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Abstract: Aircraft maintenance plays a key role in the safety of air transport. One of its most significant
procedures is the visual inspection of the aircraft skin for defects. This is mainly carried out manually
and involves a high skilled human walking around the aircraft. It is very time consuming, costly,
stressful and the outcome heavily depends on the skills of the inspector. In this paper, we propose a
two-step process for automating the defect recognition and classification from visual images. The
visual inspection can be carried out with the use of an unmanned aerial vehicle (UAV) carrying an
image sensor to fully automate the procedure and eliminate any human error. With our proposed
method in the first step, we perform the crucial part of recognizing the defect. If a defect is found, the
image is fed to an ensemble of classifiers for identifying the type. The classifiers are a combination
of different pretrained convolution neural network (CNN) models, which we retrained to fit our
problem. For achieving our goal, we created our own dataset with defect images captured from
aircrafts during inspection in TUI’s maintenance hangar. The images were preprocessed and used to
train different pretrained CNNs with the use of transfer learning. We performed an initial training of
40 different CNN architectures to choose the ones that best fitted our dataset. Then, we chose the best
four for fine tuning and further testing. For the first step of defect recognition, the DenseNet201 CNN
architecture performed better, with an overall accuracy of 81.82%. For the second step for the defect
classification, an ensemble of different CNN models was used. The results show that even with a
very small dataset, we can reach an accuracy of around 82% in the defect recognition and even 100%
for the classification of the categories of missing or damaged exterior paint and primer and dents.

Keywords: defect recognition; aircraft inspection; deep learning; CNN; UAV; defect classification; AI

1. Introduction

Air transport is one of the most significant ways of moving people across the globe. In
2019, the number of air passengers carried worldwide was around 4.2 billion, an overall
increase of 92% compared with 2019 [1]. During COVID-19, most travelling was put
almost on a halt with the numbers decreasing significantly. In 2020, the total number
of passengers dropped significantly to around one billion (1034 million) [2]. As a result,
the need of reducing costs across the industry has become imminent. Around 10–15% of
the operational costs of an airline are around maintenance, repairs, and overhaul (MRO)
activities [3]. Currently, aircraft maintenance heavily involves visual tasks carried by
humans [3]. This is very time consuming, costly and introduces possibilities for human
errors. It is understood that automating these visual tasks could solve this problem [4–6].
For this reason, the use of climbing robots or UAVs to perform these tasks have been
attempted. Climbing robots usually use magnetic forces, suction caps, or vortexes to climb
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to the aircraft structure [7–9]. However, robotic platforms for inspection face difficulties
in achieving good adherence and mobility due to their lack of flexibility [7,10,11]. On
the other hand, UAVs have been proposed for the inspection [12–15] of buildings, wind
turbines, power transmission lines and aircrafts. UAVs could minimize inspection time
and cost as they can inspect quickly large areas of the aircraft and data can be transmitted
to a ground base in real time for processing. The key challenge of all the above automated
techniques is developing defect detection algorithms that are able to perform with accuracy
and repeatability. Several attempts have been made and most of them can be divided
into the following two categories: the ones that use more traditional image processing
techniques [5,16–18] and the ones that use machine learning [19–24]. In the first category,
image features such as convexity or signal intensity [5] are used. In [18], the authors
proposed a method using histogram comparisons or structural similarity. In addition,
in [16,17], the authors proposed the use of neural networks trained on feature vectors
extracted from contourlet transform. These techniques have very good accuracy in the test
data but are failing to effectively generalize and need continuous tuning. On the other
hand, algorithms using convolutional neural networks (CNN) have showed good results in
defect detection [19–21,25]. In [19,20], CNNs are used as feature extractors and then either
a single shot multibox detector (SSD) or a support vector machine (SVM) are used for the
classification. The use of faster CNN is also proposed for classification and localization [22].
In addition, the use of UAVs together with deep learning algorithms is proposed for the
tagging and localization of concrete cracks [26,27].

The main challenge of the machine learning algorithms is the requirement of a large
amount of data. Especially for the CNNs, the amount of data required can be in the scale of
thousands, especially if a model is not already pretrained. The existence of large datasets
in concrete structures has allowed CNNs to show excellent results in defect detection in
concrete structures. On the other hand, in aircraft structures, the results are promising but
are still not very accurate [18] or they deal with only the problem of defect recognition [20].
In this paper, we propose a two-step classification process of an ensemble of machine
learning classifiers for both defect recognition and classification. In this two-step process,
we are using pretrained CNNs to both recognize and classify a series of defects in aircraft
metallic and composite structures. In the first step, we are performing the defect recognition
and in the second step, the defect classification. By combining the results of different
classifiers, we can more effectively address the issue of small datasets and produce results
with an accuracy reaching 82% in the defect recognition step.

2. Dataset

One of the challenges in this study was the creation of datasets for training and testing
the classifiers. As most of the datasets of defects on aircrafts are not public available, we
needed to create our own. The datasets were created with the help and permission of
TUI© [28]. The images were taken during the scheduled maintenance of aircrafts in TUI’s
base maintenance hangar in Luton, UK. The imaging sensor used was a SONY RX0 II©
rugged mini camera. This model can be carried by a drone and is able to take images from
any angle. All the technical specifications of the camera, such as sensor size and type, focal
length, size of the sensor, are widely available and the effective resolution is 15-megapixels
with maximum resolution of 4800 × 3200 pixels. Images for the datasets were captured
and the following seven types of defects were investigated:

• Missing or damaged exterior paint and primer;
• Dents;
• Lighting strike damage;
• Lighting strike fastener repair;
• Reinforcing ratch repairs;
• Nicks, scratches, and gouges;
• Blend/rework repairs.
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In Figure 1, images of the defects are presented. Most of the obtained images contained
several defects, together with other elements such as screws, etc. In order to create the two
different datasets, further processing was needed to extract only the objects that we were
interested in from each of the images.

Figure 1. Images of different types of defects in aircraft structures. (a) Missing paint, (b) dents,
(c) lighting strike damage, (d) lighting strike fastener repair, (e) blend/rework repair (material
removed and then re-protected with exterior paint); (f) double patch repair.

The objects of interest were cropped through a semi-automated procedure to create
the datasets for the training. A Python script was developed so the user can select and
crop the area with the object of interest. The cropped image was saved in the new image
file. The name of the file was indicative of the category of the defect. This provided us the
capability to extract multiple images of interest from only one image, with and without
defects. The cropped images were grayscaled because we did not want the classifiers to
associate color with any defects during training. This was carried out because defects are
not color related and aircrafts are painted in different colors, depending on the company.
Images of the datasets can be observed in Figure 2.
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Figure 2. Sample images from the two datasets created for training the classifiers. (a) An image of a
dent, (b) a lighting strike fastener repair; (c,d) are images with objects that are not defects.

Following the above procedure, two datasets were created, one containing images
from each category of the defects described above and one contains images with and
without defects. The second dataset in the no-defect category has images of screws, gaps,
small plates etc., objects that the classifier will need to distinguish from the defects. Figure 2
shows images from the two datasets with and without defects.

The defect/no defect dataset, which we will refer as binary for simplicity, contains
1059 images, 576 of defects and 483 of non-defects. The other dataset, referred as the defect
dataset, contains 576 images of the 7 types of defects. Both datasets were relatively small
but gathering images was very challenging under the current circumstances (COVID-19
restrictions, flights reductions etc.). To try to overcome this, we carried out a custom split of
the images between training, and validation, with 88% for training, 9% for validation and
the rest for testing for both datasets. This was carried out to give the opportunity to the
classifiers to learn as much as possible from the dataset. For the binary dataset, the splitting
can be observed in Table 1 and for the defect dataset in Table 2.

Table 1. Dataset split for training, validating and testing the defect/non defect classifier.

Dataset Split Non-Defect Defect

Training 426 576
Validation 46 63

Testing 11 22

Table 2. Dataset split for training, validating and testing the defect classifier.

Dataset Categories Training Validation Testing

Missing or Damaged Exterior Paint and Primer 77 8 3
Dents 151 25 6

Reinforcing Patch Repairs 109 10 4
Nicks, Scratches and Gouges 57 6 3

Blend/Rework Repairs 82 10 3
Lighting Strike Damage 4 1 1

Lighting Strike Fastener Repairs 11 3 2



Sensors 2022, 22, 4682 5 of 13

3. Defect Classification Algorithms

As previously mentioned, one of the challenges of the classification problems in
applications in aerospace is the small amount of data available. In this paper, we tried to
address this by proposing a two-step classification approach with a combination of different
classifiers. In the first step, a classifier decides if the image contains a defect and if this is
true in the second step, the defect is classified by a different classifier. The classifiers are a
combination of pretrained CNNs on ImageNet [29], which we retrained with the use of
transfer learning [30]. In the first step, a DenseNet201 model is used and in the second, an
ensemble of different CNNs as can be observed in Figure 3.

Figure 3. Block diagram of the two-step process for defect recognition and classification.

Transfer learning refers to a technique of retraining a CNN that has already been
trained in very large dataset, such as Imagenet [29]. Even though the dataset that the CNN
is been initially trained in is irrelevant to the problem research, ref. [30] has shown that
the benefits of this technique are substantial. There are mainly two approaches on how
to implement transfer learning; in the first, only the convolutional layers of the trained
network are used as feature extractors [31] and then the features are fed to a different
classifier, such as support vector machines [31]. In the second approach, which is used in
this paper, the head of the neural network (fully connected layers) is replaced. The output
of the new connected layers will match the number of the categories of our classifier. The
new neural network is initially trained by keeping all the weights of the convolution layers
frozen/non trainable. Then, to fine tune the model, a number of the layers are unfrozen
and the training of the network is updated. The basic rule for unfreezing layers is, the less
the data, the less layers to unfreeze. In addition, because the initial/bottom layers of a
CNN extract more abstract features that can be used in any type of image, we unfreeze (for
training) the layers closer to the top of the network. Another point that needs attention
during both training rounds is not to update the weights of the batch normalization layers.
These layers contain two non-trainable weights, tracking the mean and variance of the
inputs that usually get updated during training. So, if we unfreeze these layers during fine
tuning, the updates applied will destroy what the model has learned.

The models were implemented using TensorFlow [32], as this is a well-established
deep learning library, widely used for both commercial applications and research. Because
TensorFlow contains around forty pre-trained networks, we needed to identify those that
fit better on our datasets. To achieve this, we trained each network for five epochs with the
convolutional layers frozen. To continue with fine tuning, we chose the best four pretrained
networks for each classifier. For the binary classifier, the models that performed better were
Mobilenet, DenseNet201, ResNet15V2 and InceptionResNetV2. For the defect classifier,
the four models with the best results were EfficientNetB1, EfficientNetB5, EfficientNetB4
and DenseNet169.

To improve the performance of the chosen models, we fine-tuned them for another ten
epochs. For fine-tuning, we unfroze the last 10% of the layers of each model and reduced
the learning rate by a factor of ten compared to the initial one. In addition, techniques of
reduce learning and early stopping were used. Both techniques are included in TensorFlow
libraries. In the reduce learning technique, the learning rate of the optimizer is reduced if
the validation loss has not improved for a certain number of epochs. Similar in the early
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stopping as the name suggests, training stops if our metric (in this case, validation loss) has
not improved for a certain number of epochs and the graph with the best weights is saved.
Both techniques were used to prevent overfitting.

In addition to the CNN, a random forest was trained. The initial idea was to use in the
first step both the CNN and the random forest but the overall benefit of this was low. For
training, the random forest we have extracted the features of Hu moments, color histogram
and Haralick. The overall accuracy of the random forest classifier was 76%.

4. Results

As discussed in the previous chapter, the initial training of five epochs has been carried
out for each of the pretrained models of TensorFlow. The results of the four best networks
for the defect recognition can be observed in Table 3.

Table 3. Performance of the 4 best out of 40 pretrained networks for the binary classifier after
5 epochs.

Model Validation Accuracy Testing Accuracy

Mobilenet 0.80 0.63
DenseNet201 0.84 0.81
ResNet152V2 0.74 0.88

InceptionResNetV2 0.79 0.85

The results of the best four networks for the defect classification can be observed in
Table 4.

Table 4. Performance of the 4 best out of 40 pretrained networks for the defect classifier after 5 epochs.

Model Validation Accuracy Testing Accuracy

EfficientNetB1 0.60 0.68
EfficientNetB5 0.63 0.68
EfficientNetB4 0.71 0.63
DenseNet169 0.70 0.60

As expected, due to the small number of images and due to the lack of fine tuning
especially for the defect classifier, the accuracy in both the validation and testing images
was relatively low. At this stage, no further analysis was carried out or any extra metrics,
such as confusion matrices or classification reports, as the purpose was to identify the best
CNNs for each of the datasets.

After this initial training, each of the networks were further trained, as discussed for
another ten epochs. The results of the training can be observed in Table 5.

Table 5. Performance of the 4 best pretrained networks for binary classifier after fine tuning for a
total of 15 epochs.

Model Validation Loss Validation Accuracy Testing Accuracy

MobileNet 0.39 0.79 0.63
DenseNet201 0.46 0.84 0.82

InceptionResNetV2 0.43 0.77 0.69
ResNet152V2 0.61 0.78 0.66

The same procedure was followed for the other set of classifiers for the defect classifi-
cation. The results can be observed in Table 6.
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Table 6. Performance of the 4 best pretrained networks for defect classifier after fine tuning for a total
of 15 epochs.

Model Validation Loss Validation Accuracy Testing Accuracy

EfficientNetB1 0.76 0.66 0.72
EfficientNetB5 0.52 0.85 0.82
EfficientNetB4 0.54 0.79 0.72
DenseNet169 0.82 0.71 0.82

To understand better the behavior of the CNNs while trained, the validation loss was
taken into account. This metric, together with the validation accuracy, can illustrate when
the CNN will start overfitting. Usually, when the validation loss does not improve, but the
validation accuracy does, overfitting occurs. This is also the main reason why we used the
techniques of reduce learning and early stopping.

To decide which of the above eight CNNs to use in the proposed system, further
metrics were produced. For each of the models, a classification report and a confusion
matrix was produced to measure the performance in the test data. A classification report
measures the values of precision, recall and F1-score [33]. Precision quantifies the number
of correct positive predictions. It is defined as the ratio of true positives divided by the sum
of true positives and false positives [33]. It shows how precise/accurate the model is. It is
very useful if the false positive cost is high, which in our case was not. If one misclassifies
a non-defect, it will produce an extra load of work for the inspector but it is not critical.
Recall is the ratio of correctly predicted positive predictions against all the predictions in
the actual class [33]. It is the ratio of true positives divided by the sum of true positives and
false negatives. In simple terms, recall shows how many of the predictions in the class are
actual positives. It is the metric we can use if there is a high cost of false negatives; in our
case, if we misclassify a defect as non-defect. The F1 score is calculated as the multiplication
of precision and recall, divided by the sum of precision and recall and then multiplied
by 2 [33]. The F1 score can be interpreted as the harmonic mean of both precision and
recall. The F1 score can also be interpreted as the average of precision and recall. It is a very
valuable metric, especially when both errors caused by false positives and false negatives
are undesirable.

Taking into consideration all the above, we created a classification report with the
above metrics for each of the models.

In Table 7, the combined classification reports can be observed for all four models for
defect recognition and in Table 8, the combined confusion matrices.

From the above tables, we can observe that DenseNet201 performs very well with
high precision. The results from the confusion matrix show that the model has predicted
correct eighteen out of the twenty-two images containing a defect and nine out of eleven
images for the no defect category.

Comparing InceptionResNetV2 and DenseNet201, we can observe that the first has a
better precision than DenseNet201 for the defect category by its recall value being much
lower. This is also reflected in the confusion matrix, where InceptionResNetV2 has more
false negatives. In addition, the F1 score for DenseNet201 is higher in both categories.
Because misclassifying a defect is critical in our application, we can state that DenseNet201
performs better.

From the above results, in can be observed that DenseNet201 has the best overall accu-
racy with 81.82%, the best precision and recall values for the defect class. In addition, it has
the least false negatives and the best F1 score for both classes. Another test we performed
was to combine the classifiers in an ensemble to investigate whether any improvements in
the metrics were possible. The ensemble of classifiers did not give better results, compared
to DenseNet201.
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Table 7. Combined classification reports for defect recognition classifiers.

MobileNet

Precision Recall F1 Score Sum of Images

Defect 0.83 0.68 0.75 22
No Defect 0.53 0.72 0.61 11
Accuracy 69.70%

ResNet15V2

Precision Recall F1 Score Sum of Images

Defect 0.88 0.68 0.76 22
No Defect 0.56 0.81 0.66 11
Accuracy 72.73%

InceptionResNetV2

Precision Recall F1 Score Sum of Images

Defect 0.93 0.68 0.78 22
No Defect 0.58 0.90 0.71 11
Accuracy 75.76%

DenseNet201

Precision Recall F1 Score Sum of Images

Defect 0.9 0.82 0.85 22
No Defect 0.69 0.82 0.75 11
Accuracy 81.82%

Table 8. Combined confusion matrices for defect recognition classifiers.

MobileNet

Actual Predicted Class Predicted Class

Defect No Defect
Defect 15 7

No Defect 3 8

ResNet15V2

Actual Predicted Class Predicted Class

Defect No Defect
Defect 15 7

No Defect 2 9

InceptionResNetV2

Actual Predicted Class Predicted Class

Defect No Defect
Defect 15 7

No Defect 1 10

Actual Predicted Class Predicted Class

Defect No Defect
Defect 18 4

No Defect 2 9

The same procedure was followed for the defect classification models and the results
of the metrics and confusion matrices can be observed in Tables 9–16.
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Table 9. Classification report of Dense169 for defect recognition.

Dense169

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 0.22 0.66 0.33 3
Dents 0.67 0.33 0.44 6

Reinforcing Patch Repairs 1 0.5 0.66 4
Nicks, Scratches and Gouges 1 0.33 0.5 3

Blend/Rework Repairs 0.5 0.66 0.57 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 54.55%

Table 10. Confusion natrix for Dense 169.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing/Damaged Paint
and Primer 2 1 0 0 0 0 0

Dents 3 2 0 0 1 0 0
Reinforcing Patch Repairs 2 0 2 0 0 0 0

Nicks, Scratches and Gouges 1 0 0 1 1 0 0
Blend/Rework Repairs 1 0 0 0 2 0 0

Lighting Strike 0 0 0 0 0 1 0
Lighting Strike Fast Repairs 0 0 0 0 0 0 2

Table 11. Classification report of EfficientNetB1 for defect classification.

EfficientNetB1

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 0.6 1 0.75 3
Dents 1 1 1 6

Reinforcing Patch Repairs 0.5 0.5 0.5 4
Nicks, Scratches and Gouges 0 0 0 3

Blend/Rework Repairs 0.66 0.66 0.66 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 72.73%

Table 12. Confusion matrix of EfficientNetB1.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing or Damaged
Exterior Paint and Primer 3 0 0 0 0 0 0

Dents 0 6 0 0 0 0 0
Reinforcing Patch Repairs 1 0 2 1 0 0 0

Nicks, Scratches and Gouges 1 0 1 0 1 0 0
Blend/Rework Repairs 0 0 1 0 2 0 0
Lighting Strike Damage 0 0 0 0 0 1 0

Lighting Strike Fast Repairs 0 0 0 0 0 0 2



Sensors 2022, 22, 4682 10 of 13

Table 13. Classification report of EfficientNetB4 for defect classification.

EfficientNetB4

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 0.5 1 0.66 3
Dents 0.83 0.83 0.83 6

Reinforcing Patch Repairs 0.5 0.5 0.5 4
Nicks, Scratches and Gouges 1 0.33 0.5 3

Blend/Rework Repairs 0 0 0 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 63.64%

Table 14. Confusion matrix of EfficientNetB4.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing or Damaged
Exterior Paint and Primer 3 0 0 0 0 0 0

Dents 1 5 0 0 0 0 0
Reinforcing Patch Repairs 0 1 2 0 1 0 0

Nicks, Scratches and Gouges 1 0 0 1 1 0 0
Blend/Rework Repairs 1 0 2 0 0 0 0
Lighting Strike Damage 0 0 0 0 0 1 0

Lighting Strike Fast Repairs 0 0 0 0 0 0 2

Table 15. Classification report of EfficientNetB5 for defect classification.

EfficientNetB5

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 1 1 1 3
Dents 1 0.83 0.90 6

Reinforcing Patch Repairs 0.16 0.25 0.2 4
Nicks, Scratches and Gouges 1 0.66 0.8 3

Blend/Rework Repairs 0 0 0 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 63.64%

Table 16. Confusion matrix of EfficientNetB5.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing or Damaged
Exterior Paint and Primer 3 0 0 0 0 0 0

Dents 0 5 1 0 0 0 0
Reinforcing Patch Repairs 0 0 1 0 3 0 0

Nicks, Scratches and Gouges 0 0 1 2 0 0 0
Blend/Rework Repairs 0 0 3 0 0 0 0
Lighting Strike Damage 0 0 0 0 0 1 0

Lighting Strike Fast Repairs 0 0 0 0 0 0 2

From the above matrices, the performance of the models for the defect classification is
relatively low. However, this is due to the number of images in the dataset and because
the dataset was unbalanced. To improve performance and ensure the predictions are more
consistent, we used the ensemble model. We combined all four models to create a new
model in which the input image is fed into all four models. The predictions of each of the
models are passed to a layer that is added at the end of the model. This final layer averages
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the predictions of the four models and returns array with the new values. This technique,
especially in our case where the performance of the models is similar, provides a more
consistent outcome for all the different classes. The results for the ensemble model can be
observed in Tables 17 and 18.

Table 17. Classification report of the ensemble model for defect classification.

Ensemble

Precision Recall F1 Score Sum of Images

Missing or Damaged Exterior Paint and Primer 0.6 1 0.75 3
Dents 1 0.83 0.90 6

Reinforcing Patch Repairs 0.5 0.5 0.5 4
Nicks, Scratches and Gouges 0.5 0.33 0.4 3

Blend/Rework Repairs 0.33 0.33 0.33 3
Lighting Strike Damage 1 1 1 1

Lighting Strike Fast Repairs 1 1 1 2
Accuracy 68.18%

Table 18. Confusion matrix of the Ensemble.

Actual Predicted Class

Missing/Damaged
Exterior Paint

and Primer
Dents Reinforcing

Patch Repairs

Nicks,
Scratches

and Gouges

Blend/Rework
Repairs

Lighting
Strike

Lighting Strike
Fast Repairs

Missing or Damaged
Exterior Paint and Primer 3 0 0 0 0 0 0

Dents 1 5 0 0 0 0 0
Reinforcing Patch Repairs 0 0 2 1 1 0 0

Nicks, Scratches and Gouges 1 0 0 1 1 0 0
Blend/Rework Repairs 0 0 2 0 1 0 0
Lighting Strike Damage 0 0 0 0 0 1 0

Lighting Strike Fast Repairs 0 0 0 0 0 0 2

For the ensemble model, although in some categories it may have worse performance
than others, its overall performance is better. It has positive predictions for all the categories
in comparison with other models and its overall accuracy is above the average value of
the models.

Finally, we tested the whole pipeline of our algorithm. We first fed the test images
to the defect recognition model and then, if the image had a defect, we passed it to the
defect classifier. As a defect recognition model, we have chosen the DenseNet201 and for
the defect classification, the ensemble model. As we have used the same test dataset, the
results of the defect recognition model are the same as Tables 7 and 8 and for the ensemble,
similar to the Tables 17 and 18. However, by filtering through the first step, the images
that we achieved 100% accuracy for were the categories of the missing or damaged exterior
paint and primer and dents.

Although the results are promising, the overall accuracy of the defect classifier is low.
As previously mentioned, this is mainly due to the small number of images and because
the dataset is very unbalanced. Taking into consideration the accuracy for the defect
recognition classifier together with the number of images, we believe that by having around
five hundred images for each defect category, we will be able to improve significantly not
only the performance of the defect classifier but also of the overall process.

5. Conclusions

In this paper, we have presented the development of a two-step process for defect
recognition and classification of aircraft structures. A dataset was created from real aircraft
defects taken in TUI’s maintenance hangar. On the one hand, the lack of defects on aircrafts
made the creation of the dataset very challenging and on the other, the recognition of
defects is crucial for the safety of the passengers and crew. To overcome this, we proposed
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a two-step process method. Firstly, we recognized the defect and then we classified it. This
method has the advantage of using two different classifiers, one for defect recognition and
one for defect classification. By splitting the process of defect recognition and classification
in two, we improved the accuracy. This is because first, we can train the defect recognition
model with more data, thus making it more accurate. In addition, in this first step, we
perform with higher accuracy the most significant part of finding the defect. Secondly, we
use a dedicated classifier for defect classification. This gives the opportunity to the second
classifier to learn more effectively the differences between the different types of defects, as
it does not have to learn any of the non-defect images.

The results of the first step had an accuracy 81.82%, which is quite high considering
the small training dataset. In the second step, for the defects of missing or damaged exterior
paint and primer and dents, we achieved 100% accuracy.

Although the results are promising, future work will be carried out in increasing the
defect dataset, especially in adding more images in the very small categories to improve
the unbalanced dataset. In addition, the process will be combined with a UAV inspection
for real time recognition and classification
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