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Abstract: To reduce the economic losses caused by bearing failures and prevent safety accidents, it is
necessary to develop an effective method to predict the remaining useful life (RUL) of the rolling
bearing. However, the degradation inside the bearing is difficult to monitor in real-time. Meanwhile,
external uncertainties significantly impact bearing degradation. Therefore, this paper proposes a
new bearing RUL prediction method based on long-short term memory (LSTM) with uncertainty
quantification. First, a fusion metric related to runtime (or degradation) is proposed to reflect the
latent degradation process. Then, an improved dropout method based on nonparametric kernel
density is developed to improve estimation accuracy of RUL. The PHM2012 dataset is adopted to
verify the proposed method, and comparison results illustrate that the proposed prediction model
can accurately obtain the point estimation and probability distribution of the bearing RUL.

Keywords: remaining useful life (RUL); degradation feature screening; LSTM; uncertainty

1. Introduction

The remaining useful life (RUL) prediction for rolling bearings is of great significant
and practical value for the predictive maintenance of mechanical equipment and safe
operation of industries [1,2]. In recent years, many scholars have studied and summarized
RUL prediction methods [3–5]. With the gradual accumulation of industrial condition mon-
itoring data and the continuous improvement of computer computing power, data-driven
RUL prediction methods have become the focus of prognostic and health management
(PHM) research. Whereas, the rich condition monitoring data led to formidable challenges
to traditional artificial intelligence methods [6]. Deep learning methods have powerful
information extraction capabilities and can quickly extract effective information from mas-
sive data. Therefore, RUL prediction methods based on deep learning are favored by an
increasing number of scholars [7,8].

For RUL prediction, deep learning has been proven to have strong scalability and
general-purpose capabilities to handle massive high-dimensional data, thereby realizing
RUL prediction from such data [9]. Ali et al. [10] introduced the WD (Weibull distribution)
to the SFAM (simplified fuzzy adaptive resonance theory mapping) neural network to
predict the RUL of rolling bearings. Using an artificial neural network unit (ANN) with
multiple hidden layers, Strušnik et al. [11] constructed a simulation model to predict system
performance based on real data. Kim et al. [12] proposed a CNN-based (convolutional
neural network, CNN) prediction model to reflect the correlation between RUL estimation
and a health status detection process. Based on data trajectory expansion, a joint data-
driven RUL prediction method using the AdaBoost regression model and the long-short
term memory (LSTM) model was established by Zhu et al. [13]. Liu et al. [14] used stacked
bidirectional LSTM to establish a data-based model to predict the RUL of supercapacitors.
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Kong et al. [15] proposed a framework combining deep convolutional neutral network
(DCNN) and two-layer LSTM, used for lithium-ion battery state-of-health (SOH) estimation
and RUL prediction. Zheng et al. [16] combined a multilayer LSTM unit with a standard
feedforward layer to form a novel LSTM-based prediction model. At present, LSTM has
attracted more and more attention for predicting the RUL of mechanical components due
to the advantages of time series data modeling.

The above studies have verified the prospects of deep learning-based methods in RUL
prediction. However, most of these methods are implemented with deterministic neural
networks, which ultimately provide RUL point estimation. In practical applications, RUL
prediction is affected by various types of prediction uncertainties, such as measurement
uncertainty introduced by noise interference, model uncertainties related to the prediction
model, and uncertainty conditions caused by the operation randomness [17]. Uncertainty
quantification is the basis of many key decisions. If the uncertainty is not quantified, the
estimated value of the RUL prediction point has difficulty providing sufficient guidance
value for the maintenance strategy in practical applications [18,19].

Liu et al. [20] presented an incremental online learning strategy based on the rele-
vance vector machine (RVM) algorithm, which achieved high prediction accuracy and
considered the uncertainty. Tang et al. [21] used a modeling method based on the truncated
normal distribution (TND) to estimate the degradation state of lithium batteries, which
can simultaneously obtain the distribution of drift parameters and the RUL distribution
by considering measurement uncertainty. The above methods are based on mathemat-
ical statistics and quantify the uncertainty to an extent. Nonetheless, the quantification
methods consume the resources and time, and the RUL prediction methods still have
certain limitations. Therefore, to obtain an accurate RUL estimation while considering
uncertainty, it is necessary to incorporate uncertainty features into deep-learning-based
methods. Ghahramani [22] stated that the Bayesian method is a promising measure of
uncertainty, and Bayesian inference can be used as a learning tool to address uncertainty in
deep learning. Additionally, Gal and Ghahramani [23] theoretically and experimentally
validated that, for quantifying the uncertainty, the dropout mechanism can be applied to
obtain a Bayesian approximation in the deep learning field.

Based on the above analysis and summary, it can be found that the current RUL
prediction is faced with the dual problems that traditional deep learning methods have
difficulty measuring the uncertainty and common uncertainty measurement methods are
limited to adapt to RUL prediction methods. To overcome these difficulties, this paper
proposes a bearing RUL prediction method based on LSTM and uncertainty quantification.
First, in the data preprocessing stage, the bearing degradation characteristics are screened
according to correlation, monotonicity, and robustness to provide the bearing degradation
information for model training. Second, in the prediction stage, by introducing dropout into
the LSTM network model, the RUL point and the nonparametric kernel density distribution
can be obtained. The RUL point estimation and nonparametric kernel density distribution
are combined to make decisions based on uncertainty.

The paper is organized as follows. Following this introduction, the basic principle
of LSTM are briefly presented in Section 2. In Section 3, the feature screening method
and the proposed uncertainty-based RUL prediction model are introduced. Then, the
verification and comparison of the proposed methods are carried out in Section 4. Finally,
the conclusions are drawn in Section 5.

2. Background
2.1. LSTM Neural Network Model

The LSTM is a special variant of the recurrent neural network (RNN), which can
alleviate the long-term dependence of the RNN by adding more complex cellular memory
units. Figure 1 shows the basic unit structure of the LSTM model. Its basic unit is a memory
block mainly formed by a memory cell and three gate control units (including a forget gate,
an input gate, and an output gate) [24]. The memory unit is represented by the horizontal
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straight line at the top of Figure 1, which is used to receive information from the previous
moment and transfer the processed information to the next moment. The three gate units
are marked by the dashed box. They all have the same structure and consist of a sigmoid
activation function and a multiplication operator in sequence. The sigmoid activation
function is used to output a number in (0, 1), and the multiplication operator is used to
control the throughput of other information.
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2.2. Dropout

Uncertainty quantification is the basis of many key decisions. RUL prediction without
uncertainty quantification is usually inaccurate and unreliable. Dropout, proposed by
Hinton [25], is mainly used to solve the overfitting problem of machine-learning-based
models. Specifically, during training the model, the network weights are randomly deleted
or reduced, and the connections between the neural nodes are deleted or weakened to
reduce the overfitting of the network model.

In addition to solving the problem of overfitting, dropout can also be used to quantify
uncertainty. It has been verified that the Bayesian approximation of uncertainty quan-
tification in deep learning can be realized [26]. Bayesian theory can be introduced into
deep neural networks to obtain the probability distribution of network parameters and
eventually obtain an uncertainty assessment of the prediction results. However, for un-
certainty quantification under the Bayesian framework, variational inference needs to be
used to approximate the posterior distribution, which greatly changes the structure of
the original neural network. It introduces many additional parameters and increases the
computational cost. Dropout, originally used to prevent overfitting in a neural network,
can be equivalent to the variational inference process in a Bayesian framework. It can also
quantify the prediction uncertainty without greatly changing the neural network model
used. Notably, the dropout process is similar to training several different neural networks
in parallel in a given neural network. Thus, the uncertainty introduced by dropout is the
model uncertainty, which is also called epistemic uncertainty.

3. RUL Prediction Method

The RUL prediction method based on LSTM and uncertainty quantification is proposed
in this paper. As shown in Figure 2, the prediction framework mainly includes three parts:
data preprocessing, model training, and RUL prediction. In the initial data preprocessing
stage, the features of vibration signals are extracted and screened by a novel comprehensive
evaluation index. Then, the features are normalized to reduce the scale difference between
them to reduce the subsequent model training time. Next, the sample data that meet the
input requirements of LSTM need to be constructed by the sliding time-window method.
Finally, the sample data are divided into the training and testing sets. The training set
is utilized to train the established LSTM model to determine and optimize the model
parameters during the model training stage. Followed by the RUL prediction stage, the
trained LSTM model with operating dropout can process the sample data to obtain the
prediction results, and apply nonparametric kernel density estimation to obtain the kernel
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distribution of the bearing RUL by considering the uncertainty, thus providing a basis for
uncertain decisions.
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3.1. Data Preprocessing
3.1.1. Build an Alternative Feature Set

The degradation features of bearings in different domains can be extracted by dif-
ferent methods. Bearing degradation is a non-stationary dynamic process with strong
time correlation, while frequency domain features are usually statistical features based on
discrete Fourier transform, which have no advantage in reflecting the change of specific
frequency over time. Thus, to capture the transient characteristics in the bearing degra-
dation, time-frequency domain features, such as wavelet packet energy, are selected as
the alternative feature sets. Additionally, the alternative feature sets contain ten kinds of
common time-domain degradation features: square root mean (SRM), the root mean square
(RMS), absolute mean (AM), absolute maximum (MA), skewness (Skw), kurtosis (Kur),
crest factor (Cf), shape factor (Sf), clearance factor (Clf), and impulse factor (If).

In subsequent experiments, ten time-domain degradation features are calculated
using the bearing acceleration signals in the horizontal and vertical. Then, four-level
wavelet packet decomposition is performed to obtain 10 time-domain degradation features
and 16 wavelet packet energy features. This means that for each bearing data set, the
corresponding alternative feature set contains 52 alternative features.

3.1.2. Evaluation and Screening of Feature Sets

In contrast to its fault diagnosis role, RUL prediction needs to fit the degradation
process, which is conditioned by failure modes. Therefore, some alternative features that
are only applicable to specific failure modes are not suitable for RUL prediction. Three
feature evaluation indexes [27], including a correlation indicator, Corr( f , t), monotonicity
indicator, Mon( f ), and robustness indicator, Rob( f ), are used to screen the features that
can effectively reflect the degradation process and have predictability.

Before evaluating the alternative features, the central moving average method is
utilized to treat the alternative feature, f , as a random process, which is divided into a
trend part, fT , reflecting the average trend and a random part, fR, reflecting the residual, as
in Equation (1).

f (tk) = fT(tk) + fR(tk) (1)
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where f (tk) is the degradation feature value at time tk. Based on Equation (1), the above
three evaluation indexes are given by

Corr( f , t) =

∣∣∣∣K K
∑

k=1
( fT(tk)tk)−

(
K
∑

k=1
fT(tk)tk

)
·

K
∑

k=1
tk

∣∣∣∣√√√√[K
K
∑

k=1
f 2
T(tk)−

(
K
∑

k=1
fT(tk)

)2
]
·
[

K
K
∑

k=1
t2
k −

(
K
∑

k=1
tk

)2
] (2)

Mon( f ) =
1

K − 1

∣∣∣∣∣ K

∑
k=1

h( fT(tk+1)− fT(tk))−
K

∑
k=1

h( fT(tk)− fT(tk+1))

∣∣∣∣∣ (3)

Rob( f ) =
1
K

K

∑
k=1

exp
(
−
∣∣∣∣ fR(tk)

f (tk)

∣∣∣∣) (4)

where K is the total number of observations and h(t) is a step function which is defined as

h(t) =
{

1, t > 0
0, t ≤ 0

(5)

A single feature evaluation index can only evaluate partial applicability of the al-
ternative features for RUL prediction. To comprehensively evaluate the performance of
alternative degradation features, a novel comprehensive evaluation index, Ce, based on the
above three single indexes is established in this paper, which is given by

Ce = 0.2Corr( f , t) + 0.5Mon( f ) + 0.3Rob( f ) (6)

The weight value before each feature evaluation indicator represents the importance of
the indicator. The weight value is limited to the range (0, 1). During the process of bearing
degradation, damage is accumulated, thus the monotonicity of degradation features is
the most important. Secondly, in order to ensure the reliability of prediction results, the
robustness of degradation features should also be prioritized. Therefore, weights of 0.2, 0.5,
and 0.3 were selected for Corr, Mon, and Rob, respectively.

3.1.3. Standardizing Features and Constructing Samples

The relative magnitude of different feature scales makes a big difference in training. If
screened features were not standardized, then the features with large magnitudes would
play a major role in model training. However, the features with small magnitudes have
difficulty facilitating the update of model parameters. This means that some useful features
do not participate in the model training process, which makes it difficult for the model to
be trained to an optimal state. Furthermore, this would also cause repeated oscillations in
the gradient direction during the model optimization process, which would slow down the
convergence speed and increase the training time. Normalization of input features into a
machine learning model is a standard preprocessing step and using mean and standard
deviation is the most common method. Therefore, the Z-score standardization criterion is
applied to process screened features. The Z-score standardization criterion is formulated as

Xstand =
Xorig − µ

σ
(7)

where Xstand and Xorig are the standardized signal and the original signal, respectively, and
σ and µ are the variance and mean of the original signal, respectively.

In addition to standardizing the feature signals, this paper also uses the sliding time-
window method to construct sample data that meet the input requirements of LSTM. For
the LSTM prediction model, the sequence length and input dimension need to be set
in the model input. The sample data after processing in the previous steps are a two-
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dimensional array of size Nsample_point × Nfeature, where Nsample_point and Nfeature are the
number of sampling points and features, respectively. The sample length corresponding to
the sequence length needs to be determined first. The sample length, Nlength, corresponding
to the sequence length is set to 25 in this paper based on experience.

In order to construct samples, the length of the time window is set to Nlength, the data
corresponding to the sampling points 0–Nlength are taken as an input sample, and the RUL
of the Nlength-th sampling point is set as the sample label. Then, the interception window is
moved backward by one time unit along the sampling time axis, and the above operation
is repeated to obtain a series of input samples. There is overlap between adjacent samples
constructed by sliding time windows, which can make LSTM fully fit the training data.

3.2. Prediction Model Based on LSTM and Uncertainty Quantification

In this paper, the proposed LSTM-based prediction model consists of an LSTM layer,
a fully connected layer, and a dropout layer. The LSTM layer is used to extract hidden
temporal information. It also mines the temporal information in depth by superimposing
multiple LSTM layers. Generally, the number of LSTM layers is set to 1–4, while this paper
is set to 2. The number of LSTM layers is set according to the influence of different layers
on the final result, as shown in Table 1. The fully connected layer is used to transform the
hidden layer space output by the LSTM layer into the sample label space. According to the
universal approximation theorem (UAT), two fully connected layers with enough hidden
elements and at least one active function with a ‘squeeze’ function can fit any continuous
function. Therefore, the LSTM layer is followed by two fully connected layers and the
activation function is a tanh function. The dropout layer is used to prevent overfitting and
quantify the prediction uncertainty in the testing stage. In this paper, a dropout layer is
added between two LSTM layers and two fully connected layers. The specific prediction
model parameters are given in Table 2. Furthermore, the mean squared error (MSE) cost
function given by Equation (8) is adopted to evaluate the accuracy of the predicted value
during model training. The Adam optimizer is adopted to minimize the cost function, and
the corresponding learning rate is set to 0.0005. The parameters of the model mentioned
above are roughly selected according to experience, and then optimized based on grid
search method. Tables 1 and 3–5 show the final results of the proposed model under
different parameter values, in which all parameters except those with variable values
are optimal.

MSE =

n
∑

i=1
( f (x)− y)2

n
(8)

where y denotes the target value, f (x) denotes the predicted value, and n is the total
number of predicted values.

Table 1. Results of the proposed method with different hide layer size and number of LSTM layers.

No. Hidden_Size RMSE MAE No. Num_Layers RMSE MAE

1 50 0.0885 0.0669 1 1 0.1070 0.0890
2 100 0.0706 0.0554 2 2 0.0567 0.0385
3 200 0.0567 0.0385 3 3 0.0793 0.0582
4 300 0.0897 0.0614 4 4 0.0805 0.0536
5 400 0.1124 0.0891 5 5 0.2615 0.1575

Table 2. Structure of LSTM prediction model.

No. Layers Parameters

1 Input (64 × 25 × 9)
2 LSTM (9, 9)
3 Dropout 0.5
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Table 2. Cont.

No. Layers Parameters

4 LSTM (9, 9)
5 Dense (9 × 25, 100), linear
6 Dropout 0.5
7 Dense (100, 1), linear, tanh
8 Output (64, 1)

Table 3. Results of the proposed method with different epochs and learning rates.

No. Epoch RMSE MAE No. Learning Rate RMSE MAE

1 50 0.0885 0.0669 1 0.0001 0.1167 0.0805
2 100 0.0706 0.0554 2 0.0005 0.0567 0.0385
3 200 0.0567 0.0385 3 0.001 0.0699 0.0395
4 300 0.0897 0.0614 4 0.005 0.0707 0.0467
5 400 0.1124 0.0891 5 0.01 0.0976 0.0697

Table 4. Results of the proposed method with different batch size and length of sequences.

No. Batch_Size RMSE MAE No. Length of Sequence RMSE MAE

1 16 0.1180 0.0826 1 10 0.0830 0.0550
2 32 0.0907 0.0610 2 20 0.0784 0.0537
3 64 0.0567 0.0385 3 25 0.0567 0.0385
4 128 0.0869 0.0738 4 30 0.0741 0.0566
5 256 0.0881 0.0713 5 40 0.0940 0.0736

Table 5. Results of the proposed method with different dropout and linear layer output size.

No. Dropout RMSE MAE No. Linear Size RMSE MAE

1 0.2 0.0952 0.0675 1 10 0.1013 0.0677
2 0.35 0.0828 0.0570 2 50 0.0825 0.0564
3 0.5 0.0567 0.0385 3 100 0.0567 0.0385
4 0.65 0.0698 0.0459 4 200 0.0844 0.0542
5 0.8 0.0802 0.0667 5 400 0.0868 0.0600

Additionally, for the proposed prediction model, combining dropout and nonpara-
metric kernel density estimation are used to quantify the uncertainty, thus obtaining the
RUL point estimations and kernel distributions. As discussed in Section 2.2, the dropout
process is similar to training several different networks in parallel under a given network
structure. Therefore, an LSTM-based prediction model with operating dropout can ob-
tain some different prediction results when the same data are input into the prediction
model many times, which means that there is uncertainty quantification. The mean value
can be regarded as the point estimation of the RUL. The nonparametric kernel density
estimation can be used to process those prediction results to obtain the kernel density
distributions of the RUL at different sample points, which can be used to make convincing
uncertainty-based decisions.

4. Experiment and Results
4.1. Data Set Description

The PHM2012 dataset provided by the FEMTO-ST research institute in Besançon,
France, contains bearing life-test data that is utilized to study the prediction performance
of the bearing RUL prediction method. The experimental platform is shown in Figure 3.
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In the PHM2012 dataset, the data represent a deep-groove ball bearing’s operation,
and the data are mainly obtained under three different load conditions. The corresponding
revolving speeds and radial loads are 1500 rpm and 5000 N, 1650 rpm and 4200 N, and
1800 rpm and 4000 N, respectively. For each load condition, there are 3–7 different bearing
degradation data subsets; two data subsets are the bearing lifecycle data, and the remaining
subsets are the truncated partial degradation data. Each subset mainly includes temperature
signals and acceleration vibration signals in the vertical and horizontal directions. For the
acceleration signal, the sampling frequency is 25.6 kHz, the duration of a single sample is
0.1 s, and the sampling interval is 10 s.

4.2. Experimental Setup and Model Training Process

In the PHM2012 data set, the bearing lifecycle data subsets, Bearing1_1 and Bearing1_2,
are assigned to training sets, and subset Bearing1_3, which is also the bearing lifecycle
data, is assigned to the testing set. The first label ‘1’ denotes the data for the first load
condition (revolving speed 1800 rpm and radial load 4000 N). The second label ‘1’ (or ‘2’ or
‘3’) denotes that the duration of accelerated bearing degradation testing is 1 h (or 2 h or 3 h).
The bearing acceleration signals in the vertical and horizontal directions can be used to
calculate 10 time-domain degradation features. Then, 10 time-domain degradation features
(RMS, SRM, AM, MA, Skw, Kur, Sf, Cf, If, and Clf) and 16 wavelet packet energy features
(WPNE-01–16) are obtained by conducting four-level wavelet packet decomposition. The
raw data of training set Bearing1_1 are shown in Figure 4, and 52 alternative features are
obtained after processing, as shown in Figure 5. In the figure, H and V denote the features
in the horizontal and vertical directions, respectively.
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For each subgraph of Figure 4, the horizontal axis denotes the number of data sampling
points, and the vertical axis denotes the amplitude of the corresponding degradation feature.
The order of magnitude of the time-domain degradation features Sf, Cf, and If is 101 and
that of the other 7 degradation features is 102–103. In addition, the order of magnitude of
the wavelet packet energy is up to 105. This shows that the order of magnitude of different
features is quite different, which is not conducive to parameter convergence during model
training. Moreover, not all the features in the alternative feature set can effectively reflect the
bearing degradation process. Hence the feature data need to be screened and standardized
before being input into the prediction model.

The comprehensive evaluation indicators are calculated with Equation (6) based on the
52 alternative features of the Bearing1_1 training set. The results in descending order are
shown in Figure 6. The comprehensive evaluation indicators of RMS, SRM, and AM in both
the horizontal and vertical directions are large, and they show a good degradation trend
close to the bearing degradation process. Eventually, based on Bearing1_1 and Bearing1_2
training sets, the total comprehensive evaluation indicators are sorted in descending order,
as shown in Table 6. The time-frequency domain characteristics H-WPNE-04 and H-
WPNE-03 reflect adjacent frequency bands, but H-WPNE-04 is superior to H-WPNE-0
in the comprehensive evaluation indicator of the two bearings. In order to reduce the
redundancy of the selected features, H-WPNE-04 was selected and H-WPNE-03 was
ignored. The features corresponding to the first nine comprehensive indicators are used
as bearing degradation features to train the subsequent prediction model. The indicators
are denoted as H-SRM, H-AM, H-RMS, V-SRM, V-AM, V-RMS, H-WPNE-04, H-WPNE-09,
and H-WPNE-01.

After the features are evaluated and screened, their data need to be standardized
by the Z-score standardization criterion. Additionally, in each bearing subset, there are
2803 sampling points. To meet the input requirements of the RUL prediction model, the
length of the time window is set to 25, and the sliding time-window method is used to
construct 2779 samples. All model training and testing are performed in a PyTorch deep
learning framework. The training epoch is set to 200 based on experience.
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Table 6. Total comprehensive evaluation indicators.

Name of Feature Ce of Bearing1_1 Ce of Bearing1_2 Total Ce

V-SRM 0.292921596 0.310558419 0.603480015
H-SRM 0.289652167 0.309138323 0.59879049
V-AM 0.293166977 0.299596696 0.592763673

H-RMS 0.290015165 0.297871662 0.587886827
H-AM 0.288404719 0.298055497 0.586460216
V-RMS 0.290772079 0.269228607 0.560000686

H-WPNE-04 0.273594185 0.285045446 0.558639631
H-WPNE-03 0.267427595 0.274241517 0.541669112
H-WPNE-01 0.271408761 0.266538666 0.537947427
H-WPNE-09 0.281029679 0.256802251 0.537831929

4.3. Results Analysis
4.3.1. RUL Predictive Analysis

After model training, the testing dataset needs to be utilized to validate the perfor-
mance of the proposed prediction model. In the prediction stage, it is necessary to turn
off the automatic reverse derivation function of the model to avoid updating the model
parameters and improving the prediction speed. The dropout layer also needs to work
normally to quantify the prediction uncertainty. For this paper, the testing set is input
to the prediction model 1000 times, and the mean value and standard deviation of the
predicted results at any time need to be obtained. Figure 7 shows the RUL prediction
results, while the mean value is viewed as the point estimation of the RUL. The solid blue
line represents the real RUL value, the solid red line represents the point estimation of the
RUL, and the light green area denotes the distribution range of the RUL prediction results
for the 1000 data inputs.

It can be seen from Figure 7 that the point estimation results can be divided into three
stages: the first stage consists of the first 800 sample points, the second stage consists of the
800–1700th sample points, and the third stage consists of the last 650 sample points. For
the first stage, the point estimation values of the RUL are lower than the real values and
fluctuate greatly. However, the overall trend of the prediction curve tends to be horizontal,
with only a slight downward trend. This is because the first stage corresponds to the
early stage of the bearing running, which is still in a healthy condition, and the actual
performance state does not change over time. Therefore, the RUL point estimation value
does not have a clear declining trend over time. Additionally, during model training, the
RUL label is set to decline linearly over time. It means that the trained prediction model
cannot accurately estimate the RUL based on the first stage in which the bearing is in
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good condition. As a result, there is a large fluctuation in this stage. For the second stage,
the RUL point estimation values are close to the real values with less fluctuation. This
shows that the proposed RUL prediction method has good prediction accuracy. The stable
wear stage of the bearing operation opportunely corresponds to this stage, along with the
irreversible stable degradation over time of various performance indicators. Then, the
precise RUL point estimation is captured by the prediction model. For the third stage,
the point estimation values of RUL present irregular fluctuation with a large fluctuation
range, but the overall trend still tends to the real value. Figure 7 shows that the RUL point
estimation drops suddenly at the beginning of the third stage. This is because the bearing
has a serious failure at this time, illustrating that the bearing has entered the accelerated
degradation stage. Some features change drastically under the influence of bearing faults,
causing prediction results based on these features to change significantly. Hence, the
proposed RUL prediction method based on data preprocessing and LSTM can be utilized
to accurately predict the bearing RUL.
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Figure 7. Bearing RUL prediction results.

In addition to showing the RUL point estimation, Figure 7 also shows the distribution
range of the prediction results for 1000 data inputs. The distribution range is large in the
early stage, and its upper boundary is close to the real RUL value. The middle stage distri-
bution is narrow and evenly distributed near the real value of the RUL. The distribution
range in the late-stage expands to the maximum value of the whole useful lifecycle. As can
be seen in Figure 8, the degree of fluctuation and the width of the confidence interval is
consistent with those of the point estimation of the RUL. Additionally, the variation trend
of the 95% confidence interval width first shows a slight decrease and then a faster increase
over time. This indicates that the uncertainty is the lowest in the second stage. Then, the
corresponding uncertainty gradually increases.
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The width variation of each sample point with a 95% confidence interval can reflect
the uncertainty variation of the predicted RUL value to some extent, but it cannot be used
directly to make the uncertainty-based decision. The variation trends of nonparametric
kernel density distributions with samples in different stages are shown in Figures 9–11,
which are used to make convincing uncertainty-based decisions on the RUL prediction
results in this paper.
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The kernel distribution of the RUL prediction results for 800 samples in the first stage
is shown in Figure 9. The point estimations deviate greatly from the real value, and the
kernel distribution is scattered. This illustrates that the proposed prediction method has
poor prediction performance in the first stage. However, the overall variation trend of the
point estimations in the first stage is relatively regular. The RUL prediction value within a
period has some reference significance, but the uncertainty is large. Figure 10 shows the
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kernel distribution of the RUL prediction results for 900 samples in the second stage. The
point estimations agree with the real value, and the kernel distribution is concentrated,
which shows that the prediction performance in the second stage is excellent. Considering
that the predicted RUL values in the second stage are distributed in a straight line where
the real RUL decreases linearly with time, the model obtains not only an accurate RUL
prediction value at this stage, but also an accurate final useful life end time by analyzing the
downward trend of the RUL prediction value over a period. Therefore, uncertainty-based
decisions for the RUL prediction results can be conducted in the second stage. As seen
in Figure 11, the prediction performance in the third stage is poor. The point estimations
deviate greatly from the real value, and the kernel distribution is scattered. What is worse,
the overall variation trend of the point estimations in this stage is irregular along with
high uncertainty. The reason for the deviation between point estimation and the real
value is the lack of information mining capabilities of the model itself and the insufficient
information about selected features in this stage. The deviation may also be caused by the
sudden failure, which cannot be considered in the prediction model. The discrete kernel
distribution in this stage finally leads to increasing uncertainty due to the lack of training
samples with sufficient information.

4.3.2. Comparison and Discussion

To show the effect of the feature screening step in the proposed RUL prediction model,
an extra RUL prediction case is conducted by replacing the feature screening with random
features. Furthermore, the CNN model is used to replace the LSTM model to predict
the RUL, further illustrating the superiority of the LSTM model over other networks in
temporal feature extraction. The prediction results for the above different cases are shown
in Figure 12.
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It can be seen that the prediction result of RUL of LSTM with random features is
basically maintained at about 0.5 before sample No. 1600, and drops sharply at sample
No. 1600. This is because some features focus more on reflecting the accelerated degrada-
tion time of faults rather than describing the degradation process of bearings. This fully
shows that feature screening is effective and necessary for RUL prediction. As the predic-
tion model based on CNN also includes feature selection, the corresponding prediction
results can reflect the bearing degradation process at an early stage. However, when the
bearing enters the state of accelerated degradation (after 1600 samples), the prediction
results of the model based on CNN show drastic fluctuations, which is obviously inferior
to the performance of the method proposed in this paper. For the above three different
situations, the corresponding mean absolute error (MAE), root mean square error (RMSE),
and training time are shown in Table 7. The RMSE and MAE of the proposed model are
both smaller than those of the other two models. Meanwhile, the training time is close to
that of the LSTM model with random features and far lower than that of the CNN model.
This further verifies the effectiveness of feature screening in improving the stability and
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accuracy of prediction, and the superiority of LSTM in mining hidden information in time
series data compared with other traditional neural networks

Table 7. Comparison of different prediction models.

Method RMSE MAE Time

The Proposed Method 0.0567 0.0385 116.35
LSTM with Random Features 0.2463 0.1864 110.17

CNN 0.1613 0.1194 590.08

To further verify the proposed method, we compared our proposed method with
models proposed by adaptive Kalman filter model. Figure 13 shows the comparison of
the predicted values of the model proposed in this paper and the adaptive Kalman filter
model proposed by Wang et al. [29]. Table 8 shows RMSE and MAE of the two models. It
can be found that the proposed method can track more complex and hidden degradation
behaviors, thus the life prediction results are more accurate. In conclusion, the bearing
uncertainty prediction model based on LSTM and uncertainty quantization proposed in
this paper can predict the bearing uncertainty stably and accurately, providing a basis for
uncertain decision-making.
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Figure 13. RUL prediction results for different methods.

Table 8. Comparison with other authors’ methods.

Method RMSE MAE

The Proposed Method 0.0567 0.0385
Adaptive Kalman Filter 0.0775 0.0640

5. Conclusions

Traditional deep-learning-based RUL prediction methods often lack the ability to
quantify related uncertainties in engineering practice. Considering this, this paper proposes
a bearing RUL prediction method based on LSTM and uncertainty quantification. The
uncertainty quantification is introduced by combining dropout and nonparametric kernel
density estimation. The effectiveness and feasibility of the proposed prediction model is
validated on the PHM2012 dataset, and based on the prediction result. Some conclusions
are given:

(1) The prediction results on the PMH2012 dataset illustrate that the proposed pre-
diction model can accurately and stably predict the bearing RUL. Especially in the stable
degradation stage, it has excellent prediction performance, which has the significance in
practical application.

(2) The novel comprehensive evaluation index based on correlation, monotonicity, and
robustness is proposed to improve the accuracy and stability of the prediction model. The
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process mainly focuses on evaluating and screening the features from the built alternative
feature set to select the effective degradation features. Furthermore, the superiority of
this strategy is perfectly validated by comparison with the LSTM-based prediction model
trained with random features.

(3) The uncertainty existing in the actual prediction process is introduced by combining
dropout and nonparametric kernel density estimation in this paper. The LSTM model with
operating dropout can obtain RUL distribution result approximating Bayesian inference.
These data are then processed using nonparametric kernel density estimation to obtain the
kernel distribution that expresses uncertainty. As a result, the specific result and variation
trend of point estimation and Gaussian kernel distribution of the bearing RUL can be
observed on the basis of the proposed prediction model. It provides an important and
scientific basis for uncertainty-based decisions.

Author Contributions: Conceptualization, Y.P.; Funding acquisition, J.Y.; Investigation, J.X.; Method-
ology, Y.P.; Software, P.W.; Visualization, J.X. and P.W.; Writing—original draft, J.Y. and Y.P. All
authors have read and agreed to the published version of the manuscript.
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Mathematical Notation

f (tk) denotes the degradation feature at time tk;
fT(tk) denotes the trend part of f (·) at time tk;
fR(tk) denotes the residual of f (·) at time tk;
K denotes a total number of sample points;
h(t) denotes step function;
Xstand denotes the normalized signal;
Xorig denotes the original signal;
σ and µ denote the variance and mean of the original signal, respectively;
Nsample_point denotes the number of sampling points;
Nfeature denotes the number of features at each sampling point;
Nlength denotes the number of sample points.
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