
Citation: Wang, X.; Zhou, T.; Dong,

Q.; Cheng, Z.; Yang, X. A Virtual

Combustion Sensor Based on Ion

Current for Lean-Burn Natural Gas

Engine. Sensors 2022, 22, 4660.

https://doi.org/10.3390/s22134660

Academic Editor: Hossam A. Gabbar

Received: 2 June 2022

Accepted: 19 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Virtual Combustion Sensor Based on Ion Current for
Lean-Burn Natural Gas Engine
Xiaoyan Wang 1,2, Tanqing Zhou 1,*, Quan Dong 1, Zhaolin Cheng 1 and Xiyu Yang 1

1 Institute of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China;
wang_xiaoyan@hrbeu.edu.cn (X.W.); dong_quan@hrbeu.edu.cn (Q.D.); zhaolinCheng@hrbeu.edu.cn (Z.C.);
yangxiyu@hrbeu.edu.cn (X.Y.)

2 Weichai Power Co., Ltd., Weifang 261061, China
* Correspondence: zhoutanqing@hrbeu.edu.cn

Abstract: In this study, an innovative sensor was designed to detect the key combustion parameters
of the marine natural gas engine. Based on the ion current, any engine structurally modified was
avoided and the real-time monitoring for the combustion process was realized. For the general
applicability of the proposed sensor, the ion current generated by a high-energy ignition system
was acquired in a wide operating range of the engine. It was found that engine load, excess air
coefficient (λ) and ignition timing all generated great influence on both the chemical and thermal
phases, which indicated that the ion current was highly correlated with the combustion process in
the cylinder. Furthermore, the correlations between the 5 ion current-related parameters and the
10 combustion-related parameters were analyzed in detail. The results showed that most correlation
coefficients were relatively high. Based on the aforementioned high correlation, the novel sensor used
an on-line algorithm at the basis of neural network models. The models took the characteristic values
extracted from the ion current as the inputs and the key combustion parameters as the outputs to
realize the online combustion sensing. Four neural network models were established according to the
existence of the thermal phase peak of the ion current and two different network structures (BP and
RBF). Finally, the predicted values of the four models were compared with the experimental values.
The results showed that the BP (with thermal) model had the highest prediction accuracy of phase
parameters and amplitude parameters of combustion. Meanwhile, RBF (with thermal) model had the
highest prediction accuracy of emission parameters. The mean absolute percentage errors (MAPE)
were mostly lower than 0.25, which proved a high accuracy of the proposed ion current-based virtual
sensor for detecting the key combustion parameters.

Keywords: combustion sensor; ion current; online measurement; neural network

1. Introduction

Increasingly stringent regulations on engine emissions have made alternative fuels a
hot topic [1]. Natural gas has become one of the main alternative fuels for the internal com-
bustion engine due to its low hydrocarbon ratio and renewable properties [2,3]. Moreover,
the high-octane number and high antiknock properties of natural gas enable the engine
to run at a higher compression ratio, thus improving thermal efficiency. However, there
are some non-negligible obstacles to the development of lean-burn natural gas engines.
For example, the gas in the cylinder is lean so that higher ignition energy must be used,
which will cause the deterioration of the durability of the ignition system. Furthermore,
when the gas mixture is thin enough, combustion becomes extremely unstable, and even
causes the misfire phenomenon. It not only reduces engine efficiency, but also increases HC
emissions. To solve the problems mentioned above, realizing on-line combustion sensing is
the primary task.

At present, there are two main methods to realize combustion sensing. One method
is to use optical testing technology to analyze the combustion condition of the constant
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volume projectile. In the past few decades, laser-based combustion detection technology
has been developed and has become a recognized method of combustion sensing. Re-
searchers used the schlieren method, PIV, LIF and other optical testing methods to obtain
key information about the working process in the engine cylinder, such as the tempera-
ture field, concentration distribution of each component in the combustion field, flame
characteristics, soot generation characteristics, etc. [4,5]. This method, however, is mostly
used on the laboratory bench. In fact, the complexity of the actual engine structure makes
optical testing difficult and it cannot meet the requirements of real-time monitoring of
the combustion process. The other method is to install the cylinder pressure sensor on
the cylinder cover. By processing the measured in-cylinder pressure signal, not only peak
pressure, average pressure and other parameters can be obtained directly, but also the
heat release rate and the combustion reaction extent can be calculated, which are of great
importance to engine structure design and combustion diagnosis [6–9]. However, due to
harsh operating conditions, the in-cylinder pressure sensor has a short duration, which
greatly increases the cost of engine production. In contrast, combustion sensing based on
ion current only needs to transform the spark plug into a combustion status sensor, which
is simple and low-cost. Furthermore, the abundant combustion information contained in
the ion current is sufficient to realize the combustion analysis [10–14]. Therefore, the ion
current sensor has the potential to replace the in-cylinder pressure sensor.

A large number of studies have shown that the spark plug ion current signal contains
abundant combustion information and can reflect the combustion situation in the cylinder.
Andersson built a model for the thermal part of an ionization signal in a four stroke SI (spark
ignition) engine, which can be used to estimate combustion properties such as pressure,
temperature, and content of nitric oxides based on measured ionization currents with
good accuracy [15]. Gerard proposed a methodology based on ion current for extraction
of critical parameters including combustion phasing, knock detection and combustion
stability [16]. Liu et al. applied the ion current to HCCI combustion sensing and proposed
a thermal phase model of the HCCI combustion ion current signal, which was used to
analyze the relationship between combustion parameters and ion current parameters [17].
Furthermore, the combustion signal sensing technology based on ion current has been
introduced into the study of fuel ratio of ethanol/gasoline dual fuel engine.

Without any engine modification, the spark plug ion current method has great poten-
tial in engine combustion perception research. However, there are still some disadvantages.
Firstly, the ion current signal is very weak and vulnerable to electromagnetic interference
and environmental interference from the ignition system [18]. Secondly, the ion current
signal is related to the engine structure, the strength of the ion current signal is affected
by the spark plug structure, fuel properties and the shape of the combustion chamber.
In addition, the information about the combustion process contained in the ion current
needs to be preprocessed before it can be used for engine control. So far, there is no unified
opinion about how to extract the information about combustion contained in the ion current
accurately and quickly. This is because the ion current presents different characteristics in
different types of engines with different combustion strategies [19,20].

At present, most of the research on ion current is focused on the gasoline engine [21–23],
but less so on the natural gas engine, resulting in few available reference data. Therefore,
this paper aims at the ion current in the lean-burn natural gas engine to provide data
support for further investigation. To fully study the characteristics of the ion current, the
main factors affecting the chemical phase and thermal phase of the ion current under lean
burn combustion conditions were investigated, including engine load, excess air coefficient
(λ) and ignition timing. Then, the correlation between phase and amplitude characteristics
of the ion current and the combustion characteristics was analyzed. Furthermore, the BP
and RBF neural networks were trained by the experimental value of whether there was
an ion current thermal phase, and four sensing models of combustion sensing based on
the ion current signal were obtained accordingly. Finally, the accuracy of the models was
evaluated and compared. The results were applied to the electronic control unit.
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2. Experimental Setup

The experiments were carried out on a natural gas engine. The specifications of the
engine are presented in Table 1, and an overview of the experimental set-up is shown in
Figure 1.

Table 1. Engine specifications (YC6K).

Parameters Value

Diameter/mm 129
Stoke/mm 165

Compression ratio 10:1
Fuel injection type PFI (port fuel injection)

Engine speed/(r·min−1) 1500
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Figure 1. Diagram of test bench installation.

The engine was tested using a GW500 dynamometer. On one of the engine cylinders,
the spark plug served as an ion current sensor, and a Kistler 4067 pressure sensor was
applied to measure the in-cylinder pressure. The signal was amplified and transmitted
(sampled every 0.1 crank angles) to a Ki-Box 2893A combustion analyzer. Meanwhile, an
AMA i60 emission analyzer was employed to measure NOx emissions transiently. More
importantly, a Lambda Meter LA4 air–fuel ratio analyzer was employed to indicate the
mixture concentration.

To guarantee the high signal to noise ratio of the ion current under lean-burn condition,
the NGI-1000 high energy ignition system developed by Altronic company was employed
to replace the original ignition system. The high ignition system enables the modification
of both ignition energy and ignition duration, which improves combustion stability in
lean operating environments. The system consists of an Altronic 502061 ignition coil, a
controller and connecting cables. The NGI-1000 unit steps up a 24V DC supply voltage to
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charge an energy storage capacitor, and the voltage of the primary coil is 185V. The ion
current measurement circuit is displayed in Figure 2.
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Figure 2. Circuit diagram of the ion current measurement.

To synchronize ion current with crank angle signal, the ion current was acquired by the
Ki-Box 2893A combustion analyzer through a voltage signal acquisition channel. Thus, the
ion current, the crank angle and the in-cylinder pressure were all measured synchronically.
A 300 Ω measuring resistance was employed to obtain the ion current signal practically. A
cycle of data is plotted in Figure 3.
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The fuel combustion process is accompanied by a large number of chemical reactions,
resulting in a large number of ions. At this time, the applied bias voltage can make the
ions near the spark plug electrode move oriented to generate a current, which is called the
ion current. In the ignition phase, the current is the jump current formed by the discharge
of the ignition coil in the spark plug gap. In the flame-front phase, the current produced
by the ion surge resulting from the chemical reaction of flame combustion is called the
chemical phase ion current. In the post-flame phase, ionization of the high-temperature gas
mixture after combustion causes the thermal phase ion current.

Five characteristics related to ion current are defined in this paper. Chemical peak value
(CPV) indicates the peak value of chemical phase ion current, and chemical peak phase
(CPP) is the corresponding crank angle. Similarly, thermal peak value (TPV) indicates the
peak value of thermal phase ion current, and thermal peak phase (TPP) is the corresponding
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crank angle. In addition, ion current integration (ICI) stands for the integration of both
chemical and thermal ion current. The formula of ICI is

ICI =
∫ t2

t1

i(t)dt (1)

where t1 is the time corresponding to the crank angle when the ion current changes from
negative to positive, t2 is the time corresponding to crankshaft rotation when the amplitude
of ion current decreases to 0, i(t) is the time domain signal of the ionic current.

To fully study the influencing factors of ion current and the correlation between ion
current characteristics and combustion characteristics, all test conditions are listed as shown
in Table 2.

Table 2. Engine specifications (YC6K).

Load Ignition Timing λ

10% 25–40 ◦CA BTDC 1.2–1.6
20% 25–40 ◦CA BTDC 1.2–1.6
25% 25–40 ◦CA BTDC X-0.2–1.6
30% 25–40 ◦CA BTDC 1.2–1.6
40% 25–40 ◦CA BTDC 1.2–1.6
50% 25–40 ◦CA BTDC X-1.2–1.6
60% 25–40 ◦CA BTDC X-0.2–1.6
70% 25–40 ◦CA BTDC X-0.2–1.6
75% 25–40 ◦CA BTDC X-0.2–1.6
80% 25–40 ◦CA BTDC X-0.2–1.6
90% 25–40 ◦CA BTDC X-0.2–1.6

Where X is the excess air coefficient under the propulsion characteristics of the original
machine under the current load. In the actual experiment, the engine in some working
conditions was unstable, so the data in these working conditions were not used. In
particular, when the load was 25, 50, 75 and 100%, besides collecting ion current, in-cylinder
pressure signal, excess air coefficient and other engine operating parameters, emission data
were collected in parallel.

3. Results
3.1. Ion Current Signals under Different Operating Conditions
3.1.1. Excess Air Coefficient Effects on Ion Current Signals

As one of the most important factors affecting engine combustion, λ (excess air coeffi-
cient) directly affects the number of molecules involved in the combustion reaction and
ionization, which has a significant impact on the ion current. To evaluate this effect, the
ignition timing was maintained at 37 ◦CA before top dead center (BTDC) under 50% engine
load, and the excess air coefficient was adjusted by changing the injection pulse width and
throttle opening [24]. Figure 4 shows the average ionic current signals of 140 cycles with
excess air coefficient between 1.3 and 1.6.

In Figure 4, with the increase of the excess air coefficient, the overall signal strength
of the ion current weakened. Both the CPV and the TPV decreased significantly with the
increase of the excess air coefficient, and the decrease range of TPV was larger than that of
CPV. Furthermore, when the excess air coefficient exceeded 1.50, the TPV even disappeared.
The CPP and TPP were delayed with the increase of the excess air coefficient.

3.1.2. Ignition Timing Effects on Ion Current Signals

Ignition timing affects the flame propagation rate and ionization ratio of the mixture
by affecting the temperature of the combustible mixture in the cylinder, thus affecting
the local peak value and phase of the ion current. Therefore, in this paper, the excess air
coefficient was kept unchanged at 1.35 under 50% engine load. The effect of ignition timing
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on the ion current was studied by changing the ignition timing of NGI-1000 ignition system.
As shown in Figure 5, the average ionic current signals when the ignition timing was 25, 28,
31, 34, 37 and 40 ◦CA BTDC are depicted.
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As the ignition timing moved forward, the overall ionic current signal intensity gradu-
ally increased. Both the CPV and TPV increased significantly with the advance of ignition
time, and the increase of thermal TPV was larger than that of CPV. The CPP and the TPP of
the ion current moved forward with the ignition timing, and the peak phase of the chemical
phase moved forward more obviously.

3.1.3. Engine Load Effects on Ion Current Signals

Figure 6a–c show the relationship between CPV, TPV, ICI and BTDC, respectively, as
well as engine load when the excess air coefficient was kept at 1.35. CPV increased first
and then decreased with the increase of load, and it increased gradually with the advance
of ignition timing. In general, TPV increased with the increase of load and the advance of
ignition timing. ICI is the integral of ionic current in the whole process, and the influence
of BTDC and load on ICI can be seen as the superposition of its action on CPV and TPV. As
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can be seen from (a) and (b), the influence of BTDC and load on TPV was more significant
than that of CPV, so the influence of BTDC and load on ICI was closer to TPV.
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3.2. Correlation of Ion Current with Combustion and Emission Parameters

Figures 7 and 8 shows the relationship between the ion current phase parameters (CPP
and TPP) and the combustion phase parameters (CA05, CA50, CA90, Pmax(θ), γ(θ) and
dPmax(θ)) under all load conditions. Generally, CA05 is the phase when the cumulative
heat release rate reaches 5%, which is used to indicate the starting point of combustion.
CA50 is the phase where the cumulative heat release reaches 50%. CA90 is the phase with
a cumulative heat release rate of 90%, which is generally used to indicate the end point of
combustion during combustion. Pmax(θ) is the phase corresponding to the maximum value
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of the in-cylinder pressure curve. γmax(θ) is the phase corresponding to the maximum heat
release curve. dPmax(θ) is the phase corresponding to the maximum value of derivative
curve of in-cylinder pressure.
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As depicted in Figure 7, the discrete points represent the data under all working
conditions with excess air coefficients of 1.3, 1.4 and 1.5, respectively. CPP had a high linear
correlation with CA05, CA50, CA90, Pmax(θ), γ(θ) under the same excess air coefficient.
Furthermore, the correlation coefficients under the three different excess air coefficients
were mostly more than 0.9.

As shown in Figure 8, the discrete points represent the combustion phase parameters
under all working conditions without differentiation of excess air coefficient. The TPP
was highly correlated with all six combustion phase characteristics. CA05, CA50, CA90,
CPP, Pmax(θ) and γ Max (θ) under three different excess air coefficients were mostly more
than 0.87.

As shown in Table 3, both the CPP and TPP can better reflect the characteristics of
combustion, while using the CPP to reflect the combustion phase parameters needed an
excessive air coefficient as an additional condition. As a result, CA05, CA50, CA90, Pmax(θ)
and γ(θ) could be indicated by the CPP combined with excess air coefficient or the TPP
alone. Furthermore, dPmax(θ) could only be indicated by the TPP alone.

Table 3. Correlation coefficients between ion current phase parameters and combustion phase parameters.

CA05 CA50 CA90 Pmax(θ) γ(θ) dPmax(θ)

CPP
λ = 1.3 0.9668 0.9658 0.9203 0.9513 0.9563 0.9624
λ = 1.4 0.9019 0.9136 0.8986 0.8911 0.8999 0.9113
λ = 1.5 0.9059 0.9066 0.9040 0.9078 0.9008 0.3274

TPP 0.9617 0.9635 0.8764 0.9793 0.9610 0.9793

The in-cylinder pressure can directly reflect the combustion state in the cylinder, Pmax
is the maximum pressure in the combustion process and combined with the peak of the
heat release curve γmax, can be used to indicate the sufficient degree of the combustion
process. Figure 9 shows the correlation between Pmax, dPmax, γmax and CPV, TPV, ICI in
all working conditions under a 75% load.

The correlation between the Pmax and the three amplitude characteristics of the
ion current was weak. This is because the pressure in the cylinder is not only related
to the combustion process in the cylinder, but also affected by the compression pressure
generated by the piston movement. On the other hand, dPmax had a high correlation
with the amplitude of the ion current. The relationship between the three combustion
parameters and ICI was more logarithmic. γ max was highly linearly correlated with CPV,
and more logarithmic with TPV and ICI. As a result, dPmax and γ max can be reflected by
the amplitude characteristics of ion current.
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NOx emission data were measured at 25, 50, 75 and 100% load conditions. In order
to ensure the accuracy of the data, the data under each working condition was recorded
after a stabilization time of one minute. As depicted in Figure 10, with the increase of CPV,
NOx emission increased. Although CPP has a certain correlation with NOx emissions, it
cannot fully reflect NOx emissions. For TPV, NOx emissions showed a rising trend with the
increase of TPV, and TPV is highly correlated with NOx emissions, showing a logarithmic
correlation. That is, when TPV is small, NOx emissions increase rapidly, while when TPV
is large, NOx emissions increase slowly. Similarly, compared with linear fitting data points,
the relationship between ICI and NOx emissions is more consistent with the logarithmic
fitting trend line.



Sensors 2022, 22, 4660 11 of 17

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

Figure 9. Relationship between ion current amplitudes and Pmax, dPmax and γmax. (a) CPV and 
Pmax; (b) CPV and γmax; (c) TPV and Pmax; (d) TPV and γmax; (e) ICI and Pmax; (f) ICI and 
γmax. 

The correlation between the Pmax and the three amplitude characteristics of the ion 
current was weak. This is because the pressure in the cylinder is not only related to the 
combustion process in the cylinder, but also affected by the compression pressure gener-
ated by the piston movement. On the other hand, dPmax had a high correlation with the 
amplitude of the ion current. The relationship between the three combustion parameters 
and ICI was more logarithmic. γ max was highly linearly correlated with CPV, and more 
logarithmic with TPV and ICI. As a result, dPmax and γ max can be reflected by the am-
plitude characteristics of ion current. 

NOx emission data were measured at 25, 50, 75 and 100% load conditions. In order 
to ensure the accuracy of the data, the data under each working condition was recorded 
after a stabilization time of one minute. As depicted in Figure 10, with the increase of CPV, 
NOx emission increased. Although CPP has a certain correlation with NOx emissions, it 
cannot fully reflect NOx emissions. For TPV, NOx emissions showed a rising trend with 
the increase of TPV, and TPV is highly correlated with NOx emissions, showing a loga-
rithmic correlation. That is, when TPV is small, NOx emissions increase rapidly, while 
when TPV is large, NOx emissions increase slowly. Similarly, compared with linear fitting 
data points, the relationship between ICI and NOx emissions is more consistent with the 
logarithmic fitting trend line. 

   
(a) (b) (c) 

Figure 10. Relationship between ion current amplitudes and NOx. (a) NOx and CPV; (b) NOx and 
TPV; (c) NOx and ICI. 

To conclude, the engine operating conditions determined great effects on the ion cur-
rent. The excess air coefficient affects the amplitude of the ion current during the whole 
stage, especially the thermal phase stage. When λ varied from 1.3 to 1.6, the TPV varied 
from 0 to 15mA. The ignition timing affected both the amplitude and the phase of the ion 
current. Besides, the CPV, TPV, ICI were sensitive to the change of engine load. More 
specifically, the correlation between the ion current and the combustion parameters were 
relatively high. Therefore, the ion current could be used to realize combustion sensing 
[25–27]. An ion-current based virtual combustion sensor is proposed as below. 

4. Virtual Combustion Sensor Based on Ion Current 
4.1. ANN Neural Network Models 

As a global approximation network, the back-propagation (BP) neural network has a 
slow learning speed and is not suitable for applications requiring high real-time perfor-
mance. In contrast, the radial basis function (RBF) network has the characteristics of sim-
ple structure, fast learning speed and good function fitting performance and has been ap-
plied in different industries and fields and performed well. Therefore, this paper uses the 
BP neural network algorithm and RBF neural network to propose a virtual combustion 
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To conclude, the engine operating conditions determined great effects on the ion
current. The excess air coefficient affects the amplitude of the ion current during the whole
stage, especially the thermal phase stage. When λ varied from 1.3 to 1.6, the TPV varied from
0 to 15 mA. The ignition timing affected both the amplitude and the phase of the ion current.
Besides, the CPV, TPV, ICI were sensitive to the change of engine load. More specifically,
the correlation between the ion current and the combustion parameters were relatively
high. Therefore, the ion current could be used to realize combustion sensing [25–27]. An
ion-current based virtual combustion sensor is proposed as below.

4. Virtual Combustion Sensor Based on Ion Current
4.1. ANN Neural Network Models

As a global approximation network, the back-propagation (BP) neural network has
a slow learning speed and is not suitable for applications requiring high real-time per-
formance. In contrast, the radial basis function (RBF) network has the characteristics of
simple structure, fast learning speed and good function fitting performance and has been
applied in different industries and fields and performed well. Therefore, this paper uses
the BP neural network algorithm and RBF neural network to propose a virtual combustion
sensor based on ion current [28–30]. The number of the input nodes and output nodes of
the networks are the same, while the number of hidden nodes are different. As for the
BP neural network, the number of the hidden nodes are determined by commonly used
formula. For the RBF neural network, hidden nodes are added to the hidden layer until
the mean square deviation meets the requirements. The network topology is shown in
Figure 11.
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The combustion sensor consists of four combustion parameter-related models, which
are the excess air coefficient prediction model, combustion phase model, combustion
amplitude model and NOx emission model. Their inputs and outputs are shown in
Figure 12 below.
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Figure 12. Inputs and outputs of 4 models.

The experimental data of the natural gas engine are divided into two groups according
to the presence or absence of the ion current thermal phase, and randomly shuffled. Then,
70% of the samples from 388 samples (single flow thermal phase with ion) and 127 samples
(single flow thermal phase without ion) were taken to train the models. Finally, 20 sam-
ples were taken as test and validation samples to verify the accuracy of the established
virtual tsensor.

4.2. Evaluation of the Prediction Performance

After training, the output of networks needs to be compared with the experimental
data tested by practical devices to verify the performance of the sensor. To evaluate the
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accuracy, root mean square error (RMSE), tie relative error (MAPE) and relative error are
applied. The formulas are as follow:

RMSE =

√
1
n

n

∑
i=1

( fi −mi)
2 (2)

MAPE =
1
n

n

∑
i=1

(
| fi −mi|

mi
) (3)

RE =

∣∣∣∣ fi −mi
mi

∣∣∣∣ (4)

where mi is the test value, fi is the predicted value, and n is the number of test samples.
For example, the prediction results of λ models (both the one with thermal phase and

the one without thermal phase) are shown in the Figures 13 and 14.
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As can be seen from Figure 13, among the models containing the thermal phase data
of the ion current, both BP and RBF models could well predict the excess air coefficient.
The residual between the predicted value of the network and the experimental value was
within 0.05. Figure 14 illustrates that in the model without thermal phase data of ionic
current, the errors of BP and RBF models were slightly larger. The model with thermal
phase ion current showed higher accuracy.
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As depicted in Figure 15, for each combustion phase model, no matter whether
BP or RBF network model, the RMSE value of the model containing the thermal phase
characteristics of ion current was generally lower than that of the model without the ion
current thermal phase, and the value was less than 1. This shows that the neural network
model containing the thermal phase characteristics of the ion current can predict each
combustion phase with high accuracy. In the neural network model without thermal
phase characteristics of ion current, only CA05 and the maximum in-cylinder pressure
phase model had low RMSE values, while other combustion phase models all had RMSE
values greater than 1. This shows that the neural network model without the thermal
phase characteristics of the ion current can only predict CA05 and the maximum pressure
phase with high accuracy. In the neural network models containing the thermal phase
characteristics of the ion current, BP neural network models tended to have lower RMSE and
MAPE values, except for the maximum heat release rate model. In CA05 and maximum
in-cylinder pressure phase prediction models without thermal phase characteristics of
ion current, RBF network model RMSE and MAPE values were low and had higher
prediction accuracy.
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As can be seen from Figure 15, similar to the combustion phase model, both BP and
RBF network models had lower RMSE and MAPE values than those without ionic current
thermal phase characteristics. It can be seen that ionic current thermal phase characteristics
can significantly increase the prediction accuracy of a neural network model. In the neural
network model without the thermal phase characteristics of the ion current, the MAPE
values of the maximum in-cylinder pressure model and the maximum combustion heat
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release rate were lower, but both were greater than 5%. The RMSE and MAPE values of
BP neural network were higher than those of RBF neural network. This indicates that the
prediction accuracy of the neural network model without the thermal phase characteristics
of the ion current is limited, and the accuracy of the BP network model is lower than
that of the RBF network model. In the neural network model containing thermal phase
characteristics of ion current, the BP neural network model had lower RMSE and MAPE
values. The average relative errors of the two networks for predicting the maximum in-
cylinder pressure and the maximum combustion heat release rate were less than 5%, and the
average relative errors for predicting the maximum in-cylinder pressure increase rate were
slightly higher, 5.16% and 5.57% respectively. The model still maintained high accuracy.

For NOx emission, the prediction accuracy of the model containing the thermal phase
characteristics of the ion current was much better than that of the model without the
thermal phase characteristics of the ion current, and the MAPE values of the predicted
results were all lower than 0.1. As shown in Figure 16, the RMSE value of the model
without ionic current thermal phase characteristics was small by contrast. The reason is
that the samples without ionic current thermal phase were measured under the condition
of low gas concentration, and the NOx emission was small.
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Therefore, in this case, the RMSE value could not reflect the accuracy of the two
models. The accuracy of the BP network model was lower than that of the RBF model in
the model containing the thermal phase characteristics of the ion current, but it was the
opposite in the model without the thermal phase characteristics of the ion current.

5. Conclusions

1. The characteristic parameters of the ion current are related to the natural gas engine
operating conditions. The excess air coefficient affects the amplitude of the ion
current during the whole stage, especially the thermal phase stage. When λ varies
from 1.3 to 1.6, the TPV varies from 0 to 15 mA. The ignition timing affects both the
amplitude and the phase of the ion current. Furthermore, CPV, TPV, ICI are sensitive
to the change of engine load.

2. The correlation between the ion current characteristics and the combustion character-
istics are relatively high. The correlation coefficients are mostly higher than 0.85.

3. The virtual sensor based on the ion current has good prediction results for excess
air coefficient, combustion phase parameters, combustion amplitude parameters
and NOx emission. For the prediction of excess air coefficient, combustion phase
parameters and combustion peak, the accuracy of the BP neural network is higher
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than that of RBF when there is a thermal phase in an ion current signal. When the
thermal phase of the ion current disappears, RBF shows a higher prediction accuracy.
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