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Abstract: Uncontrolled built-up area expansion and building densification could bring some detri-
mental problems in social and economic aspects such as social inequality, urban heat islands, and
disturbance in urban environments. This study monitored multi-decadal building density (1991–2019)
in the Yogyakarta urban area, Indonesia consisting of two stages, i.e., built-up area classification and
building density estimation, therefore, both built-up expansion and the densification were quantified.
Multi sensors of the Landsat series including Landsat 5, 7, and 8 were utilized with some prior
corrections to harmonize the reflectance values. A support vector machine (SVM) classifier was
used to distinguish between built-up and non built-up areas. Regression algorithms, i.e., linear
regression (LR), support vector regression (SVR), and random forest regression (RFR) were explored
to obtain the best model to estimate building density using the inputs of built-up indices: Urban
Index (UI), Normalized Difference Built-up Index (NDBI), Index-based Built-up Index (IBI), and
NIR-based built-up index based on the red (VrNIR-BI) and green band (VgNIR-BI). The best models
were revealed by SVR with the inputs of UI-NDBI-IBI and LR with a single predictor of UI, for
Landsat 8 (2013–2019) and Landsat 5/7 (1991–2009), respectively, using separate training samples.
We found that machine learning regressions (SVM and RF) could perform best when the sample size
is abundant, whereas LR could predict better for a limited sample size if a linear positive relationship
was identified between the predictor(s) and building density. We conclude that expansion in the
study area occurred first, followed by rapid building development in the subsequent years leading to
an increase in building density.

Keywords: building density; Landsat; built-up indices; image transformations; regression

1. Introduction

The urban category is one of the important subjects for achieving sustainable
development goals [1]. The studies in urban categories cover various phenomena
including physical urban or urban morphology, urban communities, job availability,
biodiversity, economic, transportation, and the urban environment [2–4]. Urban de-
velopment is required to understand and mitigate the possible issues and challenges
regarding its outward expansion. Vast urban area expansion has a trade-off for people
and the environment. Based on socio-economic perspectives, urban areas provide
benefits to support economic activities, but on the other hand, the areas potentially
become prone to social conflicts such as social inequality and criminal events [5]. In
addition, the environment also could be degraded especially in the suburban and
rural areas, even in the urban area itself [6–8]. The increase in built-up areas costs
agriculture and natural space that may affect environmental health [9]. It is also related
to the increase in population and the demand for infrastructure development caused
by built-up area expansion. The definition of urban is quite complex depending on the
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perspectives. It could be defined based on population density, or physical aspects such
as building density [4,10]. Therefore, the building density information becomes one of
the urban indicators to understand urban development.

Previous studies on building density showed its relationship to other phenomena such
as macroclimate, urban heat island (UHI), energy use efficiency, social interaction, urban en-
vironment, and economy [5,11–16]. Building density is one of the variables that influences
the variation of the urban micro-climate [17]. Building density also affects the UHI, where
the higher building density increases the UHI intensity [18,19]. On the other hand, low
building density with plenty of green spaces decreases the UHI intensity [12,20]. In another
case, energy use efficiency was able to be examined from building density information,
and some studies found that compact or dense built-up areas reduced energy consump-
tion depending on technological advancement [13,14]. Physical interaction is inevitable
in a densely built-up area, which increases the potential for crime, disease transmission,
and social needs [15,21]. In addition, high building density is also related to population
growth, economic productivity, land prices, transportation services, infrastructure, and the
number of vacancies [5,22]. Based on previous research, building density information is
necessary, especially the building density data with spatial and temporal information for a
comprehensive urban study [4].

Globally, urban areas have been rapidly growing in recent years [23,24]. A multi-
scale and multi-temporal analysis is required to understand the urban development pat-
terns. The traditional methods to collect information on urban parameters are outdated
and cost a lot of resources. Remotely sensed data are the key to providing convenient ap-
proaches for collecting and analyzing urban development [4,25]. The immense number
of available remote sensing data in the various specifications allows the extraction of
urban-related information more efficiently. For instance, the well-known and free remote
sensing data, Landsat, has been providing high-quality images with moderate to high
resolution for several decades [26,27]. These circumstances help urban scientists to tackle
spatial and temporal challenges [4]. Multi-scale and multi-temporal urban research are
benefitted due to remote sensing data availability, for example, multi-temporal urban
growth monitoring derived from remote sensing data such as Landsat satellites [28–31].
Furthermore, the advancement of earth observation satellite sensors to retrieve thermal
information such as MODIS and Landsat are useful for UHI monitoring [16,32–34]. The
multispectral sensor also enables built-up area mapping using spectral transformation
approaches [35,36].

Remote sensing-based urban studies mostly utilized built-up indices that were
provided by previous studies, including Urban Index (UI) [37], Normalized Difference
Built-up Index (NDBI) [38], Index-based Built-up Index (IBI) [39], and NIR-based built-
up index using the red band (VrNIR-BI) and using the green band (VgNIR-BI) [40].
Kawamura et al. [37] developed UI by using NIR and mid-infrared (MIR) to distinguish
built-up areas through satellite images proven by a strong positive relationship with
urban density. Zha et al. [38] proposed NDBI using bands 4 and 5 considering the contrast
reflectances in built-up features yet with a slight difference in other objects. Both UI
and NDBI share the same possible issue in the similar values between built-up and bare
land, although they are capable of separating between built-up and vegetation features.
Therefore, Xu [39] developed IBI by integrating NDBI with the Soil-adjusted Vegetation
Index (SAVI) and the Normalized Difference Water Index (MNDWI) to improve built-up
area extraction thus the background noise of built-up areas can be suppressed. On the
other hand, Estoque et al. [40] proposed VrNIR-BI and VgNIR-BI by utilizing visible
spectral bands (green and red) and NIR to distinguish built-up areas from dry vegetation
and grassland. Bhatti et al. [41] modified NDBI by integrating the temperature data
and other indices such as the Normalized Difference Vegetation Index (NDVI) and the
MNDWI, which showed significant improvement in distinguishing vegetation and water
features yet still struggled to separate the built-up area from bare soil.
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Built-up area extraction is well studied [35,36,42–46], however, the study of building
density using remote sensing data is still limited where most of the studies exploited
the use of high-resolution images [10,47,48]. Built-up density has been more widely
studied than building density by extracting the built-up area and calculating the density
based on a given mapping unit, commonly using the administration boundary [49–51].
For instance, a study by Shahfahad et al. [49] used the IBI to obtain the built-up area
which was generated to a built-up density for each municipality. In the case of building
density, studies by [52,53] directly used the values of the NDBI to represent the building
density. However, this method caused misleading information since an empirical/semi-
empirical statistical approach is required to estimate the building density from the
transformation index. A linear regression using a combination of indices (NDBI, SAVI,
NDWI, and thermal band) was performed to model building density percent, which
showed a comparable result [54]. Another study explored several indices for multi-
temporal building density estimation, showing that the VgNIR-BI outperformed other
indices [55]. Along with the availability of historical Landsat data, the multi-decadal
building density change is worth exploring.

On the other hand, the comparison of multiple regression algorithms such as linear
and machine learning regression for building density has not been widely studied yet.
The assessment of linear and machine learning regression was applied to construct a
spatial model for specific applications [56,57]. The performance of a certain regression
algorithm depends on the situation of the study [56]. Multiple regression methods need
to be considered in constructing a particular model that can potentially achieve the most
optimum results.

Investigations on the comparison of the developed indices are still limited, while the
use of machine learning algorithms with the combination of built-up indices for multi-
temporal building density estimation has not been adequately studied. To address this gap,
this study aims to assess the best model for building density extraction based on previously
mentioned built-up indices using multiple regression methods. Furthermore, this study
also investigates multi-temporal building density information based on the multi-sensor
of Landsat imageries. The best combination of regression analysis and built-up indices is
expected to be achieved to provide better building density estimation and decadal built-up
area expansion analysis.

2. Study Area

Yogyakarta City is located in the middle of the Province of the Special Region
of Yogyakarta, a typical medium-sized and densely populated urban area of Java
Island and one of the rapidly growing cities in Indonesia. The high growth rate of
urbanization in urban areas during the past two decades has increased the community’s
need for land. The population was concentrated in the middle of the city in the early
1990s, which then developed towards the north in the following decade, and spread to
the suburban area around the city [58]. Considering the development in the periphery,
our study covers the peri-urban areas using the boundary of a ring road encircling the
city (Figure 1).



Sensors 2022, 22, 4716 4 of 21
Sensors 2022, 22, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Study area with the background of Landsat 8 composite of 654. White lines indicate the 
administrative boundary at the regency level. 

3. Materials and Methods 
This study utilized Landsat series images obtained from 1991 to 2019 as the primary 

datasets. Ground truth data of building density were derived from Microsoft building 
footprints, OpenStreetMap building dataset, and visual interpretation on QuickBird-2 and 
WorldView-2. In general, the methodology consists of built-up area classification and 
building density estimation as illustrated in Figure 2. 

Figure 1. Study area with the background of Landsat 8 composite of 654. White lines indicate the
administrative boundary at the regency level.

3. Materials and Methods

This study utilized Landsat series images obtained from 1991 to 2019 as the primary
datasets. Ground truth data of building density were derived from Microsoft building
footprints, OpenStreetMap building dataset, and visual interpretation on QuickBird-2 and
WorldView-2. In general, the methodology consists of built-up area classification and
building density estimation as illustrated in Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 2. The flowchart of the study generally consists of built-up area classification and building 
density estimation. 

3.1. Landsat Data and Pre-Processing 
Landsat provides open access to newly acquired imageries as well as the archives 

initiated with the launch of Landsat 1 in 1972 [31]. Thematic Mapper (TM) sensor carried 
onboard Landsat 5 offers the continuity of multispectral imaging passed on to Landsat 7 
Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) 
at the same resolution of 30 m. Therefore, the Landsat series offers interannual earth ob-
servation time series analysis. Taking the advantage of the multi-decadal availability, we 
utilized the series of Landsat images from 1991 to 2019 in this study, consisting of Landsat 
5 TM, Landsat 7 ETM+, and Landsat 8 OLI, as listed in Table 1. 

Table 1. List of Landsat images used in this study. 

No. Acquisition Date Sensor No. Acquisition Date Sensor 
1 31 August 1991 Landsat 5 TM 6 31 July 2009 Landsat 5 TM 
2 25 April 1997 Landsat 5 TM 7 24 June 2013 Landsat 8 OLI 
3 4 June 2000 Landsat 5 TM 8 14 June 2015 Landsat 8 OLI 
4 21 August 2002 Landsat 7 ETM+ 9 18 May 2017 Landsat 8 OLI 
5 26 July 2007 Landsat 5 TM 10 25 June 2019 Landsat 8 OLI 

Google Earth Engine cloud computing platform was used to obtain all images and 
perform the pre-processing. All Landsat images are at level 2 that were atmospherically 
corrected by the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 
for Landsat 5 and 7 [59] and Land Surface Reflectance Code (LaSRC) for Landsat 8 [60]. 
To minimize the bias of the images, clouds and cloud shadows were removed by using 
QA_PIXEL band generated from the CFMask algorithm [61]. 

Compared to its predecessors, Landsat 8 has improved the sensor specifications such 
as the spectral wavelength ranges and radiometric resolution, thus harmonization 

Figure 2. The flowchart of the study generally consists of built-up area classification and building
density estimation.



Sensors 2022, 22, 4716 5 of 21

3.1. Landsat Data and Pre-Processing

Landsat provides open access to newly acquired imageries as well as the archives
initiated with the launch of Landsat 1 in 1972 [31]. Thematic Mapper (TM) sensor carried
onboard Landsat 5 offers the continuity of multispectral imaging passed on to Landsat 7
Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI)
at the same resolution of 30 m. Therefore, the Landsat series offers interannual earth
observation time series analysis. Taking the advantage of the multi-decadal availability, we
utilized the series of Landsat images from 1991 to 2019 in this study, consisting of Landsat
5 TM, Landsat 7 ETM+, and Landsat 8 OLI, as listed in Table 1.

Table 1. List of Landsat images used in this study.

No. Acquisition Date Sensor No. Acquisition Date Sensor

1 31 August 1991 Landsat 5 TM 6 31 July 2009 Landsat 5 TM
2 25 April 1997 Landsat 5 TM 7 24 June 2013 Landsat 8 OLI
3 4 June 2000 Landsat 5 TM 8 14 June 2015 Landsat 8 OLI
4 21 August 2002 Landsat 7 ETM+ 9 18 May 2017 Landsat 8 OLI
5 26 July 2007 Landsat 5 TM 10 25 June 2019 Landsat 8 OLI

Google Earth Engine cloud computing platform was used to obtain all images and
perform the pre-processing. All Landsat images are at level 2 that were atmospherically
corrected by the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
for Landsat 5 and 7 [59] and Land Surface Reflectance Code (LaSRC) for Landsat 8 [60].
To minimize the bias of the images, clouds and cloud shadows were removed by using
QA_PIXEL band generated from the CFMask algorithm [61].

Compared to its predecessors, Landsat 8 has improved the sensor specifications
such as the spectral wavelength ranges and radiometric resolution, thus harmonization
between the sensors is encouraged for time series analysis. We applied the equations
from Roy et al. [62] to harmonize both Landsat 5 and Landsat 7 with Landsat 8 for the
bands of Blue, Green, Red, Near-Infrared (NIR), Shortwave Infrared-1 (SWIR-1), and
Shortwave Infrared-2 (SWIR-2). The equations are as follows:

ρBlueharmonized = 0.0003 + 0.8474 ρBlue (1)

ρGreenharmonized = 0.0088 + 0.8483 ρGreen (2)

ρRedharmonized = 0.0061 + 0.9047 ρRed (3)

ρNIRharmonized = 0.0412 + 0.8462 ρNIR (4)

ρSWIR1harmonized = 0.0254 + 0.8937 ρSWIR1 (5)

ρSWIR2harmonized = 0.0172 + 0.9071 ρSWIR2 (6)

where ρ is the reflectance value of the corresponding bands.
After harmonization was applied, another correction was also performed, namely

relative radiometric normalization (RRN) to further harmonize the values [63]. RRN was
employed by applying a linear regression for each band between the reference and subject
images [64]. The harmonized images of 1991, 1997, 2000, 2002, 2007, 2013, 2015, 2017,
and 2019 were corrected using the single reference of the image of 2009 considering its
temporal position in the middle of the data used. Pseudo-invariant features (PIFs) for the
normalization were selected on the man-made objects (e.g., airports and big buildings) and
deep water bodies (e.g., sea surface and lakes) which are deemed to have stable spectral
values over observation time [65]. A linear regression was constructed separately for each
band of particular images taking the reference (image of 2009) as the independent variable.
All the regression analyses are significant (p-value < 0.05) with the report presented in
Table A1 in Appendix A.
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3.2. Building Datasets

We used building datasets derived from several sources for modeling and accuracy
assessment as listed in Table 2. The latest building dataset was obtained from Microsoft
building footprints and OpenStreetMap. Microsoft released open datasets of building
footprints in the Philippines, Indonesia, and Malaysia generated from Maxar imagery
acquired in 2016–2020 [66]. The pixels of building objects were identified using deep neural
networks (DNNs) semantic segmentation and then were converted into polygons [67]. The
results were evaluated showing the precision and recall of 88.64% and 77.53%, respectively,
across the three nations [66]. As reported and observed visually in the study area, some
buildings in the dense urban area were not identified. Therefore, we combined it with
building data from OpenStreetMap generated from visual digitization. To match with
satellite imagery used, the building datasets were then rasterized at a resolution of 30 m.

Table 2. Sources of building datasets used in this study.

No. Dataset Processing Purpose

1 Microsoft building footprints Merging both datasets
and rasterization

Model training and accuracy assessment
of Landsat 8 of 20192 OpenStreetMap building

3 WorldView-2 of 2014 Visual interpretation of
building objects Accuracy assessment of Landsat 8 of 2013

4 QuickBird-2 of 2003 Visual interpretation of
building objects

Best model evaluation of Landsat 7 of
2002, and model training and accuracy

assessment of Landsat 7 of 2002

In addition, two other building density datasets were retrieved from the WorldView-2
image acquired on 19 August 2014 and a mosaic of QuickBird-2 image dated in 2003, with
a total of 50 and 270 samples, respectively. Building objects were firstly delineated visually
based on the grid samples of Landsat image, then converted into raster format at the same
resolution as Landsat.

3.3. Built-Up Area Classification

A binary supervised classification was applied for each observation time to distinguish
the built-up area from other land covers using Dzetsaka plugin in QGIS [68]. The algorithm
used is Support Vector Machine (SVM) classifier considering the neglect of the data dis-
tribution and the suitability of the limited training data and high-dimensional inputs [69].
This algorithm aims to find a hyperplane that discriminates the training samples according
to the assigned classes [70]. Only two samples were used in the classification, i.e., built-up
and non built-up areas. Learning methods were performed separately by taking different
training samples for each corresponding imagery. Training samples were selected with the
help of the high-resolution Google Earth images and the local knowledge of interpreters.
The accuracy of each result was assessed by confusion matrices with the same samples
across the observation time to evaluate the classification.

3.4. Building Density Extraction

The extraction of building density used the inputs of image transformations, consisting
of Urban Index (UI), Normalized Difference Built-up Index (NDBI), Index-based Built-up
Index (IBI), and two visible-based indices combined with NIR band (i.e., VrNIR-BI and
VgNIR-BI) as listed in Equations (7)–(11). UI was firstly developed by seeing the converse
relationship between the reflectance of urban areas between NIR and SWIR spectrum [37].
The equation of NDBI was formulated by Zha et al. [38] using the SWIR-1 band, instead
of SWIR-2 as used in UI. Xu [39] developed IBI considering three established indices,
i.e., soil adjusted vegetation index (SAVI), modified normalized difference water index
(MNDWI), and NDBI, for the rapid extraction of built-up objects. To minimize the bias in
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separating built-up lands from dry vegetation, two visible-based built-up indices (VrNIR-BI
and VgNIR-BI) were constructed based on the red and green bands, separately [40].

UI =
ρSWIR2 − ρNIR
ρSWIR2 + ρNIR

(7)

NDBI =
ρSWIR1 − ρNIR
ρSWIR1 + ρNIR

(8)

IBI =

2ρSWIR1
ρSWIR1+ρNIR −

(
ρNIR

ρRed+ρNIR + ρGreen
ρGreen+ρSWIR1

)
2ρSWIR1

ρSWIR1+ρNIR +
(

ρNIR
ρRed+ρNIR + ρGreen

ρGreen+ρSWIR1

) (9)

VrNIR − BI =
ρRed − ρNIR
ρRed + ρNIR

(10)

VgNIR − BI =
ρGreen − ρNIR
ρGreen + ρNIR

(11)

Three regression algorithms were employed to estimate building density, i.e., linear
regression, random forest regression, and support vector regression using Python-based
EnMAP-Box in QGIS [71]. A linear regression algorithm is used considering the linear
relationship between the built-up indices with the presence of building objects, shown
by the higher values [37]. The linear model was built individually for each index. Two
multiple linear regression models were then developed using the inputs of all indices and
UI-NDBI-IBI combined.

Random forest regression (RFR) is a regression-based random forest learning algorithm
that is one of the ensemble machine learning models. The prediction was created by multi-
ple decision trees and aggregation on the trees in the forest that were bootstrapped [72]. The
optimal hyperparameter was determined for the number of trees in the forest (ntrees = 100,
200, 500, 1000) within the RFR processing using a grid search with a 5-fold cross-validation.

SVM can solve the regression problems as well, namely support vector regression
(SVR), with the output of continuous data [73]. The radial basis function (RBF), a non-
linear kernel, was selected due to its capability to outperform other kernels [74]. Similar
to RFR, hyperparameters were also optimized on the parameters of the gamma value
(gamma = 0.1, 0.2, 0.5) and the regularization parameter (C = 1, 10, 100). For both RFR
and SVR, the two sets of inputs are used in the learning, i.e., all indices and UI-NDBI-IBI
combined, separately.

Firstly, the dataset of 2019 was used in the modeling using linear regression, RFR, and
SVR (please see Figure 2). On the building density dataset derived from Microsoft and
OpenStreetMap, we separated the samples into 70% for modeling and 30% for accuracy
assessment. Root mean square error (RMSE) was calculated for assessing the validation
score. Another method used for accuracy assessment is the upper range of accuracy using
standard error of estimation with a 95% confidence level (CL) [75]. All models were then
applied to the dataset of 2013, which were then assessed the accuracy using building
density data obtained from WorldView-2 (2014). An evaluation was conducted based on
the validation and accuracy assessment to find the best model.

The best model obtained was applied to all datasets of the observation period (1991–2019).
Subsequently, evaluation was performed using the reference of the building density dataset
obtained from QuickBird-2 data (2003) on the modeling result of Landsat 7 imagery (2002).
If the evaluation is not satisfactory, remodeling will be performed separately for Landsat 5
and Landsat 7, considering both similar sensor characteristics (Figure 2).

4. Results
4.1. Transformation of the Built-Up Area

The SVM classification resulted in a good performance based on accuracy assessment
by means of high-resolution images (Google Earth) and the local knowledge of interpreters
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for each date of the images. The results showed that the accuracy varied from 79.47%
to 93.38% (Figure 3). Most of the overall accuracies reached more than 85% except for
the classification based on Landsat 5 in 2000 (79.47%), in which several misclassifications
occurred due to the weather conditions that subtly affect the quality of the images. However,
the classifications on Landsat 5 and 7 in 1991, 1997, 2002, 2007, and 2009 performed
satisfactorily with the accuracy of 90.73%, 88.08%, 89.04%, 92.05%, and 87.42%, respectively.
On the other hand, the results of classification on Landsat 8 (2013–2019) were quite good
with an accuracy of 88.08%, 90.00%, 91.39%, and 93.38%, respectively. The accuracy varied
depending on the quality of the images. Nevertheless, the results visually represented the
distribution of the built-up area quite well (Figure 4) and are reliable enough.
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The built-up area classification based on the SVM classifier showed satisfactory results.
Although Landsat 8 has slightly better sensor specifications than Landsat 5 and 7, their
performances in classifying built-up and non built-up areas are quite similar based on
the accuracy assessment. It should be noted that these results were obtained after the
rigorous calibration and harmonization of Landsat sensors were carried out. The SVM
classifier itself already outperformed other widely used classification methods such as
maximum likelihood, as reported by previous studies [76,77]. However, the training data
have an important impact on SVM classification. Therefore, the sample optimization of
training data for SVM classification was carefully selected to achieve the best performance,
including pure pixel, sample size, and sample in a homogeneous area [77–80].

The lowest accuracy (79.47%) in 2000 was due to shadows of high clouds covering
the small area in the south-eastern part of the image scene causing lower reflectance
values on the area. Therefore, SVM failed to classify some building objects, yet still
performed reasonably. The low quality of the image caused noise and ambiguous spectral
responses that complicate the SVM algorithm to distinguish between two classes. On the
other hand, the overall misclassification occurred also due to a similar spectral response
between built-up areas and bare soil, especially dry soil [81,82]. A wide area of impervious
surfaces such as parking lots, which are categorized as a non built-up areas, also caused an
error [83]. The different number of training sample and distribution in each image affected
the performance as well. Training sample selection adjusted to the condition and land-use
change dynamic causes the accuracy to vary in each image. However, the performance of
the SVM classification showed satisfactory results with most of the accuracies being more
than 85%.



Sensors 2022, 22, 4716 9 of 21

Sensors 2022, 22, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 3. The overall accuracy of land use classifications. 

 
Figure 4. Land cover classification of built-up and non built-up area using SVM classifier based on 
Landsat images. 

The lowest accuracy (79.47%) in 2000 was due to shadows of high clouds covering 
the small area in the south-eastern part of the image scene causing lower reflectance val-
ues on the area. Therefore, SVM failed to classify some building objects, yet still performed 
reasonably. The low quality of the image caused noise and ambiguous spectral responses 
that complicate the SVM algorithm to distinguish between two classes. On the other hand, 
the overall misclassification occurred also due to a similar spectral response between 
built-up areas and bare soil, especially dry soil [81,82]. A wide area of impervious surfaces 
such as parking lots, which are categorized as a non built-up areas, also caused an error 
[83]. The different number of training sample and distribution in each image affected the 
performance as well. Training sample selection adjusted to the condition and land-use 
change dynamic causes the accuracy to vary in each image. However, the performance of 
the SVM classification showed satisfactory results with most of the accuracies being more 
than 85%. 

Figure 4. Land cover classification of built-up and non built-up area using SVM classifier based on
Landsat images.

As shown in Figure 4, the built-up area in Yogyakarta increased and spread rapidly
from the year 1991 to 2019. The distribution of the built-up changes was observed nearly
equally in all directions, with extensive changes occurring in the north, east, and southeast
parts. In 1991, the built-up area was concentrated in the middle part of the study area, yet
in the period between 1997 and 2002, it started to increase in the northeast and southeast
directions. The built-up area in the western part started to develop and, in the east part,
intensively increased from 2007 until 2015. There was a slight change observed in 2015 and
2019, however, the built-up area has been increasing during these two years and most of
the study area was covered by the built-up area in almost all directions.

Based on Figure 5, the built-up area has increased up to 27.35% of the study area
(2250 ha) from 1991 to 2019. In general, consistent increases in the built-up area were
identified throughout the observation periods, except in 2002 and 2013 when only a slight
expansion was observed. Calculated by a linear fit, the acceleration of the built-up expan-
sion is about 80 ha per year or 0.98% of the study area per year. Furthermore, this built-up
area classification was used to mask the built-up area only for the building density model.
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4.2. Building Density Estimation

Within RFR and SVR processing, GridSearchCV was involved to look for the best
model based on the given parameters. For modeling based on Landsat 8 images, the RFR
model with the 1000 ntrees was selected as the best parameter for both using all indices and
UI-NDBI-IBI. Meanwhile, the best parameters of SVR are different for both predictor sets,
i.e., C = 1 and gamma = 0.1 for all indices, and C = 100 and gamma = 0.1 for UI-NDBI-IBI.

All learning methods were then applied for the images of 2013 and 2019. It is in-
tended to assess the accuracy to evaluate the models for the multi-temporal consistency.
The results showed that SVR with UI-NDBI-IBI predictors managed to have the low-
est RMSE at 17.47% (mean RMSE calculation based on 2013 and 2019), and was also
confirmed with the highest upper range accuracy at 72.07% (Figure 6). Other methods
with multiple inputs had the mean RMSE values of less than 18%, i.e., RFR UI-NDBI-IBI
(RMSE = 17.76%, accuracy = 71.57%), LR all indices (RMSE = 17.82%, accuracy = 71.56%),
SVR all indices (RMSE = 17.83%, accuracy = 71.56%), and LR UI-NDBI-IBI (RMSE = 17.96%,
accuracy = 71.34%), except RFR all indices (RMSE = 18.42%, accuracy = 70.63%). Both
visible indices (VrNIR-BI and VgNIR-BI) possessed mean RMSE and accuracy values of
above 20% and below 70%, respectively.
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density estimation using linear regression (LR), random forest regression (RFR), and support vector
regression (SVR), tested on the datasets of 2013 and 2019.

The best model, SVR UI-NDBI-IBI, was then applied to all datasets. As shown in
Figure 7, extreme higher density values were detected visually in the center of the study
area on images of 1991–2009 that are derived from Landsat 5/7, compared to those in
2013–2019. To validate the overestimate, the estimated building density of 2002 was
analyzed with 270 reference data (delineated building density from QuickBird-2 2003).
Figure 8 shows the histograms and a scatterplot, apparently showing that the estimated
values (mean = 61.85%) are extremely higher than the reference (mean = 46.61%). In
addition, the RMSE value indicated a high error at 26.03% with a poor upper range of
accuracy (48.46%).
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Since the model was not satisfactorily applied for Landsat 5/7, we remodeled the
building density using the training samples of 2003 applied on Landsat 7 acquired in 2002.
Samples were split, i.e., 220 and 50 samples for building the model and testing, respectively.
As the modeling used different reference data, the best parameters were also assessed
separately. The best RFR models are with 500 and 200 ntrees for the inputs of all indices
and UI-NDBI-IBI, respectively. For SVR, the best parameters for modeling are C = 1 and
gamma = 0.2 for all indices, and C = 10 and gamma = 0.1 for UI-NDBI-IBI.

In contrast to Landsat 8, the high accuracy models using Landsat 7 are dominated
by LR methods (Figure 9), with the best model using the predictor of UI (RMSE = 20.48%,
accuracy = 62.76%), followed by all indices (RMSE = 21.32%, accuracy = 61.25%), NDBI
(RMSE = 21.52%, accuracy = 60.85%), UI-NDBI-IBI (RMSE = 21.54%, accuracy = 60.84%),
and IBI (RMSE = 21.54% accuracy = 60.84%). The least accurate models are RFR using
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both predictor sets, i.e., all indices (RMSE = 22.93%, accuracy = 58.31%) and UI-NDBI-IBI
(RMSE = 23.18%, accuracy = 57.86%). The best model was then applied to the datasets of
1991-2009 considering the similar sensor characteristics designed in Landsat 5 and 7.
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Figure 9. Values of RMSE and upper range of accuracy at 95% confidence level for building density
estimation using linear regression (LR), random forest regression (RFR), and support vector regression
(SVR) on Landsat 7 data.

The best models derived from the accuracy assessment were then used to estimate
building density. SVR was applied for the UI-NDBI-IBI images of 2013, 2015, 2017, and
2019, whereas LR was performed for UI images of 1991, 1997, 2000, 2002, 2007, and 2009 as
shown in Figure 10. Visually, the higher density is identified from 1991 to 2002 in the center
of the city, which is gradually getting less dense towards the outskirts. The high building
density started to spread afterward until it is nearly equally distributed in the study area
in 2019.
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All pixels of building density images were then extracted to plot them into kernel
density estimation (kde) in order to see the trends (Figure 11). The kde plot reveals a
positive trend of building density that, in general, shows the building of built-up areas in
the study area is getting denser over time. As visually observed, the kde plot was normally
distributed in 1991, yet the graphs become skewed to the left, and the skewness is more
obvious in the last four observation periods (2013–2019). This corresponds to the quantified
mean values, rising from 50.17% in 1991 to 51.03% in 2007 and 57.88% in 2019.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 11. Multi-temporal data distribution of building density map, plotted using kernel density 
estimation (kde). 

To see the changes in building density multi-temporally, we plotted two profile lines 
in the study area, i.e., Profile A and Profile B, representing the development in the center 
of the city and the outskirts, respectively (Figure 12). It can be seen that the building den-
sity is getting higher in both profile lines. The growth in the periphery of the city is more 
significant indicated by the obvious increases in the last observation periods. It is due to 
the existence of dense built-up areas in the middle of Yogyakarta City observed in 1991. 
The negative extreme spikes in the profiles are the presence of roads and/or other objects 
with a small coverage of buildings. 

 
Figure 12. (a) Profile lines with the background of estimated building density in 2019 and (b,c) the 
profiles A and B of multi-temporal building density. 
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estimation (kde).

To see the changes in building density multi-temporally, we plotted two profile lines
in the study area, i.e., Profile A and Profile B, representing the development in the center of
the city and the outskirts, respectively (Figure 12). It can be seen that the building density
is getting higher in both profile lines. The growth in the periphery of the city is more
significant indicated by the obvious increases in the last observation periods. It is due to
the existence of dense built-up areas in the middle of Yogyakarta City observed in 1991.
The negative extreme spikes in the profiles are the presence of roads and/or other objects
with a small coverage of buildings.
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5. Discussion
5.1. Multiple Landsat Sensors for Decadal Modeling

We demonstrated that the modeling applied by Landsat 8 trained in 2019 could achieve
similar accuracy when tested in 2013. On the other hand, it was unable to perform well on
Landsat 5/7, indicated by the overestimates in the images of 1991–2009 and a low accuracy
calculated based on Landsat 7 of 2002, even though sensor harmonization and RRN were
applied in the pre-processing method. This might be since the simple RRN used could
not perfectly normalize the values between different sensors despite the same Landsat
series. Ground reference data or PIFs in this study were selected manually. Although
careful selection was carried out on the bright and dark subjects, this human intervention
method could lead to subjectivity [65]. Several automatic PIF selections were developed
and should be carried out to minimize the imprecise correction [84,85]. Machine learning-
based non-parametric RRN methods, such as artificial neural networks (ANN) and SVM,
can be potentially useful for more accurately normalizing images [86,87]. Nevertheless,
our pre-processing methods could achieve good results for the same sensors. This would
suggest that when different sensors are involved in time series analysis, a more rigorous
correction is highly recommended.

5.2. Comparison of Regression Algorithms

Three regression algorithms were evaluated based on the RMSE and upper range ac-
curacy values on the models using Landsat 8 and Landsat 7, separately. SVR outperformed
other methods using Landsat 8, conversely, the non-parametric models (SVR and RFR)
were less accurate than LR applied using Landsat 7. It is mainly due to the difference in
sample size included in the modeling. Microsoft and OpenStreetMap building footprints
provided the spatial data of the whole study area that were used for modeling on Landsat
8 data. This comprises 68,849 pixels, where 70% (48,194 pixels) of those are used in the
model training. In contrast, the modeling on Landsat 7 used the 220 samples obtained
by visual interpretation on Quickbird image. RFR is sensitive to the sample size that is
benefited by large sample sizes to fit the model [88,89]. Thus, this algorithm is more capable
of handling an enormous number of samples. In the case of modeling on Landsat 7, the
number of samples was just enough to be used, thus SVR and RFR could not perfectly
estimate the unexplained values. The prediction was better achieved by LR since a linear
positive relationship was possessed between the built-up indices as the predictors and the
building density [37,54]. This confirms previous studies that LR has proved its capability
to predict time series biophysical parameters although a limited sample size is used if there
is a linear relationship between dependent and independent variables [90,91].

SVR using the inputs of UI-NDBI-IBI produced the highest accuracy among the others
(Figure 6). The use of all indices in data training might lead to a less accurate model, as we
observed that VrNIR-BI and VgNIR-BI models using the LR algorithm showed high RMSE
values. It emphasized the need for reducing high-dimensional datasets to only involve
the important inputs [89,92]. Meanwhile, UI employing the LR method outperformed the
modeling using Landsat 7 data. This index has proved its capability of discriminating built-
up areas [45] and also is capable of estimating building density in an urban area [37]. Yet, a
study investigating the consistency of the best methods (UI with LR as well as UI-NDBI-IBI
with SVR) applied in other urban regions needs to be addressed in the future.

5.3. Expansion and Densification of Built-Up Area

The results of SVM classification from 1991 to 2019 clearly showed the expansion
and densification of built-up areas. The urban area was normally growing and spreading
year by year and it is related to human activities and their needs as well as population
growth. It means that the built-up area development could be indicated by the rising
number of inhabitants [93]. Based on the population data, our study found that there
is a positive relationship between the increase in a built-up area and population growth
(Figure 13). The population has rapidly increased in the Sleman and Bantul regencies that
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surround the city center, however, Yogyakarta City was quite stable throughout the periods
studied. Based on the distribution of the increase in built-up land, the most intensive
changes occurred in areas adjacent to the Yogyakarta City boundary. This indicates that the
distribution of population growth occurs in areas adjacent to the administrative boundaries
of the city of Yogyakarta. This finding is matched with the built-up area changes from the
SVM classification.

The direction of the urban growth usually follows the development of economic
activities that could be recognized by an increase in the built-up area [94,95]. It is indicated
by the rapid development of infrastructure, facilities, and settlements, with the purpose
of decentralized economic activity. These situations attracted people from outside the
city to develop and integrate the infrastructure and facilities, therefore, it caused urban
morphology in the outer city to expand or, in other terms, agglomeration occurs [96,97]. In
this case, the increase in economic activity in Yogyakarta due to the development of the
tourism industry from 1991 to 2019 led to extensive infrastructure development as well
as an increased built-up area [98–100]. Besides population growth and economic activity,
the expansion was highly influenced by the presence of universities and schools of higher
education that are mostly located in the northern part of the study area [101]. The increased
availability of educational facilities has encouraged people from other cities to move for
a better education. Furthermore, our study also found that agglomeration occurred in
Yogyakarta City and the regencies around especially the Sleman and Bantul regions, the
same as a previous study [102]. Future studies should involve infrastructure development
to spatially understand the impacts on the expansion and densification of built-up areas.
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Figure 13. Growth of population density in Yogyakarta, Sleman, and Bantul compared to the
expansion of the built-up area. Population data were adapted from Badan Pusat Statistik [103] and
Kuncoro [102].

The factors contributing to building densification are relatively more complex when
compared to the expansion process. Areas that have undergone expansion will in turn
be followed by building densification. Densification in urban areas is directly affected by
the increased rate of urbanization and indirectly affected by the increase in community
welfare [104]. The high rate of built-up area expansion as well as the densification in the late
2000s was due to the economic recovery after the national economic crisis in 1998 [105,106].
Previous studies reported that built-up areas were mostly converted from croplands in the
study area [107–109]. Although the government has strengthened the policy regarding the
croplands development to secure food sustainability [110,111], a positive trend in built-up
areas was still detected and might be rising in the future.
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6. Conclusions

This study demonstrates the extraction of building density in Yogyakarta through
two phases, i.e., built-up area classification and building density estimation, of which
the first-mentioned results were also used as a mask to avoid bias in modeling building
density. Multi-temporal modeling of building density is still challenging for the series
of Landsat data due to different sensor specifications. Although sensor harmonization
and relative radiometric normalization (RRN) were applied, the model trained based on
Landsat 8 in 2019 was unable to accurately predict using Landsat 5/7 images, resulting
in overestimates. Using training samples of 70% of the total area based on Landsat 8
(2019), the support vector machine (SVR) algorithm using the inputs of Urban Index,
Normalized Difference Built-up Index, and Index-based Built-up Index (UI-NDBI-IBI)
performed the best, tested by accuracy assessment in 2019 and 2013 (mean RMSE = 17.47%,
accuracy = 72.07%). On the other hand, the best model processed using Landsat 7 (2002)
was achieved by linear regression (LR) with a single input of UI (RMSE = 20.48%). This is
because the limited samples used in modeling (220 samples) can be better trained by LR
compared to non-parametric algorithms. Our results conclude that built-up area expansion,
as well as densification in the study area, occurred in the last three decades (1991–2019)
with a linear positive trend. Expansion occurred first which was subsequently followed
by rapid building construction observed by the rise in building density. The population
growth in the vicinity of the city, i.e., fringe areas, has a great impact on both the built-up
area development and the densification.
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Appendix A

Table A1. Coefficient of determination (R2) values for the selection of PIFs between Landsat 5 dated
in 2009 as the reference and the corresponding datasets. All values are significant (p-value < 0.05).

No. Dataset
Bands

Blue Green Red NIR SWIR1 SWIR2

1 Landsat 5—1991 0.8039 0.8163 0.8185 0.8531 0.8547 0.8679
2 Landsat 5—1997 0.8854 0.8230 0.8675 0.8322 0.9127 0.9084
3 Landsat 5—2000 0.8952 0.8766 0.8944 0.8817 0.9323 0.9207
4 Landsat 7—2002 0.8080 0.8236 0.8046 0.8752 0.8693 0.8890
5 Landsat 5—2007 0.9516 0.9629 0.9399 0.9500 0.9169 0.9231
6 Landsat 8—2013 0.6901 0.7554 0.8000 0.8578 0.6905 0.6865
7 Landsat 8—2015 0.8658 0.9496 0.9329 0.9345 0.8694 0.8501
8 Landsat 8—2017 0.8816 0.9386 0.9328 0.9447 0.8895 0.8668
9 Landsat 8—2019 0.8732 0.9567 0.9329 0.9438 0.9115 0.8790
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