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Abstract: The futuristic fifth-generation cellular network (5G) not only supports high-speed inter-
net, but must also connect a multitude of devices simultaneously without compromising network
security. To ensure the security of the network, the Third Generation Partnership Project (3GPP)
has standardized the 5G Authentication and Key Agreement (AKA) protocol for mutually authenti-
cating user equipment (UE), base stations, and the core network. However, it has been found that
5G-AKA is vulnerable to many attacks, including linkability attacks, denial-of-service (DoS) attacks,
and distributed denial-of-service (DDoS) attacks. To address these security issues and improve the
robustness of the 5G network, in this paper, we introduce the Secure Blockchain-based Authentication
and Key Agreement for 5G Networks (5GSBA). Using blockchain as a distributed database, our
5GSBA decentralizes authentication functions from a centralized server to all base stations. It can
prevent single-point-of-failure and increase the difficulty of DDoS attacks. Moreover, to ensure the
data in the blockchain cannot be used for device impersonation, our scheme employs the one-time
secret hash function as the device secret key. Furthermore, our 5GSBA can protect device anonymity
by mandating the encryption of device identities with Subscription Concealed Identifiers (SUCI).
Linkability attacks are also prevented by deprecating the sequence number with Elliptic Curve
Diffie–Hellman (ECDH). We use Burrows–Abadi–Needham (BAN) logic and the Scyther tool to
formally verify our protocol. The security analysis shows that 5GSBA is superior to 5G-AKA in terms
of perfect forward secrecy, device anonymity, and mutual Authentication and Key Agreement (AKA).
Additionally, it effectively deters linkability attacks, replay attacks, and most importantly, DoS and
DDoS attacks. Finally, the performance evaluation shows that 5GSBA is efficient for both UEs and
base stations with reasonably low computational costs and energy consumption.
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1. Introduction

In recent years, the exponential growth of mobile subscribers and smart devices
has fostered the rapid development of the fifth-generation cellular network (5G). Unlike
the conventional 4G networks that only support limited numbers and types of devices,
the 5G network is designed to connect as many devices as possible within one network.
All devices such as mobile phones, autonomous vehicles, and Internet of Things (IoT)
can now connect to the same 5G network with optimal speed and latency. To cater to
these stringent requirements, the 5G network is constructed by many tiny femtocells to
serve many users [1]. In this way, limited spectrum resources can be reused effectively to
provide services to more devices simultaneously. Additionally, having more base stations
installed, 5G wireless networks can alleviate traffic congestion in wireless channels. Hence,
the futuristic 5G networks improve wireless connections with faster speed, lower latency,
and greater capacity.

Although the 5G network is said to provide numerous benefits, there are also many
new security challenges. In view of these potential security issues, the Third Generation
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Partnership Project (3GPP) has standardized a new Authentication and Key Agreement
(AKA) protocol known as 5G-AKA in TS 33.501 [2]. 5G-AKA can mutually authenticate
base stations, 5G core networks, and user equipment (UE). It has resolved some pre-existing
security issues found in the 4G Long-Term Evolution (LTE) networks. For example, by en-
crypting the permanent identity of the UE using the Subscription Concealed Identifier
(SUCI), 5G-AKA can prevent International Mobile Subscriber Identification (IMSI), catching
attacks and rogue base station attacks [3]. However, as some of the authentication methods
in 5G-AKA are inherited from the 4G EPS-AKA [4], security issues in 4G networks remain
unsolved in 5G-AKA. For example, 5G-AKA suffers from linkability attacks, in which
malicious users can track a specific device by using synchronization error messages [5]. Ad-
ditionally, it lacks perfect session key forward secrecy that guarantees data confidentiality,
even if the long-term key is stolen in the future [3]. Furthermore, 5G-AKA is a centralized
protocol that relies heavily on two functional entities, namely the Authentication Server
Function (AUSF), and the Authentication credential Repository and Processing Function
(ARPF) located inside the Unified Data Management (UDM) server. As there will be a
tremendous number of devices connecting to the same 5G core network, 5G-AKA would
be highly vulnerable to Denial of Service (DoS) attacks and Distributed Denial of Service
(DDoS) attacks which aim to paralyze functional entities in the core network. Consequently,
the existing 5G-AKA protocol is subject to many security threats that affect the robustness
and reliability of the 5G network.

On the other hand, blockchain is a new technology for decentralized applications.
Initially proposed by the creator of Bitcoin cryptocurrency, blockchain is a practical way
to construct and manage a trustworthy decentralized ledger database across the network.
By storing transactions into data blocks and linking them together using cryptographic
hash functions, blockchain ensures all blocks in the chain reach the consensus effectively.
Additionally, blockchain ensures the data in the database becomes computationally infeasi-
ble to mutate. In recent years, researchers have envisioned that blockchain can be used in a
distributed way to solve many challenging problems in the 5G network [6]. As the number
of 5G network infrastructures and mobile devices is growing exponentially, the benefits of
blockchain would become more prominent in the future.

In this paper, we propose a Secure Blockchain-based Authentication and Key Agree-
ment scheme for the 3GPP 5G network (5GSBA). Our 5GSBA protocol offers these benefits:
first, it provides a distributed way to store all subscribers’ information safely. By em-
ploying the one-time hash secret, authentication-related entries are the hashed digests
that work similarly as public keys. Hence, even if the database is disclosed in the future,
adversaries cannot use it to impersonate any UEs. Moreover, 5GSBA prevents not only
typical network attacks such as eavesdropping, man-in-the-middle attacks, replay attacks,
and IMSI-catching attacks, but also prevents DoS and DDoS attacks effectively and provides
perfect session key forward/backward secrecy. The main contributions of this paper are
as follows:

1. We design a novel Authentication and Key Agreement protocol for the 3GPP 5G
network. 5GSBA works based on the improvement of the existing system architecture
of the 5G core network. It can be easily adopted to the 3GPP access scenario, in which
all UEs are connected to the home network via nearby gNBs;

2. Our proposed 5GSBA protocol is secure and efficient. Using blockchains and other
state-of-the-art cryptographic functions, 5GSBA can guarantee device unlinkability,
mutual authentication, and data confidentiality with low computational and energy
costs. Most importantly, not only can all typical network attacks be prevented, but DoS
and DDoS attacks can be deterred;

3. The security of the protocol is verified with BAN logic and the formal verification tool
Scyther. The performance evaluation and simulations also demonstrate its resistivity
to DoS and DDoS attacks.

The rest of the paper is organized as follows. Section 2 reviews the existing works
on 5G authentication and some blockchain-based 5G applications. Section 3 introduces
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the system and security model of 5GSBA. Section 4 discusses the motivations for and the
details of 5GSBA. Section 5 presents the work of security evaluation and Section 6 presents
the work of performance evaluation with some simulation results under different attacks.
Finally, a conclusion is drawn in Section 7.

2. Related Work

Recently, various solutions have been proposed to improve security in the Authentica-
tion and Key Agreement (AKA) process in the 5G network. In this section, we first discuss
the security vulnerabilities in the existing 5G-AKA protocol. Then, we briefly review the
major research work related to our work, including blockchain-related 5G authentication
schemes and AKA schemes against DoS attacks.

2.1. Security Vulnerabilities in 5G-AKA

5G-AKA is the standardized Authentication and Key Agreement protocol in the latest
3GPP 5G security architecture TS 33.501 [2]. Evolved from the architecture of EPS-AKA
in the LTE security architecture, 5G-AKA aims to ensure the authenticity between UE,
the serving network, and the home network. However, some security vulnerabilities in
the 5G-AKA have recently been disclosed, making it less secure than has been claimed.
For example, Ref. [3,5] found that 5G-AKA suffers from linkability attacks, by which
adversaries can use synchronization error messages (MAC_FAIL and SYNC_FAIL) to
detect if the UE is currently located in a certain area. Additionally, 3GPP TR 33.846 [7]
found that 5G-AKA fails to prevent denial-of-service (DoS) attacks because the 5GC has
no way to justify if the SUCI is a replayed message. The 5G-AKA is a centralized protocol
that heavily relies on the authentication functional entities of AUSF/UDM, so it could
be vulnerable to Distributed DoS (DDoS) attacks and single-point-of-failure issues in the
AUSF/UDM. Moreover, [4] found that 5G-AKA fails to provide perfect forward secrecy
and post-compromise secrecy due to the use of the long-term symmetric keys and sequence
numbers. In fact, according to the 3GPP TS 33.501 [2], the device anonymity protection
of UE in 5G-AKA is also vulnerable. For example, network operators can opt out of the
encryption in the Subscription Concealed Identifier (SUCI) that encrypts the Subscription
Permanent Identifier (SUPI) of UE. It is also known as a “null-scheme”. Thus, the UE will
send the cleartext of its SUPI through wireless channels, which could be dangerous for
IMSI-catching attacks. In some emergent situations, UE also sends its SUPI directly to
initiate authentication procedures. To conclude, 5G-AKA is vulnerable to many network
attacks, including but not limited to linkability attacks, DoS attacks, and IMSI-catching
attacks. The lack of perfect forward secrecy also makes 5G-AKA vulnerable to session data
recovery if the long-term key (LTK) is compromised at any time.

2.2. Blockchain in 5G Authentication

Linking data blocks into a chain, blockchain technology is essentially a secure de-
centralized database solution that guarantees data immutability and practical consensus
across multiple network nodes. There are three different types of blockchain platforms [8]:
permission-less, permissioned, and consortium blockchains. Among all three types of
blockchains, it is envisioned that private and consortium blockchains are the most suit-
able distributed solutions to solve the security challenges in 5G because of their high
efficiency [6].

In recent years, some proposals combining blockchains with 5G authentication have
surfaced. For example, Yang et al. [9] introduced the idea of a blockchain-based anonymous
access (BAA) scheme that allows equipment manufacturers, network operators, and users
to access the blockchain-based database and perform mutual authentication. However,
there is no formally proved protocol presented in the proposal. Haddad et al. proposed
a blockchain-based 5G authentication protocol based on a public blockchain in [10,11].
They suggested that all 5G access points (APs) can use the UE public keys listed in the
blockchain to perform mutual authentication between the AP and the UE. However, this
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misses a mechanism for UE to retrieve the public keys of the surrounding APs. Xu et al. [12]
proposed the use of redactable blockchains to store all subscriber’s information. The redactable
blockchain provides key deletion and revocation functions. It is beneficial for network op-
erators to protect the privacy of their users. However, the proposal lacks an authentication
protocol for UEs and core networks to secure user data using the keys in the blockchain.
Jia et al. [13] proposed a decentralized authentication scheme for 5G IoT devices. This proto-
col suggests that authentication entities in all domains can upload their device registration
records to the same alliance blockchain. However, the protocol uses an identity-based
cryptosystem. It introduces high computational overhead to mobile devices and edge
servers, making them energy inefficient and prone to request flooding. Liu et al. [14] pro-
posed an efficient authentication protocol based on 5G extensible authentication protocol
(5G EAP-AKA’) and a private blockchain. However, the security functionality of the pro-
posed scheme has not been formally analyzed. Moreover, the EAP framework could also
introduce more signaling overhead than the existing 5G-AKA scheme.

Some recent solutions have been designed to accelerate handover authentication in 5G
wireless networks by using blockchains [15–19]. While all of them are providing a fast way
to share the secret keys among base stations, most of them did not discuss how to prevent
DoS and DDoS attacks during the UE authentication phase in a fast and efficient way. As a
result, this shows that most of the existing blockchain authentication works are incomplete,
and almost all of them could not alleviate the threats of DoS and DDoS attacks effectively
during the UE authentication. In other words, designing a blockchain-based authentication
protocol that provides adequate attack prevention, is energy-efficient, and computationally
fast at the same time is a challenging research work. Overall, Table 1 summarizes all recent
blockchain-based 5G authentication schemes and their challenges.

Table 1. Recent works on blockchain-based 5G authentication protocols.

Type Highlights
Security Features

FV DA PFS LA DoS DDoS

Our Work 5G Initial
Authentication Decentralized authentications with low overhead X X X X X X

[9] No single trust authority X X

[10,11] Decentralized authentication to nearby gNBs X X X X

[12] Removal of obsolete data in blockchains X X X X

[13] Inter-domain authentication X X

[14] Improving 5G EAP-AKA′ protocol security X X X

[19] Formally verified protocol using
chameleon signature X X X X X

[15]

5G Handover
Authentication

Efficient handover authentication X X X X X

[16] Optimized for frequent handover X

[17] Lightweight handover authentication X

[18] Traceability for base stations to record
malicious devices X X X X

FV = formally verified protocol; DA = device anonymity; PFS = perfect forward secrecy; LA = lightweight
authentication; DoS = DoS attack prevention; DDoS = DDoS attack prevention.

2.3. AKA Schemes against DoS and DDoS Attacks

On the other hand, many solutions have been designed to alleviate DoS and DDoS at-
tacks during the UE authentication. Some recent 5G AKA schemes aimed at preventing DoS
and DDoS are presented in Table 2. For example, by allowing multiple devices to choose
a group leader as an agent, many group-based authentication protocols such as [20,21]
aim to relieve computational burden and signaling overheads while authenticating a mass
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of devices. Although they can alleviate DoS attacks by including secret keys and short
delays in the authentication requests, adversaries can bypass the security mechanism by
launching the attacks individually. Leu et al. [22] have proposed to construct an AUSF pool
and add a mediator to monitor all AUSFs. Although this provides disruption-free 5G-AKA
authentication, it cannot prevent DoS attacks effectively because it is uses 5G-AKA, which
is the protocol vulnerable to DoS attacks. Additionally, the bandwidth in the AUSF pool is
still finite and expensive, and thus needs more investment. Yan et al. [23] have proposed a
lightweight and secure handover authentication scheme based on a prediction of the poten-
tial target gNB from all neighbor gNBs in the 5G wireless network. The proposal facilitates
fast 5G handover authentication by using time-to-live (TTL) attributes and encrypting the
next hop chaining counter (NCC) with the Chinese remainder theorem. There are also
some other schemes, including [24–28], proposed recently to fix other security issues in
EPS-AKA and 5G-AKA. However, all of them suffer from single-point-of-failure due to the
centralized protocol designs. Thus, all the existing DoS attack prevention schemes cannot
provide adequate DoS and DDoS attack prevention.

Table 2. Recent works of AKA schemes with DoS and DDoS prevention.

Method Advantages Drawbacks

[20] Group
Authentication

Prevention of DoS using timestamp
Weak DDoS prevention for individual authentication

[21] Efficient group-based authentication

[22] Computation Pool Fault-tolerant 5G-AKA authentication 5G-AKA is inherently vulnerable to DoS attacks

[23]

One-to-One
Authentication

Lightweight and formally verified
handover authentication

Vulnerable to DDoS due to centralized design
[24] Formally verified protocol

[25] Lightweight symmetric key-based protocol

[26] Formally verified protocol

[27] Backward compatibility with 5G-AKA

[28] DDoS prevention using
zero-knowledge proof Centralized design, lack of formally verified protocol

3. System and Security Model
3.1. System Model

Our system model follows the 3GPP 5G system architecture listed in TS 23.501 [29]
and the security architecture listed in TS 33.501 [2]. We are adding some new features to
the existing functional entities. Figure 1 shows the 3GPP 5G core network (5GC) consisting
of many functional entities.

In the existing 3GPP 5GC system model, the Next Generation Node B (gNB) is the
base station that directly communicates with the UE. All gNBs in the 5G network are
connected to the nearby Access and Mobility Function (AMF) servers. During conventional
5G-AKA authentication, when UE is under the coverage of 3GPP access (i.e., under the
signal coverage of gNBs), it should send an authentication request to gNBs. Then, the gNB
forwards it to the AMF, and the AMF forwards it to the Authentication Server Function
(AUSF) server. After that, AUSF fetches the device secret keys from the Unified Data
Management (UDM) server to continue the subsequent authentication steps. Normally,
one AUSF serves many AMFs across the 5G core network, and each AMF serves many
gNBs nearby.

In our proposal, we follow the same system model with a decentralization of the
authentication entities as follows. All gNBs in the 5G core network become the members of
a private blockchain that stores subscribers’ information. AMF and AUSF should no longer
need to forward authentication requests, but they can optionally be one of the members in
the blockchain. UDM is the protected repository that stores private keys of the blockchain
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and other important secrets. For each authentication request, UE uses the one-time hash
secret stored in the Universal Subscriber Identity Module (USIM, or commonly known as a
SIM card) to initiate an authentication request. Then, the gNB hashes the received secret
and compares it with the entries in the blockchain. Since only legitimate UE would have
the original secret, the gNB can immediately grant or deny the UE’s authentication request
without forwarding the request to AMF, AUSF, or UDM.

Figure 1. System and security model.

Considering that 5G devices can connect to the 5GC by many different approaches
such as non-3GPP access, 3GPP access in the home network, and 3GPP access in a visiting
network, designing a universal authentication protocol could be very complicated. In this
work, we focus on the most common scenarios to simplify the designed authentication
protocol. It is assumed that all UE uses 3GPP access to connect to the gNBs in the home
network. These gNBs are connected to the 5GC. Additionally, the connections between
gNBs and 5GC are secured by wired connections protected by IPSec tunnels. Thus, if a
gNB can mutually authenticate with UE using the private key of the home network and
information stored in the blockchain, it can be regarded that the UE has joined a legitimate
5GC network.

3.2. Security Model

Our security model is also displayed in Figure 1. It is assumed that the 5G wire-
less channels follow the Dolev-Yao model [30], which assumes that there could be some
neighboring active and passive attackers. Passive attackers eavesdrop and interpret the
messages sent from both UEs and gNBs. Then, they can analyze the intercepted data to
figure out the messages sent from both parties. Active attackers not only eavesdrop on
the wireless channels, but also modify the intercepted messages, replay them, or even
fabricate new messages to impersonate legal UEs or gNBs to disrupt the network. All these
attackers are labeled as “Dolev-Yao (DY) Attackers” in Figure 1. Moreover, although it is
assumed that the communication channels within 5GC are trustworthy, some accidents or
misconfiguration could happen to the functional entities. For example, information in the
data repositories of the 5GC functional entities could be leaked in some rare cases. In this
scenario, these passive attackers would try to use the exposed permanent keys to decrypt
previous communication data. Additionally, it is possible that there is compromised botnet
UE in the wireless network. UE could launch DoS and DDoS attacks at any scheduled time,
attempting to flood or paralyze the authentication-related functional entities in the 5GC.
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Due to all the assumptions above, a desired 5G authentication protocol should pro-
vide security functionalities including device anonymity, mutual authentication, secure
data transmission, and session key perfect forward secrecy. Moreover, it should be able
to prevent active attacks such as impersonation, linkability attacks [5], replay attacks,
man-in-the-middle (MITM) attacks, and DoS attacks. For passive attacks, there could be
eavesdropping and location tracking attacks. These attacks must also be deterred.

4. The Proposed 5GSBA Scheme
4.1. Motivation

The existing 5G authentication protocol, 5G-AKA, is a vulnerable protocol that creates
a vast burden to the AUSF. Since there will be more connected devices in the future,
attackers are likely to launch DoS and DDoS attacks to flood the AUSF and other 5G
authentication entities. However, as there could also be some essential utilities using
5G, the 5G network has to be stable at all times. Therefore, to prevent DoS and DDoS
attacks from paralyzing the 5G network, there is an urgent and critical need to design an
authentication protocol that ensures no DoS and DDoS attacks can be successful. This
protocol should work in a decentralized manner, such that it will not suffer from a single
point of failure due to request flooding. Given all these constraints, we believe that an
authentication protocol combined with a blockchain would be an ideal solution. Although
a blockchain could introduce more overhead during database synchronizations, it helps
reduce the opportunity of system overloading by decentralizing authentication tasks. In this
paper, we propose a 5GSBA scheme that uses a blockchain to decentralize the subscription
repository from UDM to all gNBs, such that authentication tasks can be decentralized to
the gNBs. By doing so, we can prevent DoS and DDoS attacks from impacting the quality
of service (QoS) of the entire 5G network.

4.2. Details of the 5GSBA

This section presents the Secure Blockchain-based Authentication and Key Agreement
Protocol (5GSBA) in detail, which is a two-step protocol designed to mutually authenticate
between UEs and gNBs in the 5G network. To satisfy all aforementioned security require-
ments, the 5GSBA combines the one-time hash function, Elliptic Curve Diffie–Hellman
(ECDH), the Elliptic Curve Integrated Encryption Scheme (ECIES), and the keyed-hash
message authentication code (HMAC) at different steps of the protocol. The 5GSBA uses
a private blockchain network across all gNBs as a distributed subscriber data repository.
Therefore, all gNBs connected to the 5GC may approve authentication requests from UE
autonomously without taxing the AUSF and UDM. The 5GSBA has four phases: the system
initialization phase, the USIM registration phase, the gNB broadcast phase, and the mutual
authentication phase. All notations used in this paper are listed in Table 3, and Figure 2
shows a sequence diagram explaining different phases in 5GSBA.

Table 3. Notations.

Notation Description

SUPI Subscription Permanent Identifier of the UE

IDgNB Permanent Identifier of gNB

P Generator of the Elliptic Curve

Y/Y2 One-Time Hash Secret

H (msg) Cryptographic Hash Function

HMAC (msg, K) Keyed-hash Message Authentication Code

σ Generated HMAC code

PKcore Public Key of 5G Core

SKcore Private Key of 5G Core
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Table 3. Cont.

Notation Description

TS Timestamp

Khmac Symmetric Key for HMAC Generation

EPKCore (msg) Encrypt Message with the Public Key of 5GC

Figure 2. Sequence Diagram of 5GSBA.

Phase 1—System Initialization: Let p be the modulus, E
(
Fp

)
be the elliptic curve

over a finite field Fp, P be the generator point on E
(
Fp

)
with an order n, and G be the

generated subgroup which multiplies the generator point P. Additionally, we let the
cryptographic hash function be H ⊆ Z∗n. Having the assumptions above, gNBs and AUSF
run the following procedures:

1. AUSF generates a new ECIES private key SKcore representing the 5GC by choosing a
random input k. Then, the ECIES public key PKcore = k·P is stored at UDM.

2. When there is a new gNB joining the 5GC, they should mutually authenticate with
any existing approach such as IPSec tunnels. After that, AUSF installs the ECIES
private key SKcore from UDM into the secure enclave of the newly joined gNB.

3. Finally, the authenticated gNB downloads the latest private blockchain from the 5GC.
gNB may also index the transactions in the blockchain locally for faster access.

4. Whenever the blockchain has any updates, the gNB will download and index the new
blocks accordingly.

Regarding the private blockchain administered by AUSF, Figure 3 illustrates the struc-
ture of a block in the whole blockchain. Every block should contain the following elements:

• Block Header: It contains the block version for future maintenance and upgrades.
• Previous Block Hash: It is the hash of the previous block. It guarantees the immutabil-

ity of the blockchain.
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• Timestamp: It is the block creation time for tracking purposes. All transaction times-
tamps within the block should never be larger than this timestamp.

• Transactions: Each transaction is a subscription record for one device. To reduce the
storage overhead of the blockchain, each block contains multiple transaction records.
This size should be adjustable according to the preference of network operators.
By default, we follow the block size of bitcoin as 1 MB.

Figure 3. Structure of a block and a transaction.

Since it is a private blockchain, any efficient algorithm can be used, such as Practical
Byzantine Fault Tolerance (PBFT) [31], to reach a consensus for all gNBs. The details about
blockchain consensus implementation are omitted in this paper.

Phase 2—USIM Production: Network operators should install a one-time hash secret
Y and the ECIES public key of the 5GC PKcore to the USIM during USIM production. Addi-
tionally, the one-time secret hash digest H(Y) should be posted to the private blockchain.
In this way, when the UE sends the collision of the hash function (i.e., the secret Y) to the
gNB, it can prove to the gNB that it is the legitimate UE. These are the detailed procedures:

1. The operator generates a one-time hash secret Y and the digest of the one-time hash
secret H(Y);

2. USIM stores its permanent identity (i.e., SUPI), elliptic curve parameters, one-time
hash secret Y, and the ECIES public key of 5GC PKcore into its non-volatile storage;

3. AUSF creates a new blockchain transaction including the SUPI, H(Y), timestamp,
and a status code. The status code is the activation status of the SUPI. For example,
“activated” can be 1, “suspended” can be 2, “revoked” can be 3, and so on. The format
of one transaction in the blockchain is also shown in Figure 3.

4. If we need to revoke the access of a specific USIM, AUSF can post a new transaction
with a “revoked” activation status code and a timestamp to the blockchain. Therefore,
when gNBs retrieve the latest transactions from the blockchain, they will follow the
last record to deny access from that USIM.

Phase 3—gNB Broadcast: after initialization, gNBs broadcast their identities IDgNB
through the air. Since 5GSBA makes SUCI mandatory during UE authentication, the
identity request procedures in 3GPP TS 33.501 [2] are no longer needed. Hence, UE can
freely choose when to start authentication and when to prepare SUCI without having to
respond to possibly forged identity requests from gNBs.

Phase 4—Mutual Authentication: whenever UE is powered up to start authentication
with the 5G network, the following two-step protocol will be executed:
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1. UE → gNB: UE sends an authentication request to the gNB with these steps:

a. Generate a new random HMAC key Khmac, random ECDH public key a · P,
and timestamp TS;

b. Generate SUCI by encrypting {SUPI, Y, Khmac} with PKcore;
c. Generate the next one-time hash secret Y2, and calculate its hash H(Y2);
d. Update the Y in the local storage as Y2, as it will become the Y for the next

authentication;
e. Calculate σ1 = HMAC ({IDgNB, SUPI, Y, H(Y2), TS, a · P} Khmac);
f. Send the authentication request = {SUCI, H(Y2), TS, a · P, σ1} to gNB.

2. gNB checks the incoming authentication request with these steps:

a. Check the validity of the timestamp TS, and then decrypt the SUCI into {SUPI,
Y, Khmac} using the private key SKcore;

b. Verify the HMAC of the message σ1 = HMAC ({IDgNB, SUPI, Y, H(Y2), TS,
a · P} Khmac);

c. Fetch the latest transaction of the SUPI from the private blockchain locally;
d. Compare the hash of the received Y with the H(Y) value stored in the blockchain.

If there is a collision (i.e., two values are equal), send an authentication response.
Otherwise, gNB should stop the protocol;

e. Create a new blockchain transaction containing the value of H(Y2), and upload
the block containing this transaction when the gNB is idle.

3. gNB → UE: gNB issues an authentication response to the UE with these steps:

a. Generate a new random ECDH public key b · P;
b. Calculate σ2 = HMAC ({SUPI, TS, b · P}, Khmac), where TS is the received

timestamp;
c. Send the authentication response = {TS, b · P, σ}.

4. UE checks the incoming authentication response with these steps:

a. Calculate σ’ = HMAC ({SUPI, TS, b · P}, Khmac). If σ equals to σ’, the UE contin-
ues to calculate the common ECDH session key using formula a · b · P;

b. Similarly, gNB calculates the common ECDH session key using formula b · a · P.
Since a · b · P = b · a · P, a common session key is derived. Both parties are now
mutually authenticated.

5. Security Evaluation

In this section, we firstly justify the logical correctness of the 5GSBA using Burrows–
Abadi–Needham (BAN) logic. Then, we provide formal verification on the security of
the 5GSBA using the Scyther formal verification tool. Moreover, we present an extensive
qualitative security analysis based on the discussion in Section 3.2 to show that the 5GSBA
is secure to fight against various malicious attacks.

5.1. Burrows–Abadi–Needham (BAN) Logic

Burrows–Abadi–Needham (BAN) logic is a set of logic rules to verify the logical
correctness of an authentication protocol [32]. Assuming that the cryptographic functions
in the protocol are perfect, BAN logic can systematically find out all incorrect designs in
an authentication protocol. To apply BAN logic to our 5GSBA protocol, we formalize our
protocol into the idealized form. Then, we use BAN logic symbols and rules [32] such as the
message meaning rule, belief rule, nonce verification rule, jurisdiction rule, etc., to validate
if our 5GSBA protocol fulfills the targeted security goals.

5.1.1. Formalized 5GSBA Protocol

In our idealized protocol, U refers to UE and C refers to one of the gNBs in the 5G
cellular network (CN). All cleartext and identities in the protocol are omitted as they can
be easily forged. For the notations, SUCI can be regarded as a message encrypted by the
public key of 5GC (i.e., the PKcore). The timestamp token is represented by TS, and the
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one-time hash token is represented by Y. In addition, all message content protected by the
HMAC can be viewed as a message encrypted by the HMAC key (i.e., Khmac). Therefore,
the idealized 5GSBA protocol is shown below:

Message 1: U → C : C C
{

U
Khmac↔ C, YY

}
PKcore

, { TS, a·G }Khmac

Message 2: C → U : U C { TS, b·P }Khmac

5.1.2. Logical Assumptions

We made the following assumptions according to the nature of the protocol. First, the
CN believes that the UE should control the HMAC key issued by themselves:

C |≡ U |⇒ U
Khmac↔ C (1)

Second, since both the CN and the UE check the timestamp in the protocol, they
should believe that the timestamps are fresh:

C|≡#(TS) (2)

U|≡#(TS) (3)

Third, the CN and the UE should also believe that their locally generated keys are
trustworthy to themselves:

U |≡ U
Khmac↔ C (4)

U |≡ a (5)

U |≡ a·P (6)

C |≡ b (7)

C |≡ b·P (8)

Fourth, the UE should believe that the key generated by the CN is controlled and
trusted by himself. Similarly, the CN should also believe that the keys generated by UE are
controlled by himself:

U |≡ C |⇒ b·P (9)

C |≡ U |⇒ a·P (10)

U |≡ C |≡ b (11)

C |≡ U |≡ a (12)

Fifth, the CN should believe the secret of the one-time hash sent from the UE by
validating it with the records in the blockchain. Additionally, since it is only valid once, it
can be viewed as a fresh nonce:

C |≡ U
Y
� C (13)

C |≡ #(Y) (14)

Finally, since ECDH is used, it can be assumed that for the UE (U), the session key

U
KUC↔ C = a·b·P can be calculated with the received b·P and the locally generated a.

Similarly, for the CN (C), the session key U
KUC↔ C = b·a·P can be calculated with the

received a·P and the locally generated b.



Sensors 2022, 22, 4525 12 of 26

5.1.3. Protocol Goal

The goal of the 5GSBA is to achieve mutual authentication between two sides (UE and
CN). Hence, we need to create a mutually trusted common session key after the execution
of the protocol. We can express the goal with these four equations:

U |≡ U
KUC↔ C (15)

C |≡ U
KUC↔ C (16)

U |≡ C |≡ U
KUC↔ C (17)

C |≡ U |≡ U
KUC↔ C (18)

5.1.4. Protocol Verification

The detailed verification steps are listed below. Using the rule with Message 1, we
have Equation (19):

C |≡ PKcore7→ U, C C
{
〈U Khmac↔ C, Y〉Y

}
PKcore

C C 〈U Khmac↔ C, Y〉Y
(19)

Using the message meaning rule with Equations (13) and (19), we have Equation (20):

C|≡ U
Y
� C, C C 〈U Khmac↔ C, Y〉Y

C|≡ U | ∼
(

U
Khmac↔ C, Y

) (20)

Using the freshness rule with Equations (14) and (19), we have Equation (21):

C|≡#(Y)

C |≡ #
(

U
Khmac↔ C, Y

) (21)

Using the nonce verification rule with Equations (20) and (21), we have Equation (22):

C|≡#
(

U
Khmac↔ C, Y

)
, C|≡ U

∣∣∣∣ ∼ #(Khmac, Y)

C |≡ U |≡
(

U
Khmac↔ C, Y

) (22)

Using the belief rule with Equation (22), we have Equation (23):

C |≡ U |≡
(

U
Khmac↔ C, Y

)
C |≡ U |≡ U

Khmac↔ C
= C |≡ U |≡ U

Khmac↔ C (23)

Using the jurisdiction rule with Equations (1) and (23), we have Equation (24):

C |≡ U |⇒ U
Khmac↔ C, C |≡ U |≡ U

Khmac↔ C

C |≡ U
Khmac↔ C

= C |≡ U
Khmac↔ C (24)
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As a result, the CN believes the received HMAC key, so the CN continues to process
Message 1. Using the message meaning rule with Equation (24) and Message 1, we have
Equation (25):

C |≡ U
Khmac↔ C, C C { TS, a·P }Khmac

C |≡ U | ∼ (TS, a·P) = C |≡ U | ∼ (TS, a·P) (25)

Using the freshness rule with Equations (2) and (25), we have Equation (26):

C |≡ #(TS)
C |≡ #(TS, a·P) = C |≡ #(TS, a·P) (26)

Using the nonce verification rule with Equations (25) and (26), we have Equation (27):

C |≡ #(TS, a·P) , C |≡ U |∼ (TS, a·P)
C |≡ U |≡ (TS, a·P) (27)

Using the belief rule with Equation (27), we have Equation (28):

C |≡ U |≡ (TS, a·P)
C |≡ U |≡ a·P = C |≡ U |≡ a·P (28)

Using the jurisdiction rule with Equations (10) and (28), we have Equation (29):

C |≡ U |⇒ a·P, C |≡ U |≡ a·P
C |≡ a·P = C |≡ a·P (29)

As a result, the CN believes the received ECDH public key from UE, and the protocol
continues with Message 2. Using the message meaning rule with Equation (4) and Message
2, we have Equation (30):

U |≡ U
Khmac↔ , P C {TS, b·P}Khmac

U |≡ C | ∼ (TS, b·P) = U |≡ C | ∼ (TS, b·P) (30)

Using the freshness rule with Equations (3) and (30), we have Equation (31):

U |≡ #(TS)
U |≡ #(TS, b·P) = U |≡ #(TS, b·P) (31)

Using the nonce verification rule with Equations (30) and (31), we have Equation (32):

U |≡ #(TS, b·P), U |≡ C | ∼ (TS, b·P)
U |≡ C |≡ (TS, b·P) (32)

Using the belief rule with Equation (32), we have Equation (33):

U |≡ C |≡ (TS, b·P)
U |≡ C |≡ b·P = U |≡ C |≡ b·P (33)

Using jurisdiction rule with Equations (9) and (33), we have Equation (34):

U |≡ C |⇒ b·P, U |≡ C |≡ b·P
U |≡ b·P = U |≡ b·P (34)

As a result, the UE also believes the received ECDH public key from the gNB.
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For the UE, since we know U |≡ a in Equation (5) and U |≡ b·P in Equation (34),

the common key U
KUC↔ C can be derived in Equation (35):

U |≡ a·(b·P) = U |≡ a·b·P = U |≡ U
KUC↔ C (35)

For the CN, since we know C |≡ b in Equation (7) and C |≡ a·P in Equation (29),

the common key U
KUC↔ C can be derived in Equation (36):

U |≡ a·(b·P) = U |≡ a·b·P = U |≡ U
KUC↔ C (36)

Moreover, to finish the protocol, the CN has to believe Message 1 to continue the
protocol and send Message 2. Hence, we can say that if the UE has received Message 2,
the UE can be sure that the CN has believed Message 1, and therefore U |≡ C |≡ a·P.
Combining this with Equation (11), we can conclude that:

U |≡ C |≡ b·(a·P) = U |≡ C |≡ a·b·P = U |≡ C |≡ U
KUC↔ C (37)

Similarly, the UE has to believe Message 2 to start the subsequent data transmission.
Hence, we can say that if the CN receives the subsequent data correctly, CN can be sure
that the UE has believed Message 2, and therefore C |≡ U |≡ b·P. Combining this with
Equation (12), we can conclude that:

C |≡ U |≡ a·(b·P) = C |≡ U |≡ a·b·P = C |≡ U |≡ U
KUC↔ C (38)

Consequently, all the security goals are satisfied. Hence, the security of 5GSBA is
logically verified.

5.2. Scyther Tool

The Scyther tool [33] is an automated formal verification tool for analyzing authentica-
tion protocols. Under the perfect cryptography assumption and the Dolev–Yao adversary
model [30], Scyther searches for all potential security vulnerabilities of a protocol efficiently.
Perfect cryptography assumption refers that the cryptographic functions used in the pro-
tocol are assumed to be secure. Adversaries should know nothing about the encrypted
content unless they hold the decryption key. The Dolev–Yao adversary model, as men-
tioned in Section 3.2, assumes that there are neighboring attackers in the network. In this
section, we model the 5GSBA with the Security Protocol Description Language (SPDL) and
let Scyther find all security issues automatically.

The Scyther tool has six different security claims: Aliveness or Alive ensure the
protocol instances complete their steps with any active responders. That is, all replies
should be active replies from living partners, not replayed messages. Niagree ensures a
protocol instance receives the expected variables without consideration of a one-to-one
relationship (i.e., non-injective agreement). Nisynch ensures the protocol can complete
a run as expected without a one-to-one relationship (i.e., non-injective synchronization).
Weakagree ensures all protocol instances communicate with their same set of initiators or
responders (i.e., injective). Reachable is the checkpoint claim indicating that the protocol
can reach the specific line, which can be used for code debugging. Secrecy or SKR check
if the specified variables or session keys remain secret to adversaries throughout the
execution of the protocol. By combining all these security claims, Scyther ensures the
injective agreement of the protocol and detects most of the network protocol attacks
including message fabrication, message replay, and MITM attacks.

Our formal verification result with Scyther is shown in Figure 4. Specifically, we
created a SPDL model that has two roles: the gNB and the UE. First, the 5GSBA can achieve
a mutual key agreement using ECDH. To emulate ECDH key exchange between two parties,
we define functions g1 and g2, and then set alpha to be g1(a) and beta to be g1(b). We firstly
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use the claims of Secret a and Secret b to check the secrecy of the ECDH private keys. Then,
we emulate the derivation of the ECDH common key with g2(beta, a) (i.e., a · b · G) and
g2(alpha, b) (i.e., b · a · G). We also verify the secrecy of this ECDH common key with SKR
claims. Second, the 5GSBA uses HMAC to ensure the integrity of all messages. To make
sure adversaries cannot obtain the HMAC key Khmac (i.e., only gNBs can receive the key
from the UE), we check it with Secret Khmac claims for both the gNB and the UE. Third, the
5GSBA can guarantee device anonymity by encrypting the SUPI into SUCI. To ensure the
adversaries have no way to retrieve the SUPI of the UE through the air, we check the secrecy
of the SUPI using the Secret MSIN claim. In this scenario, Mobile Subscriber Identification
Number (MSIN) is equivalent to SUPI, because SUPI should contain mobile country code
(MCC), mobile network code (MNC), and MSIN. While MCC and MNC are not the unique
identifiers of a device, we only mandate MSIN to be secret. Fourth, our protocol assumes
that the UE needs to use its one-time hash secret Y to prove its identity to gNB. To ensure
that the adversaries cannot obtain the secret Y with any means, we checked its secrecy
using Secret Y claims. Additionally, the secrecy of Y2 was checked to ensure that the UE
could not reveal the next one-time hash secret by any means. Fifth, to further ensure the
correctness of our SPDL model, a Reachable claim was put at the end of every role. This
made sure that every line of our code had been executed. Finally, by testing all security
claims including Aliveness, Niagree, Nisynch, and Weakagree in both parties, this showed that
the 5GSBA guarantees injective agreement with active initiator and responders. In other
words, we conclude that no network attacks were found in the 5GSBA.

Figure 4. Formal verification with Scyther.

5.3. Security Analysis

We qualitatively justify that our 5GSBA provides the following security features.
Mutual Authentication and Key Agreement: By the 5GSBA, UE uses a one-way hash

secret Y stored in the USIM to prove that it is the legitimate party. A gNB verifies it by
comparing it to the one-way hash value H(Y) stored in the private blockchain. Since
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finding the original secret of a hash is a computationally infeasible problem, the UE can
effectively prove to the gNB that its authentication request message is legitimate. Besides,
the UE encrypts the one-way hash secret Y and a randomly generated HMAC key Khmac
using the public key PKcore. Since only legitimate gNBs possessing the private key SKcore
can read the one-way hash secret and the HMAC key, by issuing a correct HMAC code
σ2, the gNB effectively prove to the UE that the authentication response is also legitimate.
Thus, both gNB and UE can be mutually authenticated to derive a common key using
ECDH parameters in the authentication messages.

Secure Data Transmission: The 5GSBA assumes that all subsequent user data will be
encrypted with the session key generated in the authentication procedure. For the session
key generation, a UE sends an ECDH public key a · P to a gNB, and the gNB replies to
another ECDH public key b · P to the UE. Hence, the actual session key a · b · P is never
transmitted anywhere. In fact, the ECDH relies on the Computational Diffie–Hellman
(CDH) problem, which means it is difficult to find the a from a · P. Even if an adversary
captures all the authentication messages, it is computationally infeasible for him to recover
the session key by finding either a or b to calculate the a · b · P. Consequently, the 5GSBA
can ensure only legitimate parties (i.e., UE and gNB) can read the user data.

Session Key Perfect Forward/Backward Secrecy: The 5GSBA uses the public key
PKcore of the 5GC, the randomly generated HMAC key Khmac, and the one-way hash secret
Y for authentication purposes only. The session key generation relies on the randomly
generated ECDH parameters. Hence, when the permanent keys are stolen in the future,
attackers still could not derive the session key to recover the content of a specific session.
Additionally, since the newly generated ECDH parameters for each session are irrelevant
to the previous or future sessions, compromising the current session key will only affect
the current session. The secrecy of the previous or future sessions will remain unaffected.

Device Anonymity: Since the SUCI is mandatory by the 5GSBA, the SUPIs of re-
questing UE devices are always concealed with ECIES. Hence, eavesdroppers cannot use
authentication request messages to identify or trace any devices.

Protocol Attack Resistance: The 5GSBA outperforms most proposals, including the
standardized 5G-AKA with the stronger resistibility to many attacks. For example, thanks
to the aforementioned security properties, the 5GSBA prevents common attacks such
as eavesdropping, location tracking, and man-in-the-middle (MITM) attacks. Moreover,
it is highlighted that some critical attacks can be prevented including DoS/DDoS attacks,
linkability attacks, UE impersonation attacks, rogue base station attacks, and replay attacks:

• DoS Semantic Attack Prevention: With the 5GSBA, semantic attacks exploiting the
weaknesses of the protocol are impracticable, because the authentication request
contains a timestamp and a one-time hash secret Y. Specifically, when the gNB receives
an authentication request, it first checks if the timestamp is fresh. Then, it decrypts
the SUCI and compares the Y with the records stored in the private blockchain. If the
calculated hash value does not match, it will reject the session immediately. In this
way, adversaries cannot hoard multiple sessions in the gNB by replaying the same
authentication messages (i.e., the original SUCI in 5G-AKA). Additionally, since the
authentication request involves only the computationally inexpensive ECIES and hash
functions, adversaries cannot exhaust the computational resources of gNBs easily;

• DDoS Flooding Attack Prevention: By decentralizing the authentication tasks from
the AUSF/UDM to all gNBs, the 5GSBA lessens the effects of flooding attacks that
paralyze the network with authentic requests. In the 5G era, the inter-site distance (ISD)
of gNBs is getting smaller, and the number of gNBs deployed keeps growing. Hence,
the total computational power of gNBs is growing steadily, making it increasingly
difficult to flood or even paralyze the entire 5G network. Furthermore, since the
5GSBA shifts the authentication tasks from AUSF/UDM to gNBs, it can also prevent
the single-point-of-failure. One gNB failure or one AUSF failure will not affect the
entire 5G network. Thus, DDoS attacks in the 5G authentication can be prevented, and
the quality of service (QoS) across the 5G network can be maintained. The performance
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analysis will show that the 5GSBA can serve much more incoming authentication
requests than the existing centralized schemes;

• Linkability Attack Prevention: Unlike conventional symmetric key-based protocols
such as 5G-AKA, the 5GSBA generates session keys using ECDH instead of the se-
quence number. Hence, the 5GSBA does not have the MAC failure or synchronization
failure commonly found in symmetric key-based AKA protocols. Adversaries can no
longer use these error messages as a loophole to trace a specific device;

• UE Impersonation Attack Prevention: By the conventional 5G-AKA protocol, users
have to trust the network operator implicitly. Since the network operator owns a copy
of users’ symmetric keys and sequence numbers, insider attackers in the network can
impersonate the UE by abusing these keys. By the 5GSBA, since the one-time hash
secret is only stored at the USIM, there is no way for network operators to impersonate
the UE using the data stored in the private blockchain. Hence, if the network operators
cannot provide the one-time hash secret used in the authentication, users can simply
deny all malicious behavior for that session;

• Rogue Base Station Attack Prevention: By the 5GSBA, since only the legitimate gNBs
can decrypt the SUCI, rogue base stations cannot produce genuine authentication
responses by generating the correct HMAC code σ. Thus, it can prevent UE from
establishing connections with rogue base stations;

• Replay Attack Prevention: The authentication requests and responses by the 5GSBA
are all tagged with a timestamp TS, and the HMAC key Khmac should also work once
only. Therefore, by checking the timestamp in both UEs and gNBs, replayed messages
can be easily identified and discarded;

• Battery Depletion Attack Prevention: With the 5G-AKA, UE must respond to identity
requests from the serving network by generating a fresh SUCI. If some rogue base
stations frequently send the identity requests, the batteries of UE devices could deplete
faster. In the 5GSBA, only UE can take the initiative to generate a fresh SUCI for
authentication. Hence, the serving network cannot force the UE to create a fresh SUCI,
and it prevents the battery depletion attacks effectively.

6. Performance Evaluation

Most UE has limited computational resources and battery life. Additionally, the net-
work resources in the 5G network are always finite. Hence, a good authentication scheme
should have low computational overhead, communication overhead, and energy consump-
tion. In this section, we analyze the performance of the 5GSBA from these three aspects.
Additionally, we evaluate its effectiveness against DoS/DDoS attacks using two simulation
experiments. For the comparison, 5G-AKA [4] is selected because it is the 3GPP standard-
ized protocol. SE-AKA [20] is chosen because it supports perfect forward secrecy with
the similar security functions as the 5GSBA. Another blockchain-based 5G authentication
protocol, BB-AKA 5G [10] is also included to show that the 5GSBA can achieve a better
performance than the existing blockchain-based scheme.

6.1. Computational Overheads
6.1.1. Theoretical and Experimental Delays

A smaller computational delay means the protocol can run faster, so it is always
preferred. In this subsection, computation overheads are evaluated through simulation
experiments. All simulations are conducted on a computer with Intel® Core™ i5-3210M
CPU @ 2.5 GHz CPU and 16 GB of RAMs. The Charm Crypto v0.5 with Python 3.7.5 is
used to create and run the simulation. Charm Crypto [34] is a Python wrapper of Pairing-
Based Cryptography (PBC) libraries. It allows the easy prototyping of cryptographic
functions based on elliptic curve cryptosystems. Among all the selected protocols, each
of them uses various cryptographic functions, and each of them has a unique key size
requirement. To holistically and equally evaluate their performance at the same security
level, we conformed to the recommendation from NIST [35] to use 256-bit equivalent key
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strength throughout the simulations. Hence, for all elliptic curve cryptography (ECC)-based
operations, secp256k1 was chosen as the default elliptic curve. For HMAC operations,
HMACSHA256 was selected. We ran each cryptographic function 2000 times to measure
its average time. Moreover, to evaluate the data access delays incurred in blockchains, we
followed the specifications in Section 4.2 to create a blockchain prototype. This blockchain
had many 1-megabyte-sized blocks. Every block was stored as one file, and all transactions
in the blockchain were indexed using Python Dictionary. To compare the performance
difference between blockchain and traditional database, we also built another centralized
database with MariaDB v10.4.14. Finally, Table 4 shows the experimental time of execution
for the different functions. Then, all this information is combined with the theoretical
computational times in Table 5 to find the experimental computational overheads shown
in Figure 5.

Table 4. Experimental time for different functions.

Notation Description Time (ms)

TECDSA.sign ECDSA Sign 0.7286

TECDSA.ver ECDSA Verify 1.3442

TECIES.enc ECIES Encryption 2.0572

TECIES.dec ECIES Decryption 0.7851

THMAC KDF/HMAC Calculation 0.0495

THMAC.ver HMAC Verification 0.0281

TECDH.gen ECDH Key Generation (1 Exp) 0.6945

TECDH.CK ECDH Common Key 0.7099

Thash
SHA256 Calculation Time

(Hash Time) 0.0206

Tsym.enc Symmetric Encryption 0.0925

Txor XOR Operation 0.0084

TBC.read Blockchain Transaction Read 0.2914

TBC.write Blockchain Transaction Write 0.0434

TDB.read Centralized Database Read 0.4956

Table 5. Theoretical computational overheads.

Protocol Entity Authentication Computational Overhead Execution Time (ms)

5GSBA

UE TECIES.enc + TECDH.gen + Thash + THMAC + THMAC.ver 2.8499

CN TECIES.dec + TECDH.gen + Thash + THMAC + THMAC.ver + TBC.read + TBC.write 1.9126

Both TECDH.CK 0.7099

5G-AKA
UE TECIES.enc + 2Tsym.enc + Txor + 2THMAC 2.3496

CN TECIES.dec + 2Tsym.enc + Txor + 2THMAC + 2Thash + TDB.read 1.6143

SE-AKA
UE TECIES.enc + 4THMAC + THMAC.ver + TECDH.gen + TECDH.CK 3.6877

CN TECIES.dec + 2THMAC.ver + 3THMAC + TECDH.gen + TECDH.CK + TDB.read 2.8898

BB-AKA 5G

UE TECDSA.sign + 2TECDSA.ver + TECDH.gen 4.1115

CN 3TECDSA.sign + 2TECDSA.ver + TECDH.gen + TBC.read + TBC.write 5.9035

Both TECDH.CK + Thash 0.7305
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Figure 5. Experimental total computational delays.

It is noteworthy that, for all blockchain-based schemes, we omitted the blockchain
indexing time in the computational overhead calculation. Blockchain indexing is a process
for gNBs to categorize recently downloaded blocks. It can improve the blockchain random
access speed to a constant time. Since indexing can be performed in the background
parallelly at any time, it does not impose a significant negative effect on authentication.
Hence, only the average blockchain transaction read time TBC.read and write time TBC.write
were included in the calculation.

For the experimental computational delays shown in Figure 5, the 5GSBA was slower
than the standardized 5G-AKA by 5.1377 − 3.4683 = 1.6694 milliseconds. This is because
the 5GSBA employs asymmetric ECDH to replace the less secure symmetric key-based
key derivation function (KDF) in the 5G-AKA [4]. By introducing this tiny computational
overhead, the 5GSBA can ensure session key perfect forward secrecy (PFS), backward
secrecy, and linkability attack prevention. On the other hand, the computational time of the
5GSBA and the SE-AKA [20] are comparable because both schemes employ ECDH, but the
5GSBA offers an enhanced security function in terms of DoS attack prevention and DDoS
alleviation. The BB-AKA 5G [10] consumes much more time than the 5GSBA because the
BB-AKA 5G needs two ECDSA signatures and verifications at the gNB and the AMF, while
in contrast, the 5GSBA only requires one lightweight one-way hash secret verification in
the gNB. Thus, the 5GSBA saves (10.4107 − 5.1377)/10.4107 = 50.6% of computational
overhead compared to the BB-AKA 5G. Consequently, although the 5GSBA protocol has
unavoidably introduced tiny computational overhead, it is still the most efficient protocol
in terms of balancing between security and performance.

6.1.2. Average Delays under Unknown Attacks

Although the 5GSBA could resist several malicious attacks, as shown in the security
analysis, it is possible that new unknown attacks in the 5G network could interrupt the
authentication process. To evaluate the performance under unknown attacks, it was as-
sumed that, for each step of the protocol, the network faced either known or unknown
attacks. Specifically, there will be a probability that the protocol will encounter an unknown
attack. If the incoming attack is known, the protocol should continue smoothly until com-
pletion. However, if the incoming attack is unknown, the protocol would be unavoidably
interrupted. In this case, it must restart from the first step until it completes the last step.
Based on the assumptions above, we created a simulation model on MATLAB 2020b. Using
1 million threads to run the protocol, we found the average execution time to complete
the protocol under different unknown attacks, as shown in Figure 6. The results showed
that although the 5GSBA had slightly higher delays (from 1.67 to 4.17 milliseconds) than
those of the 5G-AKA [4] in all scenarios, its performance was still much better than another
blockchain-based protocol of the BB-AKA 5G [10]. Considering that the 5GSBA ensured
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the best security among all protocols, we can still conclude that it can achieve a reasonable
balance between high security and reasonable delays.

Figure 6. Average delays under unknown attacks.

6.2. Communication Overhead

As bandwidth resources in the 5G network are invaluable, smaller communication
overhead is always preferred. Thus, we further evaluated the communication overhead in
terms of bandwidth consumption and transmission overhead.

For the bandwidth consumption based on five different security levels suggested by
NIST [35], the total message sizes of the related protocols are derived in Figure 7. It shows
that our 5GSBA outperformed all other schemes by achieving the lowest bandwidth
consumption. This is because the 5GSBA authenticates the incoming UE locally using the
two-step protocol, which can save redundant forwarding messages.

Figure 7. Total bandwidth consumption.

For communication delays there are two components: propagation delays and trans-
mission delays. Propagation delay calculations consist of both wired and wireless connec-
tions. For the wired connections, we referred to the link between the gNB and the nearest
5GC functional entities. It is assumed that optical fiber is deployed for all wired connections,
and the 5GC functional entities are geographically distant to the gNB. To simulate a real-
life situation, we assumed the distance between the gNB and the nearest 5GC functional
entity to be 1 km, and the distance between two functional entities within the 5GC to be
less than 0.5 km. For the wireless connection, according to the dense urban 5G service
requirement in TS 22.261 [36], we assumed that the inter-site distance (ISD) between two
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gNBs was 200 m, and the requesting UE was located to the edge of the coverage of the gNB.
Therefore, the distance between the gNB and UE was about 100 m. The transmission delay
calculation also consisted of wired and wireless connections. For the wired connections,
due to the link of optical fiber, it was assumed that the uplink and downlink speed were
both 1 Gbit/s. For the wireless connections, similarly, by following TS 22.261 [36], it was
assumed that the uplink speed for UE was 50 Mbit/s and the downlink speed for UE was
300 Mbit/s. For the blockchain-based schemes, it was assumed that blockchain nodes could
synchronize new blocks parallelly during the idle time of gNBs. To better reflect the extra
communication overhead introduced by blockchains, we included the average delay of
downloading one old transaction and uploading one new transaction into the calculation.
Finally, by combining all the assumptions above, the sums of propagation and transmission
delays are derived in Figure 8.

Figure 8. Total communication delays.

Figure 8 shows that the 5GSBA achieves similar total communication delays from
160-bit to 256-bit key length. Although the total communication delay of the 5GSBA was
marginally higher than that of the 5G-AKA [4] from 384 bit to 512 bit, the 5GSBA still con-
sumed much less time than that of the BB-AKA 5G [10]. This is because the 5GSBA saved
some propagation delays by consuming the lengthy authentication requests locally in gNBs.
Considering that the 256-bit ECC key was accepted in the NIST recommendation [35],
the communication delays of the 5GSBA were very close to that of the 5G-AKA. Over-
all, the 5GSBA achieved the right balance between strong security and relatively low
communication overhead.

6.3. Energy Consumption for UE

Since mobile devices have limited battery life, a security protocol with the strongest
security and the least energy consumption is always preferable. To evaluate the energy
consumption for UE two factors should be considered: data transmission energy and the
energy for the execution of the cryptographic functions. For the data transmission energy,
the data transfer power model in [37] is adopted to estimate the energy consumption. Thus,
the energy cost for uplink transmission of the UE is in Equation (39) and the energy cost
for the downlink is in Equation (40), where αu= 438.39 mW/Mbps, αd = 51.97 mW/Mbps,
β = 1288.04 mW, tudr is the uplink throughput, tddr is the downlink throughput, tul is
the transmission time spent on the uplink, and tdl is the transmission time spent on the
downlink. We further assume that the uplink and downlink throughput follow the dense
urban 5G service requirement in TS 22.261 [36], so that tudr = 50 Mbps and tddr = 300 Mbps.

Eul = (αutudr + β) · tul (39)
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Edl = (αdtddr + β) · tdl (40)

On the other hand, for the energy consumption for the execution of cryptographic
functions, the measure of energy cost approximation in [38] is taken. In [38], all experiments
were conducted using a battery-powered Compaq iPAQ H3670 PDA. It was equipped with
an Intel SA-1110 StrongARM processor clocked at 206 MHz, 64 MB of RAM, and 16 MB
of FlashROM. Moreover, the energy cost of ECDH public key generation EECDH.gen was
276.7 mJ, the ECDH common key derivation EECDH.ck was 163.5 mJ, the ECDSA signature
generation EECDSA.sign was 134.2 mJ, and the ECDSA signature validation EECDSA.ver was
196.23 mJ. For the energy cost of symmetric key-based operations, the symmetric key-based
encryption Esym. was 9.92 + 2.29l uJ, where l was the number of bytes of the cleartext.
The HMAC operation EHMAC was 1.16 mJ, and hash operation Ehash was 0.76 mJ. For the
ECIES operations, since it was a hybrid encryption combining both CDH problems and a
key encapsulation mechanism (KEM), the cost of the ECIES encryption was estimated as
EECDH.gen + EECDH.ck + Esym = 440.20992 + 0.00229l mJ.

Finally, by combining all parameters above with the unknown attack model stated in
Section 6.1.2, the average UE energy consumption for different protocols is simulated in
Figure 9. It shows that all the schemes providing perfect forward and backward secrecy,
including the 5GSBA [4], SE-AKA [20], and BB-AKA 5G [10], consume a similar amount of
energy in a situation without any unknown attacks. When the unknown attack probability
increases, the 5GSBA unavoidably uses more energy because of the increased SUCI genera-
tion. However, the 5GSBA still consumes less energy than the BB-AKA 5G. On the other
hand, although the 5G-AKA uses the least energy, its power-saving symmetric key-based
cryptosystem makes it vulnerable to many other known attacks.

Figure 9. Energy consumption for UE.

6.4. Resistivity to DoS and DDoS Attacks

To show that our 5GSBA can fight against DoS and DDoS attacks, we further design
two simulations to compare all related protocols. All simulation results show that the
5GSBA can achieve a high level of security functionality with reasonable delays.

6.4.1. Average Delays under DDoS Flooding Attacks

One of the outstanding features of the 5GSBA is the alleviation of the flooding of DDoS
attacks. The 5GSBA, since all authentication tasks are distributed at various gNBs, avoids
congestion and processing at the single authentication entity AUSF. Hence, to illustrate the
performance of the protocols under the flooding of many authentication requests, we can
model all centralized protocols, such as 5G-AKA [4] and SE-AKA [20], as M/M/1 queuing
models, while the blockchain-based protocol of the 5GSBA can be modeled as a M/M/c
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queuing model (c is the number of gNBs). For simplicity, it is assumed that the arrival and
location of UE devices follow Poisson distribution, such that all devices within 1 km2 are
located uniformly and can initiate authentication requests randomly. For the centralized
protocols, since the AUSF in the 5GC should be a computationally powerful server, it is
assumed that they run on the server 80% faster than the performance listed in Table 2.
For blockchain-based protocols, as the computational resources for each gNB are limited,
it is assumed that its computational time is the same as that in Table 2. Furthermore, one
AUSF only serves the gNBs within the 1km2 area, and the ISD of every gNB is 200 m
according to the TS 22.261 5G dense urban service requirement [36]. Consequently, each
server needs to process the requests from 1 km2/π0.12 = 31.8 ≈ 32 gNBs (i.e., c = 32).

Finally, the average time to complete the execution of the protocol is shown in Figure 10.
It shows that although the decentralized 5GSBA takes slightly longer time than the other
centralized schemes when the network traffic is low, as the number of requests increases,
the 5GSBA outperforms the others by maintaining an almost constant delay. In other
words, the 5GSBA can serve more authentication requests with the same amount of delay
than the centralized schemes. In future, as the number of gNBs keeps increasing, it is
expected that the 5GSBA will be able to perform even better by accommodating more
users. Therefore, this shows that the 5GSBA is more robust in terms of serving more users,
and thus is more effective in lessening the effects of flooding attacks. Moreover, since the
5GSBA can accommodate more requests, this also gives network operators more time to
detect DDoS attacks and deploy countermeasures. For example, network operators can use
the time to analyze network traffic and block potential DDoS attackers without impacting
overall service quality. By doing so, attackers would find it more challenging to perform a
successful DDoS attack in the 5G network.

Figure 10. Average delay under many attacks.

6.4.2. Average Successful Authentications under DoS Attacks

The 5GSBA can alleviate the effect of DoS attacks by verifying the timestamp and the
HMAC code in the authentication request. To prove that the 5GSBA can provide the best
DoS attack resistivity among all related schemes, a simulation model was built in MATLAB
2020b with the following assumptions. There are 1000 mobile devices sending authentica-
tion requests to a server at every one millisecond, which can hold—at most—1000 sessions
simultaneously without any performance degradation. Then, for each authentication re-
quest, there could be a percentage chance that it is a fabricated DoS request. In case the
request is legitimate, the server will complete the protocol operation normally following
the protocol specifications. However, if the request is a DoS attack, either of the following
results could happen. If the server can identify it as a DoS request, it will terminate the
session immediately to accept another new request. If the server cannot identify it, the ses-
sion will hold until it reaches the protocol expiry time at 3 s, which is a common default
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value for RADIUS server timeout. This simulation is run for 60 s. The number of successful
authentications of different schemes is recorded in Figure 11.

Figure 11. Successful authentications under DoS attacks.

Figure 11 shows that when there is no DoS attack in the network, the 5G-AKA performs
the best among all schemes with the highest number of successful authentications. However,
when the percentage of DoS attacks increases, the performance of the 5G-AKA [4] drops
drastically, while the 5GSBA maintains the highest number of successful authentications.
This is because the 5G-AKA has no way to identify if the authentication requests are
fabricated, so the server wastes some sessions for holding until their expiry. On the other
hand, the SE-AKA [20] can also provide DoS attack prevention, similar to our 5GSBA.
However, the 5GSBA runs faster, so it has a higher number of successful authentications.

6.5. Discussion of the Results

The performance evaluation shows that when there are DoS or DDoS attacks in the 5G
networks, the 5GSBA is the better protocol with a higher performance in terms of a stable
authentication delay and a high authentication success rate. The only limitation of the
5GSBA would be the slightly added overhead in computational overhead, communication
overhead, and energy consumption compared with the 3GPP 5G-AKA [4]. However, given
that there will be an exponential growth of 5G mobile devices in the future, the risk of DoS
and DDoS attacks will become more prominent. Thus, we believe that these imperceptible
overheads are justifiable to safeguard future 5G networks.

7. Conclusions

In 5G networks, DoS and DDoS attacks have become a critical issue due to the increas-
ing number of mobile devices. To ensure the robustness and security of the 5G network,
we have proposed a Secure Blockchain-based 5G Authentication and Key Agreement
(5GSBA) protocol in this paper. The 5GSBA protocol holds many security features that the
existing 3GPP 5G-AKA scheme fails to achieve, including perfect forward secrecy, device
anonymity, and most importantly, the resistivity to DoS and DDoS attacks. By the decen-
tralization of authentication functions with blockchain technology, the 5GSBA delivers
the best quality of service (QoS) among all schemes in relation to DoS and DDoS attacks.
Our performance evaluation also demonstrates that the overhead added by 5GSBA is
imperceptible compared to other existing solutions. Therefore, we believe that the 5GSBA
protocol is ideal for balancing strong security functionality and high performance.
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