
13 ea : ff
14 eb : ff
15 ec : ff
16 ed : ff
17 ee : ff
18 ef : ff
19 f0 : ff #Calibration data 2 END
20 f1 : *
21 f2 : 00 #ctrl_hum
22 f3 : * #Status register
23 f4 : 6f #ctrl meas
24 f5 : 02 #Config

The verification program goes byte-by-byte through the file comparing each value of
the sensor to the white-listed value. If a value at a specific address is not on the white-list,
the program will flag the sensor as having an invalid configuration. Such a simple approach
could be also employed to check certain memory addresses of the RAM against a white-list.
For instance, to check if small memory areas, such as the FreeRTOS task definitions and
boundaries remain static and whether predictable regions, such as the queue-structure
contain values according to those expected of the device.

11. Eramo Limitations

The current design of the ERAMO protocol poses some limitations in dealing with var-
ious types of attacks. In particular, the challenge-response design of the protocol increases
the risk of Denial of Service (DoS) attacks. For instance, the attacker may impersonate
the Verifier and send frequent attestation requests to the Prover to suspend the regular
operation of the Prover. To reduce the DoS risk, the design can be extended by replacing
the challenge-response protocol with a non-interactive approach (such as [26,58]), in which
the device self-initiates attestation through a secure algorithm running on a secure memory
(e.g., TrustZone).

Additionally, ERAMO approach is susceptible to mobile adversaries, Specifically,
the malware which may delete itself or relocate to another device to avoid detection is
referred to as transient malware. The malware that moves to a different memory region
on the same device to avoid detection is called migratory malware. To secure the protocol
against transient and migratory malware, memory locking (described in Section 12) can be
used to accurately reflect the state of the memory region at a given point in time.

Sensors 2022, 22, 4340 24 of 28

12. Discussion

ERAMO approach opens the possibilities of various RA schemes, such as allowing
ranges of values, complex combinations of settings or even using machine learning to
determine the validity of the dynamic memory. Due to the increased computational power
of the Verifier, memory forensics tools [37] may be used on the memory dump allowing the
Verifier to distinguish a legal state of memory from exploited memory.

This paper presents comprehensive implementation details of the ERAMO protocol on
a TrustZone-capable LPC55S69 running an IoT sensor application on FreeRTOS. However,
at a large extent, this implementation is compatible with other IoT platform configurations.
For instance, the proposed protocol can be migrated to a Raspberry pi 3 or 4 Model B that
supports OP-TEE [59] as an operating system in the TrustZone environment and Linux
operating system running on the “normal world”. To the best of our knowledge, we are
not aware of an integration of TrustZone with popular IoT mobile operating systems such
as Contiki, TinyOS, RIOT. However, if there exist such an implementation, our proposed
technical solution should be compatible with a large-scale linux-based mobile operating
system running on the “normal world”.

To mitigate the downtime caused by attestation, ERAMO can utilize TrustZone’s
seperation between the secure and non-secure domain and allow the device and its OS to
resume its normal operation during attestation. This however introduces the possibility
of mobile adversaries, which must be countered. While ERAMO aims to improve mobile
adversary detection by attesting many memory regions, still during the attestation, a mobile
adversary may evade detection by relocating itself in different memory blocks within one
memory region. If the trusted component on the Prover deploys a memory locking technique,
it would be possible to guarantee the result’s integrity while allowing the execution of
regular operations to run simultaneously with the attestation. Memory locking is already
used in Linux to lock memory pages in RAM. Recently, it has been proposed for achieving
temporal consistency in embedded systems [60]. The different methods of memory-locking
and their consequences regarding temporal consistency and vulnerabilities are listed below:

• No-Lock: A naive solution to this issue is to let the attestation procedure run concur-
rently with the devices normal operation without locking. This does not ensure any
temporal consistency, leaving the system vulnerable to mobile adversaries.

• All-Lock: All-Lock is the contrary to the No-Lock and avoids the mobile malware. It
instead keeps the system temporally consistent throughout the entire process. This
method is equivalent to having an uninterruptible attestation procedure.

• Decreasing Lock (Dec-Lock): Like All-Lock, this method detects mobile adversary,
while having the benefit of the memory being gradually unlocked.

• Increasing Lock (Inc-Lock): Inc-Lock does provide temporal consistency at the time
which the attestation. This will be enough to detect migratory malware, however it
does not protect against mobile malware. Malware not located in the first region to
be attested could delete itself before the memory is locked and could thereby avoid
detection.

• Copy Lock (Cpy-Lock): Cpy-Lock protects against mobile malware but is only viable
if the time required to copy is less than time required for the attestation.

• Extended locking: Extended variants All-Lock-Ext and Inc-Lock-Ext can be used
instead of their normal counterparts if consistency is needed until the memory has
been attested by the verifier. This is done by locking the memory until the attestation
is finished, which is useful to prevent TOCTOU vulnerabilities.

To this end, the memory-locking technique can be a promising technique in ensuring
the temporal consistency of the offloaded memory. Through memory locking, it is possible
to lock a memory block, preventing it from being changed until it is again unlocked. This
can be used to lock the memory before being attested and gradually unlock it as soon as it is
offloaded or attested, following the Dec-Lock approach described above. Consequently, any
malware or effects caused by malware and memory exploits will be locked in memory until

Sensors 2022, 22, 4340 25 of 28

it is offloaded, causing it to be detected by the Verifier. Furthermore, TrustZone will ensure
that any malware present on the non-trusted component cannot interfere with the trusted
offloading procedure, ensuring that the offloading procedure can run securely simultaneous
with Prover’s regular operations. As an example, using Dec-Lock, the memory areas can
be offloaded and unlocked in the following order:

1. The memory area of the main stack is offloaded and unlocked.
2. The memory area of the main heap (before the allocated task) is offloaded and un-

locked.
3. The memory area of the Idle task and software timers are offloaded and unlocked.
4. The memory area of the scheduler is offloaded and unlocked.
5. Start allowing interrupts from the application.
6. The memory area of the queue for the transmissions task is unlocked (e.g., UART

Transmit Queue).
7. The memory area of the communication transmission task is offloaded and unlocked

(e.g., UART Transmit Task).
8. The communications task is resumed.
9. The memory area of the temperature sensor task is offloaded and unlocked.
10. The temperature sensor task is resumed.

Following this approach, the critical tasks are unlocked early than the less important
tasks before moving on to the flash memory and other static areas. In this way, the device
can quickly resume its most critical functions, while the rest of the memory is analyzed.
This may especially minimise downtime when the device has a lot more memory available
than what is being used by the application.

13. Conclusions and Future Works

This paper presented ERAMO, a novel RA protocol that relies on a memory offloading
approach to verify the Prover’s integrity. ERAMO allows the verification of more dynamic
memory areas (such as the internal and external peripherals) which are not covered by
existing RA schemes. In addition, we provide all the experimental details for memory
analysis in a multi-service device, showing that it is possible to predict their memory
allocation. We implemented the hardware proof-of-concept using an ARM Cortex-M33-
based microcontroller with ARM TrustZone support. The performance analysis regarding
essential metrics such as transmission time, data authentication time, and energy efficiency
clearly shows its effectiveness.

As future work, we plan to perform a complete implementation and evaluation of
the protocol including the fog node’s perspective. In particular, this enhancement will
include the implementation of embedded application memory analysis performed by the
fog node and more extensive evaluation regarding the overall attestation time. We will also
extend the multi-service nature of the proposed protocol into an approach that attests large
number of interacting services in IoT swarms. We plan to implement the proposed memory
locking scheme and evaluate it w.r.t. its effects on the efficiency of the attestation procedure.
Furthermore, we will explore different approaches to optimize cryptographic details of the
proposed attestation protocol. Finally, future work includes also implementing the Verifier
side, including forensic tools on the RAM and peripherals.

Author Contributions: Conceptualization, E.D. and J.H.Ø.; software, J.H.Ø.; writing—original draft
preparation, E.D. and J.H.Ø.; writing—review and editing, E.D.; visualization, E.D. and J.H.Ø.;
supervision, E.D. and N.D.; funding acquisition, N.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by Danish Industry Foundation through project “CIDI—Cybersecure
IoT in Danish Industry” (project number 2018-0197) and the European Union’s Horizon 2020 Research
and Innovation program under Grant Agreement No. 952697 (ASSURED).

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 4340 26 of 28

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CFA Control Flow Attestation
CFI Control Flow integrity
DDoS Distributed Denial of Service
DDS Data Distribution Service
DOP Data Oriented Programming
HMAC Hash Message Authentication Code
IoT Internet of Things
IRQ Interrupt Request
MAC Message authentication code
MITM Man in the middle
NS Non-Secure
NSC Non-secure callable
RA Remote attestation
RAM Random Access Memory
ROM Read-Only Memory
ROP Return Oriented Programming
PoC Proof of Concept
SCR Secure Configuration Register
TEE Trusted Execution Environment
TOCTOU Time-Of-Check Time-Of-Use
TPM Trusted Platform Module

References
1. STMicroelectronics. 2019. Available online: https://www.st.com/content/st_com/en.html (accessed on 30 April 2022).
2. Arduino. 2019. Available online: https://www.arduino.cc/ (accessed on 30 April 2022).
3. Dragoni, N.; Giaretta, A.; Mazzara, M. The Internet of Hackable Things. In Proceedings of the 5th the International Conference in

Software Engineering for Defence Applications, Rome, Italy, 7–8 June 2018; Ciancarini, P., Litvinov, S., Messina, A., Sillitti, A.,
Succi, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 129–140.

4. Shacham, H. The Geometry of Innocent Flesh on the Bone: Return-into-Libc without Function Calls (on the X86). In Proceedings
of the 14th ACM Conference on Computer and Communications Security, Alexandria, VA, USA, 2 November–31 October 2007.

5. Abera, T.; Asokan, N.; Davi, L.; Ekberg, J.; Nyman, T.; Paverd, A.; Sadeghi, A.; Tsudik, G. C-FLAT: Control-FLow ATtestation for
Embedded Systems Software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS), Vienna, Austria, 24–28 October 2016.

6. Dessouky, G.; Zeitouni, S.; Nyman, T.; Paverd, A.; Davi, L.; Koeberl, P.; Asokan, N.; Sadeghi, A. LO-FAT: Low-Overhead Control
Flow ATtestation in Hardware. In Proceedings of the 54th Annual Design Automation Conference (DAC), Austin, TX, USA,
18–22 June 2017.

7. Zeitouni, S.; Dessouky, G.; Arias, O.; Sullivan, D.; Ibrahim, A.; Jin, Y.; Sadeghi, A.R. ATRIUM: Runtime attestation resilient under
memory attacks. In Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine,
CA, USA, 13–16 November 2017; pp. 384–391. [CrossRef]

8. Hu, H.; Shinde, S.; Adrian, S.; Chua, Z.L.; Saxena, P.; Liang, Z. Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks. In Proceedings of the IEEE Symposium on Security and Privacy, San Jose, CA, USA, 22–26 May 2016.

9. Carpent, X.; Rattanavipanon, N.; Tsudik, G. Remote attestation of IoT devices via SMARM: Shuffled measurements against
roving malware. In Proceedings of the 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
Washington, DC, USA, 30 April–4 May 2018; pp. 9–16.

10. Carpent, X.; Tsudik, G.; Rattanavipanon, N. ERASMUS: Efficient remote attestation via self-measurement for unattended
settings. In Proceedings of the 2018 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, Germany, 19–23
March 2018.

11. De Donno, M.; Tange, K.; Dragoni, N. Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog.
IEEE Access 2019, 7, 150936–150948. [CrossRef]

12. Østergaard, J.H.; Dushku, E.; Dragoni, N. ERAMO: Effective Remote Attestation through Memory Offloading. In Proceedings of
the 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26–28 July 2021; pp. 73–80.

https://www.st.com/content/st_com/en.html
https://www.arduino.cc/
http://doi.org/10.1109/ICCAD.2017.8203803
http://dx.doi.org/10.1109/ACCESS.2019.2947652

Sensors 2022, 22, 4340 27 of 28

13. Seshadri, A.; Perrig, A.; van Doorn, L.; Khosla, P. SWATT: SoftWare-based attestation for embedded devices. In Proceedings of
the IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 12 May 2004.

14. Seshadri, A.; Perrig, A.; Luk, M.; Van Doom, L.; Shi, E.; Khosla, P. Pioneer: Verifying code integrity and enforcing untampered
code execution on legacy systems. Oper. Syst. Rev. 2005, 39, 1–16. [CrossRef]

15. Castelluccia, C.; Francillon, A.; Perito, D.; Soriente, C. On the Difficulty of Software-Based Attestation of Embedded Devices. In
Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 9–13 November 2009.

16. Ankergård, S.F.J.J.; Dushku, E.; Dragoni, N. State-of-the-Art Software-Based Remote Attestation: Opportunities and Open Issues
for Internet of Things. Sensors 2021, 21, 1598. [CrossRef] [PubMed]

17. Kil, C.; Sezer, E.C.; Azab, A.M.; Ning, P.; Zhang, X. Remote attestation to dynamic system properties: Towards providing
complete system integrity evidence. In Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems
Networks, Lisbon, Portugal, 29 June–2 July 2009; pp. 115–124.

18. Sailer, R.; Zhang, X.; Jaeger, T.; van Doorn, L. Design and Implementation of a TCG-based Integrity Measurement Architecture.
In Proceedings of the 13th USENIX Security Symposium, San Diego, CA, USA, 9–13 August 2004.

19. Eldefrawy, K.; Perito, D.; Tsudik, G. SMART: Secure and Minimal Architecture for (Establishing a Dynamic) Root of Trust. In
Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 5–8 February 2012.

20. Koeberl, P.; Schulz, S.; Varadharajan, V.; Sadeghi, A. TrustLite: A Security Architecture for Tiny Embedded Devices. In
Proceedings of the Ninth European Conference on Computer Systems (EuroSys), Amsterdam, The Netherlands, 14–16 April 2014.

21. Brasser, F.; El Mahjoub, B.; Sadeghi, A.; Wachsmann, C.; Koeberl, P. TyTAN: Tiny trust anchor for tiny devices. In Proceedings of
the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 7–11 June 2015.

22. Asokan, N.; Brasser, F.; Ibrahim, A.; Sadeghi, A.; Schunter, M.; Tsudik, G.; Wachsmann, C. SEDA: Scalable Embedded Device
Attestation. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS), Denver,
CO, USA, 12–16 October 2015.

23. Ambrosin, M.; Conti, M.; Ibrahim, A.; Neven, G.; Sadeghi, A.R.; Schunter, M. SANA: Secure and Scalable Aggregate Network
Attestation. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security CCS ’16, Vienna,
Austria, 24–28 October 2016.

24. Rabbani, M.M.; Vliegen, J.; Winderickx, J.; Conti, M.; Mentens, N. SHeLA: Scalable Heterogeneous Layered Attestation. IEEE
Internet Things J. 2019, 6, 10240–10250. [CrossRef]

25. Ambrosin, M.; Conti, M.; Lazzeretti, R.; Rabbani, M.M.; Ranise, S. Toward Secure and Efficient Attestation for Highly Dynamic
Swarms: Poster. In Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Boston,
MA, USA, 18–20 July 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 281–282. [CrossRef]

26. Ambrosin, M.; Conti, M.; Lazzeretti, R.; Rabbani, M.M.; Ranise, S. PADS: Practical Attestation for Highly Dynamic Swarm
Topologies. In Proceedings of the 2018 International Workshop on Secure Internet of Things (SIoT), Barcelona, Spain, 6 September
2018; pp. 18–27.

27. Ankergård, S.F.J.J.; Dragoni, N. PERMANENT: Publicly Verifiable Remote Attestation for Internet of Things through Blockchain.
In Proceedings of the 14th International Symposium on Foundations & Practice of Security, Paris, France, 7–10 December 2021;
Association for Computing Machinery: Paris, France, 2021.

28. Dessouky, G.; Abera, T.; Ibrahim, A.; Sadeghi, A.R. LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution.
In Proceedings of the International Conference on Computer-Aided Design, San Diego, CA, USA, 5–8 November 2018.

29. Conti, M.; Dushku, E.; Mancini, L.V. Distributed Services Attestation in IoT. In From Database to Cyber Security; Samarati, P., Ray,
I., Ray, I., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 261–273.

30. Abera, T.; Bahmani, R.; Brasser, F.; Ibrahim, A.; Sadeghi, A.; Schunter, M. DIAT: Data Integrity Attestation for Resilient
Collaboration of Autonomous System. In Proceedings of the 26th Annual Network & Distributed System Security Symposium
(NDSS), San Diego, CA, USA, 24–27 February 2019.

31. Conti, M.; Dushku, E.; Mancini, L.V. RADIS: Remote Attestation of Distributed IoT Services. In Proceedings of the 6th IEEE
International Conference on Software Defined Systems (SDS 2019), Rome, Italy, 10–13 June 2019; pp. 25–32.

32. Rabbani, M.M.; Dushku, E.; Vliegen, J.; Braeken, A.; Dragoni, N.; Mentens, N. RESERVE: Remote Attestation of Intermittent
IoT Devices. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, Coimbra, Portugal, 15–17
November 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 578–580.

33. Dushku, E.; Rabbani, M.M.; Conti, M.; Mancini, L.V.; Ranise, S. SARA: Secure Asynchronous Remote Attestation for IoT Systems.
IEEE Trans. Inf. Forensics Secur. 2020, 15, 3123–3136. [CrossRef]

34. Halldórsson, R.M.; Dushku, E.; Dragoni, N. ARCADIS: Asynchronous Remote Control-Flow Attestation of Distributed IoT
Services. IEEE Access 2021, 9, 144880–144894. [CrossRef]

35. Chun, B.; Ihm, S.; Maniatis, P.; Naik, M.; Patti, A. CloneCloud: Elastic Execution between Mobile Device and Cloud. European
Conference on Computer Systems. In Proceedings of the Sixth European conference on Computer systems (EuroSys ’11), Salzburg,
Austria, 10–13 April 2011.

36. Conti, M.; Dushku, E.; Mancini, L.V.; Rabbani, M.; Ranise, S. Remote Attestation as a Service for IoT. In Proceedings of the 2019
Sixth International Conference on Internet of Things: Systems, Management and Security, Granada, Spain, 22–25 October 2019.

37. The Volatility Foundation. 2021. Available online: https://www.volatilityfoundation.org/ (accessed on 30 April 2022).
38. Pinto, S.; Santos, N. Demystifying Arm TrustZone: A Comprehensive Survey. ACM Comput. Surv. 2019, 51, 1–36. [CrossRef]

http://dx.doi.org/10.1145/1095809.1095812
http://dx.doi.org/10.3390/s21051598
http://www.ncbi.nlm.nih.gov/pubmed/33668796
http://dx.doi.org/10.1109/JIOT.2019.2936988
http://dx.doi.org/10.1145/3098243.3106026
http://dx.doi.org/10.1109/TIFS.2020.2983282
http://dx.doi.org/10.1109/ACCESS.2021.3122391
https://www.volatilityfoundation.org/
http://dx.doi.org/10.1145/3291047

Sensors 2022, 22, 4340 28 of 28

39. Checkoway, S.; Davi, L.; Dmitrienko, A.; Sadeghi, A.R.; Shacham, H.; Winandy, M. Return-oriented programming without
returns. In Proceedings of the 17th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 4–8 October
2010; pp. 559–572.

40. Bletsch, T.; Jiang, X.; Freeh, V.W.; Liang, Z. Jump-oriented programming: A new class of code-reuse attack. In Proceedings
of the 6th ACM Symposium on Information, Computer and Communications Security, Hong Kong, China, 22–24 March 2011;
pp. 30–40.

41. Vaquero, L.M.; Rodero-Merino, L. Finding Your Way in the Fog: Towards a Comprehensive Definition of Fog Computing.
SIGCOMM Comput. Commun. Rev. 2014, 44, 27–32. [CrossRef]

42. OpenFog Consortium Architecture Working Group. OpenFog Reference Architecture for Fog Computing. 2017. Available online:
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf (accessed on 24 May 2022).

43. Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016, 3, 854–864. [CrossRef]
44. Azure IoT Edge Documentation. 2019. Available online: https://docs.microsoft.com/en-us/azure/iot-edge/ (accessed on 24

May 2022).
45. AWS IoT Greengrass. 2019. Available online: https://aws.amazon.com/greengrass/ (accessed on 24 May 2022).
46. EdgeX. 2019. Available online: https://www.edgexfoundry.org/ (accessed on 24 May 2022).
47. Arm TrustZone Technology. 2019. Available online: https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-

for-cortex-m (accessed on 30 April 2022).
48. Ngabonziza, B.; Martin, D.; Bailey, A.; Cho, H.; Martin, S. TrustZone Explained: Architectural Features and Use Cases. In

Proceedings of the 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC), Pittsburgh, PA, USA,
1–3 November 2016; pp. 445–451.

49. Cerdeira, D.; Santos, N.; Fonseca, P.; Pinto, S. SoK: Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted
TEE Systems. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020.

50. Roth, T. TrustZone-M(eh): Breaking ARMv8-M’s Security. Available online: https://media.ccc.de/v/36c3-10859-trustzone-m_
eh_breaking_armv8-m_s_security (accessed on 24 May 2022).

51. Arthur, W.; Challener, D. A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security; Springer:
Cham, Switzerland, 2015.

52. Abera, T.; Asokan, N.; Davi, L.; Koushanfar, F.; Paverd, A.; Sadeghi, A.R.; Tsudik, G. Invited—Things, Trouble, Trust: On Building
Trust in IoT Systems. In Proceedings of the 53rd Annual Design Automation Conference, Austin, TX, USA, 5–9 June 2016; p. 121.

53. Ambrosin, M.; Conti, M.; Lazzeretti, R.; Rabbani, M.; Ranise, S. Collective Remote Attestation at the Internet of Things Scale:
State-of-the-art and Future Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2447–2461. [CrossRef]

54. BME280—Data Sheet, Bosch Sensortec. 2018. Available online: https://ae-bst.resource.bosch.com/media/_tech/media/
datasheets/BST-BME280-DS002.pdf (accessed on 30 April 2022).

55. Stevens, M.; Bursztein, E.; Karpman, P.; Albertini, A.; Markov, Y. The First Collision for Full SHA-1. In Advances in Cryptology;
Springer International Publishing: Cham, Switzerland, 2017; pp. 570–596.

56. Leurent, G.; Peyrin, T. SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust. In
Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Boston, MA, USA, 12–14 August 2020.

57. UM11158, LPCXpresso55S69/55S28 User Manual. 2019. Available online: https://www.nxp.com/webapp/Download?colCode=
UM10914 (accessed on 29 April 2022).

58. Ibrahim, A.; Sadeghi, A.; Zeitouni, S. SeED: SeCure Non-Interactive Attestation for EMbedded DEvices. In Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec), Boston, MA, USA, 18–20 July 2017;
pp. 64–74.

59. OP-TEE. About OP-TEE. 2020. Available online: https://optee.readthedocs.io/en/latest/general/about.html (accessed on 24
May 2022).

60. Eldefrawy, K.; Carpent, X.; Tsudik, G.; Rattanavipanon, N. Temporal Consistency of Integrity-Ensuring Computations and
Applications to Embedded Systems Security. In Proceedings of the 2018 on Asia Conference on Computer and Communications
Security (ASIACCS), Incheon, Korea, 4 June 2018.

http://dx.doi.org/10.1145/2677046.2677052
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
http://dx.doi.org/10.1109/JIOT.2016.2584538
https://docs.microsoft.com/en-us/azure/iot-edge/
https://aws.amazon.com/greengrass/
https://www.edgexfoundry.org/
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://media.ccc.de/v/36c3-10859-trustzone-m_eh_breaking_armv8-m_s_security
https://media.ccc.de/v/36c3-10859-trustzone-m_eh_breaking_armv8-m_s_security
http://dx.doi.org/10.1109/COMST.2020.3008879
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
https://www.nxp.com/webapp/Download?colCode=UM10914
https://www.nxp.com/webapp/Download?colCode=UM10914
https://optee.readthedocs.io/en/latest/general/about.html

	Introduction
	Motivation
	Contribution
	Organization

	Problem Statement
	Related Works
	Remote Attestation Overview
	Dynamic Remote Attestation
	Service Attestation in IoT Swarms
	Memory Offloading
	Discussion

	Background
	Runtime Attacks
	Fog Computing
	Arm Trustzone

	System Model
	Threat Model
	Adversarial Actions
	Attack Capabilities and Limitations
	Defense Capabilities

	Security Requirements
	Eramo: Protocol Proposal
	Setup Phase
	Attestation Phase
	Verification Phase
	Attested Device Memory

	Proof-of-Concept Implementation
	Sensors
	Water Level Sensor
	Temperature Sensor—Bosch BME280

	Eramo Protocol
	Memory Analysis of Sensor Nodes

	Evaluation
	Energy Consumption
	Verification Process: Fog Node'S Perspective

	Eramo Limitations
	Discussion
	Conclusions and Future Works
	References

