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Abstract: Recently, intelligent reflecting surfaces (IRSs) have drawn huge attention as a promising
solution for 6G networks to enhance diverse performance metrics in a cost-effective way. For
massive connectivity toward a higher spectral efficiency, we address an intelligent reflecting surface
(IRS) to an uplink nonorthogonal multiple access (NOMA) network supported by a multiantenna
receiver. We maximize the sum rate of the IRS-aided NOMA network by optimizing the IRS reflection
pattern under unit modulus and practical reflection. For a moderate-sized IRS, we obtain an upper
bound on the optimal sum rate by solving a determinant maximization (max-det) problem after
rank relaxation, which also leads to a feasible solution through Gaussian randomization. For a
large number of IRS elements, we apply the iterative algorithms relying on the gradient, such as
Broyden–Fletcher–Goldfarb–Shanno (BFGS) and limited-memory BFGS algorithms for which the
gradient of the sum rate is derived in a computationally efficient form. The results show that the
max-det approach provides a near-optimal performance under unit modulus reflection, while the
gradient-based iterative algorithms exhibit merits in performance and complexity for a large-sized
IRS with practical reflection.

Keywords: intelligent reflecting surface; nonorthogonal multiple access; practical reflection; multiple
receive antennas

1. Introduction

Intelligent reflecting surfaces (IRSs) have drawn enormous attention from the academy
and industry as a cost-effective building block for 6G wireless communication networks
demanding high spectral and energy efficiency [1–3]. An IRS constructed with a large
number of passive reflection elements can reconfigure a wireless propagation channel to
be favorable for information or energy transfer by controlling their reflecting patterns. In
doing so, the IRS avoids a large power consumption with passive elements and achieves a
full-duplex gain without complicated signal processing such as interference cancellation
and demodulation. In this aspect, various IRS-assisted wireless communications have been
explored for their own purposes, from basic multiuser or/and multiantenna communication
systems [4–9] to more complicated system configurations, as surveyed in Ref. [10].

For multiuser communications, nonorthogonal multiple access (NOMA) craving for
higher spectral efficiency and massive connectivity has been considered as a promising
candidate for 6G networks [11–16]. Hence, many recent IRS studies have been devoted
to IRS-assisted NOMA for further improvement in spectral efficiency, energy efficiency,
and reliability [17–27]. One of the major concerns of IRS-aided NOMA networks resides in
how to reflect a superimposed NOMA signal appropriately to meet the design goal of a
given network. In the downlink, joint optimization of IRS reflection and power allocation
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was studied with a single-antenna base station (BS) to minimize the transmit power of a
two-user NOMA signal [18] and maximize the sum rate of a multiuser NOMA signal [19].
For a multiantenna BS in the downlink, transmit beamforming and IRS reflection were
optimized without or with power allocation to maximize the sum rate [20], minimize the
transmit power [21–23], and maximize the minimum rate [24]. On the other hand, in the
uplink, IRS-aided NOMA was studied to maximize the sum rate achieved with a single-
antenna receiver by optimizing the IRS reflection vector [27]. The sum rate maximization
problem was also extended to IRS-aided NOMA accompanied by wireless power transfer
with a single-antenna receiver [28,29] and a multiantenna receiver [30].

The recent studies on IRS-aided NOMA networks have assumed unit modulus re-
flection for IRS since the phase control is more readily implementable than the amplitude
control in implementing passive IRS elements. It should also be noted that IRS optimiza-
tion under unit modulus reflection has resorted to semidefinite relaxation (SDR) solving
a semidefinite program (SDP) [31] for the downlink with a given transmit beamforming
and for the uplink with a single-antenna BS, where the SDP deals with linear functions
of semidefinite matrices [20,23,24,27–29]. However, the SDR approach is less favorable
for an IRS requiring a large number of passive elements to compensate for double fading
due to its complexity increasing polynomially with the number of elements. To reduce the
complexity of the SDR, an iterative algorithm based on a second-order surrogate function
similar to the gradient descent was proposed in Ref. [5] for the simple objective function
given by the trace of a matrix.

For the uplink NOMA with a multiantenna BS [30], the sum rate is given in a more com-
plicated log-determinant expression similar to a multiple-input multiple-output (MIMO)
capacity [7]. In this case, the SDP, having linear functions of semidefinite matrices in the
objective and constraints, is no longer applicable. A few studies have dealt with such a
complicated objective function in IRS reflection optimization [7,30], which was optimized
through a suboptimal sequential optimization method, optimizing one IRS element while
fixing the other elements without knowing its performance gap to the optimal one. In
addition, practical IRS reflection models with phase-dependent amplitudes observed in
practical circuits [32] have not been studied for IRS-aided NOMA networks yet. In this
regard, we consider a sum rate maximization problem of an IRS-aided uplink NOMA
network with a multiantenna BS and tackle the problem under a generalized IRS reflection
model encompassing unit modulus and practical reflection [32]. The main contributions
are summarized as follows:

• We formulate the sum rate optimization problem by incorporating the optimal receive
beamforming for a given IRS phase vector in the objective function, which is charac-
terized by the log-determinant of a matrix as in the MIMO capacity expression [7,30].
As a result, only the IRS phase vector needs to be optimized in the uplink, while the
transmit beamforming and IRS phase vectors have been optimized alternately in the
downlink [5];

• For a moderate-sized IRS with unit modulus reflection, we propose an extended
SDR approach that converts the sum rate maximization problem into a determinant
maximization (max-det) problem [33]. The max-det solution not only provides an
upper bound on the optimal sum rate of the IRS-aided uplink multiantenna NOMA,
but also leads to a rank-one feasible solution resulting in a near-optimal performance.
This approach can also be employed to obtain an upper bound on the IRS-aided MIMO
capacity under unit modulus reflection;

• For a large-sized IRS under generalized reflection, we reformulate the problem
as an unconstrained nonlinear optimization problem that can be solved by using
gradient-based iterative algorithms [34]. In particular, we use the more sophisticated
Broyden–Fletcher–Goldfarb–Shanno (BFGS) and limited-memory BFGS (L-BFGS) al-
gorithms [34,35], while the gradient-descent approach is used in [5]. For an efficient
implementation of such iterative algorithms, we derive the gradient of the complicated
objective function in a computationally efficient form under the generalized reflection;



Sensors 2022, 22, 4449 3 of 14

• We analyze the computational complexity of the iterative algorithms when the derived
gradient is used to update the search point. The results show that the iterative
algorithms reduce the complexity of the extended SDR with max-det optimization
significantly. In addition, the iterative algorithms provide a performance gain over the
conventional sequential optimization method [7] at a reduced computational time.

Notation: The sets of n × m complex-valued and real-valued matrices are denoted
by Cn×m and Rn×m, respectively, with Cn = Cn×1 and Rn = Rn×1, while the set of n× n
positive semidefinite Hermitian matrices is denoted by Sn

+. The transpose, Hermitian, and
trace are denoted by (·)T , (·)H , and tr(·), respectively. We use diag(a) for the diagonal
matrix with a diagonal vector a, [a]n for the nth entry of a vector a, and, [A]n,m for the
(n, m)th entry of a matrix A, and CN (µ, Σ) for complex Gaussian distribution with mean
vector µ and covariance matrix Σ.

2. System Model and Problem Formulation
2.1. System Model

We consider the uplink of a single-cell network described in Figure 1. The network
consists of a BS equipped with M antennas, K devices equipped with a single antenna,
and an IRS comprising N reflection elements. The channels from device k to the BS and
to the IRS are denoted by vk ∈ CM and f k ∈ CN , respectively, for k ∈ K , {1, 2, · · · , K}.
The channel from the IRS to the BS is denoted by G ∈ CM×N . The IRS reflection vector is
denoted by θ = [θ1, θ2, · · · , θN ]

T ∈ CN , where θn = ejφn for n ∈ N , {1, 2, · · · , N} under
unit modulus reflection. To address the amplitude distortion of practical IRS control circuits
depending on the phase, we express the IRS reflection in a generalized form as [32]

θn = β(φn)ejφn , n ∈ N, (1)

where

βn(φn) = (1− βmin)
(

sin(φn−φ0)+1
2

)α
+ βmin (2)

with α ≥ 0, βmin ≥ 0, and φ0 ≥ 0. The values for parameters α, βmin, and φ in (2) are
determined by the specific circuit implementation, where (2) with α = 0 represents the unit
modulus reflection with βn(φn) = 1.

Figure 1. IRS-aided uplink consisting of a multiantenna BS, K single-antenna devices, and an IRS
with N elements.

For the uplink transmission, we allow K devices to transmit their symbols simultane-
ously, where the number K of devices is larger than the number M of receiving antennas
for NOMA. However, the following results are also applicable to space division multiple
access with K ≤ M. The signal received at the BS is then written as

y =
K

∑
k=1

√
pk(Gdiag(θ) f k + vk)sk + z, (3)
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where sk and pk are the symbol and transmit power of device k ∈ K, respectively, and
z ∼ CN (0, σ2 IM) is the noise vector added at the BS. We can express the received signal (3)
in a concise form as

y =
K

∑
k=1

√
pk Hkθ̃sk + z, (4)

where Hk is the equivalent channel from device k to the BS, which is given by

Hk = [Gdiag( f k) vk] ∈ CM×(N+1), (5)

and θ̃ = [θT 1]T ∈ CN+1 is the extended IRS reflection vector.
Without loss of generality, we assume that the devices are indexed in the successive

interference cancellation (SIC) order. The BS detects the device symbols from s1 to sK
sequentially by applying receive beamforming wk ∈ CM to the received signal after SIC in
detecting sk, specifically by applying the receive beamforming wk to the received signal
after {s1, s2, · · · , sk−1} being detected and canceled, which is given by

ŷk = y−
k−1

∑
l=1

√
pl H l θ̃sl =

K

∑
l=k

√
pl H l θ̃sl + z, (6)

where ŷ1 = y. We obtain

ỹk = wH
k ŷk =

K

∑
l=k

√
plw

H
k H l θ̃sl + wH

k z (7)

from which sk can be detected. Thus, the signal-to-interference-and-noise ratio (SINR) in
detecting sk from ỹk is given by

γk =
pk
∣∣wH

k Hkθ̃
∣∣2

K
∑

l=k+1
pl
∣∣wH

k H l θ̃
∣∣2 + σ2‖wk‖2

. (8)

The optimal receive beamforming that maximizes the SINR is given by the minimum
mean square error (MMSE) beamforming, expressed as [36]

wo
k = B−1

k+1Hkθ̃ (9)

with

Bk = σ2 IM +
K

∑
l=k

pl H l θ̃θ̃
H HH

l (10)

for k ∈ K and BK+1 = σ2 IM. The maximum SINR of device k achieved with the optimal
beamforming wo

k is given by

γo
k = pkθ̃

H HH
k B−1

k+1Hkθ̃ (11)

which leads to the achievable rate as follows:

Rk = log2(1 + γo
k ) = log2 det(Bk)− log2 det(Bk+1), (12)

using the matrix determinant lemma, det(B + uuH) = det(B)det(1 + uH B−1u) for an
invertible matrix B [15,36], and Bk = Bk+1 + pk Hkθ̃θ̃

H HH
k . Letting B = Bk+1 and
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u =
√

pk Hkθ̃, we have det(Bk) = det(Bk+1)(1 + pkθ̃
H HH

k B−1
k+1Hkθ̃), which leads to (12).

From (12), the sum rate of all devices is given by Refs. [15,36]

Rsum =
K

∑
k=1

log2(1 + γo
k ) = log2 det(B1)− log2 det(BK+1), (13)

where B1 = σ2 IM + ∑K
l=1 pl H l θ̃θ̃

H HH
l and BK+1 = σ2 IM are irrelevant to the SIC order.

Note that device rates in (8) depend on the SIC order since the SIC order affects Bk for
2 ≤ k ≤ K. However, the sum rate (13) determined by B1 and BK+1 does not depend
on the SIC order. Finally, the sum rate is expressed as a function of transmit power
p = [p1, p2, · · · , pK]

T of the devices and IRS phase shifts φ = [φ1, φ2, · · · , φN ]
T , i.e.,

Rsum(p, φ) = log2 det

(
IM +

K

∑
k=1

pk
σ2 Hkθ̃θ̃

H HH
k

)
, (14)

where θ̃ is a function of φ.

2.2. Problem Formulation

This paper aims to maximize the sum rate of the IRS-aided uplink NOMA by op-
timizing the transmit power p = [p1, p2, · · · , pK]

T of the devices and the phase shifts
φ = [φ1, φ2, · · · , φN ]

T of the IRS as follows:

max
p∈RK ,φ∈RN

Rsum(p, φ) (15a)

s.t. 0 ≤ pk ≤ Pk, k ∈ K, (15b)

0 ≤ φn ≤ 2π, n ∈ N. (15c)

Since the sum rate (14) is a non-decreasing function of pk irrespective of φ, the optimal
power of problem (15) is given by

po = P , [P1, P2, · · · , PK]
H (16)

that results in the sum rate as

R(φ) , Rsum(P, φ) = log2 det(IM + S(φ)) (17)

with

S(φ) =
K

∑
k=1

ξk Hkθ̃θ̃
H HH

k (18)

and ξk = Pk/σ2.
Finally, the sum rate optimization problem (15) becomes

max
φ∈RN

R(φ) (19a)

s.t. 0 ≤ φn ≤ 2π, ∀n. (19b)

It should be noted that problem (19) under unit modulus reflection is equivalent to a
subproblem of the IRS-aided MIMO capacity optimization problem [7], which was solved
by the customized sequential optimization method. In the following, we will provide
alternative methods providing either a better performance under unit modulus reflection
or a faster computation under generalized reflection than the conventional method [7].
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3. IRS Reflection Optimization
3.1. Determinant Maximization for a Moderate-Sized IRS

This subsection tackles the problem (19) for a moderate N by extending the SDR
approach. For this purpose, let us rewrite the signal matrix (18) as

S(φ) = H((θ̃θ̃
H
)⊗ Ξ)HH , (20)

where Ξ = diag([ξ1, ξ2, · · · , ξK]
T), H = [H1, H2, · · · , HK] ∈ CM×K(N+1), and ⊗ denotes

the Kronecker product. The signal matrix is a Hermitian semidefinite matrix and is linear
with X̃ when X̃ = θ̃θ̃

H . We define X̃ = θ̃θ̃
H ∈ SN+1

+ , of which the diagonal entries satisfy
X̃n,n = |θ̃n|2 ≤ 1. In this case, we can transform (19) into

max
X̃∈SN+1

+

R̃(X̃) , log2 det
(

IM +H(X̃ ⊗ Ξ)HH
)

(21a)

s.t. X̃n,n ≤ 1, n = 1, 2, · · · , N + 1, (21b)

rank(X̃) = 1. (21c)

Let X̃o and R̃o = R̃(X̃o) denote the optimal solution of (21) and the corresponding
optimal sum rate, respectively. Since finding X̃o is intractable due to the rank constraint,
we resort to an approximate solution by finding a rank-relaxed solution first and then
estimating a rank-one solution from the rank-relaxed one as follows.

In the first step, by relaxing the rank constraint (21c), we can approximate (21) to the
max-det problem defined in [33], which is expressed in the standard from as follows:

min
X̃∈SN+1

+

log2 det
(

Y−1
)

(22a)

s.t. Y , IM +H(X̃ ⊗ Ξ)HH � 0, (22b)

F , diag(1− X̃1,1, · · · , 1− X̃N+1,N+1) � 0. (22c)

Since (22) is known to be a convex optimization problem with linear matrix inequalities
in (22b) and (22c), it can be solved with an existing convex optimization solver, which
leads to the optimal solution X̃� and R̃� = R̃(X̃�). Here, the optimal value R̃� of the
rank-relaxed problem (22) can serve as an upper bound on the optimal value R̃o of the
rank-constrained problem (21), since the constraint set of (22) includes that of (21).

In the second step, from the solution X̃� of (22), we obtain a rank-one solution close
to X̃o = θ̃oθ̃

H
o though the Gaussian randomization procedure [24,31]. Since any rank-one

solution X̃ of (21) is decomposed as X̃ = x̃x̃H , the Gaussian randomization procedure
generates L zero-mean complex Gaussian samples as {x̃l ∼ CN (0, X̃�)}L

l=1 for a rank-one
solution so that x̃l x̃H

l resembles X̃� as E[x̃l x̃H
l ] = X̃�. We then obtain ˜̃xl = e−j∠[x̃l ]N+1 x̃l to

align the phases with θ̃o = [θT
o 1]T , where ∠ denotes the phase of a complex number. Note

that the statistics remain unchanged by the phase shift since ˜̃xl ˜̃xH
l = x̃l x̃H

l . We then obtain
a feasible candidate X̃ l subject to [X̃ l ]n,n ≤ 1 for the solution of (21), which is equivalent
to obtaining θ̃l = [θT

l 1]T subject to [θl ]n = β([φl ]n)e
j[φl ]n for n ∈ N. To generate θ̃l , we

obtain the phases as [φl ]n = ∠[ ˜̃xl ]n for n ∈ N. The phase vectors {φl}L
l=1 generated by

the phases of complex numbers are feasible for problem (19) and {X̃ l = θ̃l θ̃
H
l }L

l=1 are
also feasible for problem (21) since [X̃ l ]n,n ≤ 1 and rank(X̃ l) = 1. Among all the feasible
candidates {φl}L

l=1 (or equivalently {X̃ l}L
l=1), the Gaussian randomization procedure finds

the best candidate as l? = arg max
1≤l≤L

R(φl) = arg max
1≤l≤L

R̃(X̃ l) for its output. The sum

rate R̃(X̃ l?) with the best candidate X̃ l? is a non-decreasing function of the number L of
random samples so that R̃(X̃ l?) is likely to move closer to the optimal sum rate R̃(X̃o) as
L increases. Later, we will empirically demonstrate that Gaussian randomization with a
sufficient L provides a good approximate solution close to the optimal value R̃(X̃o) of our
problem, as in the other SDR applications [31].
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Remark 1. The max-det problem (22) consists of X with l = (N + 1)(N + 2)/2 complex variables,
whilst Y ∈ SM

+ and F ∈ SN+1
+ are in the constraints. Thus, the problem can be solved by an

interior-point algorithm with O((M2 + (N + 1)2)l2) operations per search point and a worst-
case complexity of O(

√
N + 1) iterations [33]. In short, the complexity solving (22) is given by

O(N6.5), which becomes unacceptably large as N increases.

3.2. Gradient-Based Iterative Algorithms for a Large-Sized IRS

This subsection provides a suboptimal approach to solving problems (19) in a faster
way for a large N by transforming the problem into an equivalent unconstrained nonlinear
optimization problem. For this purpose, we remove the phase constraints in (19) as

max
φ∈RN

R(φ), (23)

which has the same optimal value with (19) due to the periodicity ofR(φ) for all the entries
of φ with period 2π. For ease of exposition, we convert (23) to a minimization problem as

min
φ∈RN

f (φ) (24)

by defining f (φ) = −R(φ). Due to the nonconvexity ofR(φ) and its complicated form, it
is almost impossible to obtain the optimal solution of (24) even for unit modulus reflection.
Instead of the sequential optimization optimizing one IRS element at a time [7,30], we
solve the problem through an iterative algorithm minimizing a local approximation (or a
surrogate function) at each iteration to update its IRS phases φt for t = 0, 1, · · · simulta-
neously [34]. To accommodate a large N, we adopt the algorithms based on second-order
Taylor series approximations but relying on the gradient ∇ f (φ) = [ ∂ f

∂φ1
, ∂ f

∂φ2
, · · · , ∂ f

∂φN
]T

in their implementation. The algorithms include the gradient descent (GD) [5,34] and
quasi Newton methods such as BFGS and L-BFGS [34,35], which are briefly summarized in
the following.

The algorithms are based on second-order Taylor approximations that can be expressed
in a generic form as

fA(φ, φt) = f (φt) + gT
t ∆φt +

1
2

∆φT
t At∆φt, (25)

where ∆φt = φ− φt, gt = ∇ f (φ)|φ=φt
, and At ∈ CN×N is chosen by an algorithm. The

solution is updated by minimizing fA(φ, φt) as

φt+1 = φt − A−1
t gt. (26)

The GD with the update rule

φt+1 = φt − δtgt (27)

for δt > 0 at complexity O(N) is obtained with a choice of At =
1
δt

IM, where the step size
δt is determined by the Armijo rule [5]. The BFGS and L-BFGS update the search point as

φt+1 = φt − δtQtgt, (28)

where Qt is an estimate of the inverse Hessian A−1
t with At = ∇2 f (φ)|φ=φt

to reduce
the complexity of the Newton method computing the Hessian and its inverse. The BFGS
estimates Qt+1 with Qt, ut = φt+1 − φt, and rt = gt+1 − gt at complexity O(N2) [34]
whilst the L-BFGS having mB memories estimates Qt+1 with {ui, ri}t

i=t−mB+1 at complexity
O(mBN) for [35].

For the efficient implementation of the aforementioned algorithms, we now derive
the gradient of the sum rate with respect to the IRS phase vector φ = [φ1, φ2, · · · , φN ]

T ,
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which is denoted by ∇R(φ) = [ ∂R
∂φ1

, ∂R
∂φ2

, · · · , ∂R
∂φN

]T , in a computationally efficient form for
∇ f (φ) = −∇R(φ). By rewriting

R(φ) =
1

ln 2
ln det Y(φ) (29)

with Y(φ) = IM + S(φ), we first obtain

∂R(φ)

∂φn
= 1

ln 2 tr
(

Y−1(φ) ∂Y(φ)
∂φn

)
= 1

ln 2 tr
(

Y−1(φ) ∂S(φ)
∂φn

)
(30)

from ∂ det(A)
∂t = det(A)tr

(
A−1 ∂A

∂t

)
. Here, we can compute S(φ) in (18) as

S(φ) =
N+1

∑
n=1

N+1

∑
l=1

θ̃n θ̃∗l

K

∑
k=1

ξkhk,nhH
k,l = Θ̃HΞHHΘ̃

H , (31)

where hk,n is the nth column of Hk, Θ̃ = θ̃
T ⊗ IM depends on φ as (2), and

H = [HT
1 ,HT

2 , · · · ,HT
N+1]

T with Hn = [h1,n, h2,n, · · · , hK,n] ∈ CM×K. With the signal
matrix expressed in (31), we obtain its differentiation as

∂S(φ)

∂φn
= θ′nHnΞHHΘ̃

H
+ (θ∗n)

′Θ̃HΞHH
n , (32)

where θ′n = dθn
dφn

. For general IRS reflection (2), we have

θ′n =
{

β′n(φn) + jβn(φn)
}

ejφn , (33)

where

β′n(φn) =
α(1−βmin)

2

(
sin(φn−φ0)+1

2

)α−1
cos(φn − φ0) (34)

and (θ∗n)
′ = (θ′n)

∗; for unit modulus reflection with α = 0, (33) becomes θ′n = jejφn . With
(32), we obtain (30) as

∂R(φ)

∂φn
= 2

ln 2<
{

θ′ntr
(
HnΞHHΘ̃

HY−1(φ)
)}

, (35)

where <{·} represents the real part and Λ(φ) , ΞHHΘ̃
HY−1(φ) is common to all entries

of the gradient. Thus, the gradient is computed as follows:

∇R(φ) = 2
ln 2 [<

{
θ′1tr(H1Λ(φ))

}
,<
{

θ′2tr(H2Λ(φ))
}

, · · · ,<
{

θ′Ntr(HNΛ(φ))
}
]T . (36)

Remark 2. The gradient is computed at O(MNK + M2K + M3) with complexity O(MNK)
for {tr(HnΛ(φ))}N

n=1, O(MNK + M2K + M3) for Λ(φ) = ΞHHΘ̃
HY−1(φ), O(MNK)

for X1 = ΞHHΘ̃
H , O(M2K) for Y(φ) = IM + Θ̃HX1, O(M3) for Y−1(φ), and O(M2K)

for Λ(φ) = X H
1 Y−1(φ). In comparison, numerical differentiation for ∂R(φ)

∂φn
requires

O(M3N + M2KN + MKN2) since R(φ) = log2 det(Y(φ)) is computed for each element at
O(M3 + M2K + MNK).

Remark 3. The complexity of the BFGS, L-BFGS, and GD comprising only N-dependent terms
is given by O((MNK + N2)Ib f gs), O((MNK + mBN)Ilb f gs), and O((MNK + N)Igd) with
Iχ iterations until a convergence for each method χ. The sequential optimization in [7] requires
O((M3N + MKN)Iconv) with Iconv iterations in updating φ since a matrix inversion and an
eigenvalue decomposition of complexity O(M3 + MK) are required for each element.
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4. Simulation Results

The performance of the IRS-aided uplink NOMA is evaluated when the maximum
transmit power is set to Pmax

k = 23 dBm for k ∈ K and the noise power is set to
σ2 = −100 dBm. Practical IRS reflection is modeled with α = 1.6, βmin = 0.2, and
φ0 = 0.43π as in Ref. [32]. We set the tolerance of the algorithms to 10−5 up to maxi-
mum 500 iterations. The simulation setup is illustrated in Figure 2, where the (x, y, z)
coordinates are given in meter. The BS and IRS are located at (0, 0, 10) and (50, 50, 10),
respectively, whilst the devices are uniformly distributed in the shaded rectangular region
bounded by (100,−20, 0), (100, 20, 0), (250,−20, 0), and (250, 20, 0).

Figure 2. Simulation setup for the IRS-aided uplink NOMA.

The channels are modelled as

G =
√

κR,BωR,B
κR,B+1 GLoS +

√
ωR,B

κR,B+1 GNLoS, (37)

f k =
√

κk,Rωk,R
κk,R+1

f LoS,k +
√

ωk,R
κk,R+1

f NLoS,k, k ∈ K, (38)

vk =
√

κk,Bωk,B
κk,B+1

vLoS,k +
√

ωk,B
κk,B+1 vNLoS,k, k ∈ K, (39)

where the subscripts LoS and NLoS represent the line-of-sight (LoS) and non-LoS (NLoS)
components, respectively, and ωx,y and κx,y denote the path loss and Rician factor between
nodes x and y for x, y ∈ K ∪ {R, B} with R for the IRS and B for the BS. The path loss is
given by ωx,y = 10−3d

−νx,y
x,y at distance dx,y with path loss exponent νx,y, where νR,B = 2.2,

νk,R = 2.8, and νk,B = 4. The Rician factor is set to κR,B = κk,R = 2 and κk,B = 0. We model
the LoS components with a uniform linear array for the BS and an Nv × Nh uniform planar
array constructed by Nv = 8 and Nh = N/8 for the IRS as [7]

GLoS = aB(ϕA
R,B)aH

R (ϕD
R,B, ϑD

R,B), (40)

f LoS,k = aR(ϕA
k,R, ϑA

k,R), k ∈ K (41)

where aB(ϕ) ∈ CM and aR(ϕ, ϑ) ∈ CN are the array response at the BS and IRS, respec-
tively, defined in [7] with the azimuth (elevation) angle-of-arrival ϕA

x,y (ϑA
x,y) and angle-

of-departure ϕD
x,y (ϑD

x,y) from node x to node y. Specifically, for the antenna and IRS with
half-wavelength element spacing, we have

aB(ϕ) = [1, ejπ sin(ϕ), · · · , ejπ(M−1) sin(ϕ)]T (42)

and

[aR(ϕ, ϑ)]n = ejπ(b n
Nv
c sin ϑ sin ϕ+(n−Nvb n

Nv
c) sin ϑ cos ϕ) (43)

for ϕ ∈ [0, 2π) and ϑ ∈ [−π/2, π/2). The NLoS components are modeled to be uncorre-
lated complex Gaussian.
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The average sum rate of the network is shown as the number N of IRS elements
increases in Figure 3 when M = 2 and K = 4. We provide the results with unit modulus
reflection and practical reflection drawn with solid and dashed lines, respectively. Bound
represents the upper bound R̃� = R̃(X̃�) obtained with the solution X̃� of (22), and Max-
det denotes the performance of a feasible solution φl? derived from X̃� through Gaussian
randomization with L = 50. Bound and Max-det are shown up to N = 128 due to the
formidable computational time in solving (22) for a large N. BFGS, L-BFGS with mB = 10,
and GD implemented with the derived gradient are compared with ConvSeq denoting
the sequential optimization in Ref. [7]. The results with random IRS phases denoted by
Random are also added to serve as a lower bound. Clearly, the average sum rate increases
steeply with N by optimizing the IRS reflection. In cases of unit modulus reflection, Max-det
provides the best performance close to the optimal one estimated by Bound for a moderate
N. The iterative algorithms provide almost the same performance under unit modulus
reflection, but BFGS, L-BFGS, and GD provide a slight gain over ConvSeq increasing with
N under practical reflection.

32 64 128 256 512

6

8

10

12

14

16

18

Figure 3. Average sum rate as the number N of IRS elements increases when M = 2 and K = 4.

However, the gradient-based iterative algorithms are observed to reduce the computa-
tional time, as shown in Figure 4, which provides the average evaluation time per sample
in obtaining the results of unit modulus reflection in Figure 3 with Intel(R) Xeon(R) Gold
6226R CPU @ 2.90Hz. Clearly, the iterative algorithms exhibit a significant reduction in
computational time over Max-det at the cost of a performance loss. The computational
time of GD is comparable to that of ConvSeq since both GD and ConvSeq require a large
number of iterations until their convergence. L-BFGS provides the best computational time,
with less complexity in updating the solution than BFGS and with a smaller number of
iterations than GD by finding a better search point through inverse Hessian estimation.
Thus, L-BFGS with the derived gradient would be a choice of practical merit for a large N.
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Figure 4. Computational time of unit modulus reflection as the number N of IRS elements increases
when M = 2 and K = 4.

Figure 5 compares the average sum rate as the number K of devices increases when
M = 2, with N = 64 in Figure 5a and N = 256 in Figure 5b. The average sum rate
increases as the number K of devices increases. In addition, the gradient-based methods
and ConvSeq provide a similar performance except for practical reflection with N = 256.
When N = 64 in Figure 5a, the performance of the gradient-based algorithms becomes close
to the optimal one as K increases for unit modulus reflection. When N = 256 in Figure 5b,
the gradient-based algorithms outperform ConvSeq by about 0.3 dB for practical reflection.
Again, L-BFGS provides a good performance among the gradient-based algorithms. Hence,
we compare the performance of L-BFGS and ConvSeq for different numbers M of antennas
with N = 256 in Figure 6; we set M = 2 in Figure 6a and M = 4 in Figure 6b. The sum rate
becomes almost doubled by doubling the number of antennas. Again, L-BFGS provides a
similar or slightly improved performance compared with ConvSeq, which is obtained at a
computational time about 11% and 18% of ConvSeq with M = 2 and 4, respectively, for
most K values in the figures.

Discussion : It is noteworthy that the nonlinear optimization problem in (24) with
respect to the IRS phase vector φ is a non-convex optimization problem that exhibits
multiple local minima in general. Hence, the iterative algorithms considered herein do not
guarantee a convergence to the global optimal point, but to one of the local minima. The
gradient-based algorithms updating N variables simultaneously for the next search point
tend to find a similar local minimum at a different convergence rate. However, ConvSeq,
updating one variable at a time, tends to find a worse point in particular for practical
reflection since it resorts to limited information for the next search point. To improve the
performance, we may run an iterative algorithm with different initial points, resulting in
different local minima so that a better solution can be found. However, it is observed that
the gain is trivial for this problem. From this, devising a new algorithm filling the gap to
the optimal performance with a complexity between those of Max-det and gradient-based
algorithms would be an interesting topic for further study.
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Figure 5. Average sum rate as the number K of devices increases when M = 2 and K = 4: (a) N = 64
(b) N = 256.
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Figure 6. Average sum rate as the number K of devices increases when N = 256: (a) M = 2 (b) M = 4.

5. Concluding Remarks

We have considered a sum rate maximization problem for the IRS-aided uplink multi-
antenna NOMA under a generalized reflection model including unit and phase-dependent
amplitudes. We have solved the problem through extended SDR to obtain an upper bound
on the sum rate and a near-optimal solution for a moderate-sized IRS. We have applied the
gradient-based iterative algorithms for a large-sized IRS by providing the gradient in an
explicit form under generalized reflection. The results show that, among the gradient-based
algorithms, L-BFGS implemented with the derived gradient provides a more competitive
solution than the conventional method in both computational time and performance.
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