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Abstract: Crops and ecosystems constantly change, and risks are derived from heavy rains, hurri-
canes, droughts, human activities, climate change, etc. This has caused additional damages with
economic and social impacts. Natural phenomena have caused the loss of crop areas, which endan-
gers food security, destruction of the habitat of species of flora and fauna, and flooding of populations,
among others. To help in the solution, it is necessary to develop strategies that maximize agricultural
production as well as reduce land wear, environmental impact, and contamination of water resources.
The generation of crop and land-use maps is advantageous for identifying suitable crop areas and
collecting precise information about the produce. In this work, a strategy is proposed to identify
and map sorghum and corn crops as well as land use and land cover. Our approach uses Sentinel-2
satellite images, spectral indices for the phenological detection of vegetation and water bodies, and
automatic learning methods: support vector machine, random forest, and classification and regression
trees. The study area is a tropical agricultural area with water bodies located in southeastern Mexico.
The study was carried out from 2017 to 2019, and considering the climate and growing seasons of the
site, two seasons were created for each year. Land use was identified as: water bodies, land in recovery,
urban areas, sandy areas, and tropical rainforest. The results in overall accuracy were: 0.99% for the
support vector machine, 0.95% for the random forest, and 0.92% for classification and regression trees.
The kappa index was: 0.99% for the support vector machine, 0.97% for the random forest, and 0.94%
for classification and regression trees. The support vector machine obtained the lowest percentage of
false positives and margin of error. It also acquired better results in the classification of soil types and
identification of crops.

Keywords: remote sensing images; land use with Sentinel-2; Sentinel-2; Sentinel-2 with Google Earth
Engine

1. Introduction

The world bank considers that one of the leading global concerns is food security.
However, in recent years different factors such as fires, floods, and droughts have been
caused by climate change, putting at risk the areas dedicated to food crops. This has caused
crop cycles to be modified and agricultural production to decrease [1]. Besides, the rapid
increase in the world population has generated an unprecedented additional burden on
agriculture, causing the degradation of farmland, water resources, and ecosystems, thus
affecting food security [2]. It is estimated that by 2050, agricultural production needs to
increase by 60% to ensure food and sustenance for the population [3].

Changes in land use caused by human activities influence the alteration of ecosys-
tems [4]. Some organizations have proposed projects to improve crop yields but with
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environmentally sustainable agriculture, avoiding soil deterioration to address this situa-
tion [5,6].

On the one hand, because Mexico has a diversity of climates and massive extensions
of farmland, agriculture is one of the country’s economic activities. Thus, Mexico produces
a great variety of agricultural products. The agricultural production of Mexico covers 4%
of gross domestic product (GDP) [7]. In recent years, the demand for farming foods has
increased, causing overexploitation of natural resources. In Mexico, extreme droughts and
severe floods have been recorded that have caused the loss of large extensions of crops,
reducing their production. For this reason, it is of great importance to obtain information,
map and identify crop areas that allow the development of strategies that counteract the
effects of climate change on crops, develop sustainable agriculture, develop strategies that
strengthen the field, and evaluate projects already implemented, in addition to estimating
agricultural production. Therefore, it is necessary to obtain multitemporal data that monitor
and identify crops, climate change, and human activities.

Currently, techniques and tools are being developed to monitor the Earth’s crust and
determine changes in vegetation. Remote sensing is the science that collects information
about the Earth’s surface, providing valuable data for land-use mapping, crop detection,
etc. [8–10]. Artificial intelligence includes machine learning algorithms for land-use classifi-
cation through satellite images [11].

The satellites that orbit the Earth provide unique information for additional research
such as natural disasters, climate change, crop monitoring, etc. They use optical, infrared,
and microwave sensors. Optical sensors provide high-resolution and multispectral images.
Microwave sensors provide SAR (Synthetic Aperture Radar) prints with higher resolution
and can operate in any weather condition. Many approaches analyze land cover using
optical images. However, these images may contain noise (cloud cover). Some methods
use SAR images. However, these images require more processing.

Spectral data from optical sensors is highly correlated with the Earth’s surface, and im-
age analysis algorithms are mainly based on visual data. Therefore, they are primarily used
for land-cover analysis.

With the advancement of satellite programs, the spatial, temporal, and infrared spec-
tral resolution have improved significantly. New indices have been developed for land-
cover analysis.

This paper proposes a methodology to map corn and sorghum crops by Sentinel-2
satellite imagery, reflectance index calculations, and supervised machine learning methods.
The study area belongs to the state of Tabasco, Mexico. The document is structured
as follows: Section 2 describes the theoretical framework and related works; Section 3
describes the materials and methods used in the research; Section 4 presents the results of
the experiments; and finally, Section 5 contains the conclusions derived from the study.

2. Background and Related Works
2.1. Remote Sensing

Remote sensing (RS) is the science responsible for collecting information from an
object, area, or phenomenon without direct contact with it through sensors that capture
the electromagnetic radiation emitted or reflected by the target [12,13]. Earth observation
satellites orbiting the planet record the electromagnetic radiation emitted by the Earth’s
surface. Its operation is based on spectral signatures (the ability of objects to reflect or emit
electromagnetic energy). With spectral signatures, it is possible to identify different types
of crops, water bodies, soils, and other characteristics of the Earth’s crust.

RS has evolved from visible wavelength analog systems based on aerial platforms to
digital systems using satellite platforms or unmanned aerial vehicles with coverage on a
global scale [14]. The sensor resolution is the ability to record and separate information
and depends on the combined effect of different components. The solution involves four
essential characteristics: (1) spatial, which characterizes the Earth’s surface that each pixel of
an image represents; (2) spectral, number, and bandwidth of the electromagnetic spectrum
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that can be recorded; (3) temporal, which determines the time it takes to obtain an image of
the same place with the same satellite; and (4) radiometric, which represents the different
digital levels used to record radiation intensity.

The use of satellite images may be limited by the type of passive sensors they use:
(1) sensors that operate in the optical range and (2) microwave electromagnetic spectrum.
The optical sensors provide multispectral images with 13 bands with characteristics that
differentiate geological components such as water, vegetation, cloud, and ground cover.
However, they can be affected by clouds or rain [15]. This makes it impossible to acquire
images without cloudiness. The microwave sensors provide images that are not affected by
weather conditions since they operate at longer wavelengths and are independent of solar
radiation. However, spatial resolution and complicated processing technologies and tools
limit their use [16].

Optimal optical images for vegetation identification, mapping, and atmospheric moni-
toring are derived from multispectral sensors [17]. Data for monitoring and analysis at the
local level are obtained by drones or airplanes. In contrast, data from dedicated satellite
platforms are used for ground monitoring [18].

Space programs dedicated to Earth observation include Landsat [19], Aqua [20],
Copernicus [21], and more.

• Copernicus Sentinel. It is a series of space missions developed by the European Space
Agency (ESA) that observe the Earth’s surface and are composed of five satellites
with different objectives [21]: (1) Sentinel-1 focuses on land and ocean monitoring;
(2) Sentinel-2 has the mission of Earth monitoring; (3) Sentinel-3 is dedicated to
marine monitoring; (4) Sentinel-4’s main objective is the measurement of the com-
position of the atmosphere in Europe and Africa; and (5) Sentinel-5 measures the
atmospheric composition.

2.2. Sentinel-2 Project

The Sentinel-2 mission monitors the Earth’s surface with two satellites with similar
characteristics (Sentinel 2A and 2B) that have an integrated 13-bands MSI (Multi-Spectral
Instrument) optical sensor (see Table 1) that allows the acquisition of high-spatial-resolution
images [22]. Each of the Sentinel-2 images covers a 290 km strip that, combined with its
resolution of 10 to 60 meters per pixel and the 15-day review frequency on the equator,
means that 1.6 Tbytes of image data are generated daily [23].

Table 1. Spectral bands for Sentinel-2A and Sentinel-2B sensors. Bold bands were used in this research.

Sentinel-2A Sentinel-2B

Band Wavelength
(nm)

Resolution
(m)

Wavelength
(nm)

Resolution
(m)

1 Coastal aerosol 443.9 60 442.3 60
2 Blue 496.6 10 492.1 10
3 Green 560 10 559 10
4 Red 664.5 10 665 10
5 Vegetation red edge (VNIR) 703.9 20 703.8 20
6 Vegetation red edge (VNIR) 740.2 20 739.1 20
7 Vegetation red edge (VNIR) 782.5 20 779.7 20
8 Near infrared (NIR) 835.1 10 833 10
8a Narrow NIR 864.8 20 864 20
9 Water vapor 945 60 943.2 60
10 Short-wave infrared (SWIR) cirrus 1373.5 60 1376.9 60
11 SWIR 1613.7 20 1610.4 20
12 SWIR 2202.4 20 2185.7 20
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Among the Sentinel-2 mission objectives are:

• Provide global and systematic acquisitions of high-resolution multispectral images
with a high review frequency.

• Provide continuity of the multispectral images provided by the SPOT satellites and
the LANDSAT thematic mapping instrument of the USGS (United States Geological
Survey).

• Provide observational data for the next generation of operational products, such as
land-cover maps, land change detection maps, and geophysical variables.

Due to its characteristics, Sentinel-2 images can be used in different research fields
such as water body detection [24] and land-cover classification [25]. In addition, Sentinel-2
photos can be combined with images from other space projects such as SPOT 4 and 5 that
allow for historical studies.

Sentinel-2 spectral bands provide data for land-cover change detection/classification,
atmospheric correction, and cloud/snow separation [26]. It is essential to mention that the
MSI of Sentinel-2 supports many Earth observation studies and programs. It also reduces
the time needed to build a European cloud-free image archive.

The MSI works by passively collecting reflected sunlight from Earth. The incoming
light beam is split by a filter and focused onto two separate focal plane arrays inside the
instrument: one for the visible and near-infrared (VNIR) bands and one for the short-
wave infrared (SWIR) bands. The new data are acquired as the satellite moves along its
orbital path.

2.3. Reflectance Indices

Reflectance indices are dimensionless variables that result from mathematical com-
binations involving two or more spectral bands. The reflectance indices are designed to
maximize the characteristics of vegetation and water resources but reduce noise [27,28].

This allows analyzing the activity of vegetation and water bodies showing their
seasonal and spatial changes. The most used indices in RS are:

• Normalized Difference Vegetation Index (NDVI) [29]. An indicator of photosynthetic
biomass that calculates vegetation’s health is highly related in studies under drought
conditions [30,31]. Its range is between +1 and −1. The highest value reflects healthy
and dense vegetation; the lowest value reflects sparse or unhealthy vegetation. The
NDVI is calculated using the following formula:

NDVI =
(NIR− RED)

(NIR + RED)
(1)

where NIR corresponds to the near-infrared band and RED to the red band.
• Green Normalized Vegetation Index (GNDVI). It is a modified version of NDVI that

increases the sensitivity to variations in the chlorophyll of the vegetation [32]. It is
calculated using the following formula:

GNDVI =
(NIR− GREEN)

(NIR + GREEN)
(2)

where NIR corresponds to the near-infrared band and GREEN to the green band.
• Enhanced Vegetation Index (EVI). It is an indicator that allows quantifying the

greenness of the vegetation, increasing the sensitivity of the regions with a high
presence of vegetation and correcting atmospheric conditions that cause distortions
such as aerosols [33,34]. The formula to calculate it is:

EVI = G ∗ (NIR− RED)

(NIR + C1 ∗ RED− C2 ∗ BLUE + L)
(3)
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where L is used for the soil adjustment factor; C1 and C2 are the coefficients used in
the blue band to correct for the presence of the aerosol in the red band; G corresponds
to the profit factor; and RED, NEAR, and BLUE correspond to the red, near infrared,
and blue bands, respectively.

• Soil Adjusted Vegetation Index (SAVI). It is used to suppress the effect of the soil in
areas where the vegetative cover is low, minimizing the error caused by the variation
of the soil brightness [35]. The formula to calculate it is:

SAVI =
(NIR− RED)

(NIR + RED + L)
∗ (1 + L) (4)

where L is the ground adjusted factor, NIR is the near-infrared band, and RED is the
red band.

• Normalized Difference Water Index (NDWI). It is sensitive to changes in the content
of water resources and is less susceptible to the atmospheric effects than affect NDVI,
and it is widely used in the analysis of water bodies [36]. It is calculated using the
following formula:

NDWI =
(NIR− SWIR)
(NIR + SWIR)

(5)

where NIR corresponds to the near-infrared band, and SWIR refers to the short wave
infrared band.

2.4. Satellite Image Classification Algorithms

Image classification is used in many works in RS. Multiband imagery is widely used
to map land use and recognize areas of crops, forests, bodies of water, etc. The use of
predictive machine learning methods makes it possible to identify patterns contained
in the images. Generally, a distinction is made between supervised and unsupervised
classification.

Supervised classification techniques work as part of a group of elements belonging
to the image, known as training areas. The classification of the image set is the process by
which each piece contained in the picture is assigned a category based on the attributes
in the training areas. The supervised classification forces the result to correspond to
land covers defined by the user and, therefore, of interest to them. However, it does not
guarantee that the classes are statistically separable [37].

Unsupervised classification methods perform an automatic search by grouping uni-
form values within an image. From the digital levels, it creates several clusters with pixels
with similar spectral behavior. It is important to note that the analyst must indicate the
thematic meaning of the generated spectral classes since the program does not detect it [37].

Due to the interest in classification, many automatic classifiers have been developed
that can be used in the SR area. Some of the most used algorithms are:

• Maximum Likelihood. It starts from the assumption that the reflectivity values in
each class follow without a multivariate normal probability distribution, which uses
the vector of means and the variance–covariance matrix to estimate the probability
that a given pixel belongs to each class. The pixel will finally be assigned to the class
whose membership probability is higher. Once the assignment of pixels to the classes
is finished, probability thresholds are established for each category, rejecting the pixels
with a very low probability [38].

• Support Vector Machine (SVM). This method was developed from the statistical
learning theory, which reduces the error related to the size of the training or sam-
ple data [39,40]. It is a machine learning algorithm used in problems where input–
output vector dependencies such as image classification and linear regression are
unknown [41].

• Random Forest (RF). It is a classification algorithm that aims to counteract variations
in predictions in a decision tree caused by disturbances in training data [42]. The al-
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gorithm is designed so that the predictor trees produce as many errors as possible,
thus ensuring that the rest of the classifiers reject it, improving their precision [43].
This algorithm has been widely used in remote sensing for land-cover classifica-
tion [44].

• Classification and Regression Trees (CART). It is a nonparametric machine learning
method [45]. Create a predictive tree using binary division until the rule for inductive
detection of relationships between input and output attributes is met. Used in predic-
tion and classification problems, the constructed trees are optimized to obtain the best
prediction possible [46].

2.5. Google Earth Engine

Google Earth Engine (GEE) (https://developers.google.com/earth-engine, accessed
on 1 March 2022) allows high-performance computational resources to process extensive
referenced data collections [47]. GEE has a robust repository of free access geospatial data
that includes data from various spatial projects such as Sentinel images [48,49], Landsat [50],
and climate data [51], among others [52–54]. This web platform facilitates the development
and execution of algorithms applied to collections of georeferenced images and other
data types.

2.6. Related Works

Several approaches to vegetation mapping have been explored. The ones mentioned
here generally use Sentinel satellite imagery and spectral indices.

Shaharum et al. [55] presented an oil palm mapping plantations by Landsat 8 satellite
images. The study period was 2016 and 2017. They used NDVI and NDWI spectral indices.
They used NDVI and NDWI spectral indices and three classification methods: (1) random
forests, (2) classification tree and regression, and (3) support vector machines. The data
and methods were processed in GEE. The results obtained demonstrated the capacity of
GEE for data processing and the generation of high-precision crop maps. Furthermore,
they mapped the land cover of oil palms. They got 80% overall accuracy in each of the
methods used.

Borrás et al. [56] present research that addresses two objectives: (1) determine the best
classification method with Sentinel-2 images; (2) quantify the improvement of Sentinel-
2 concerning other space missions. They selected four automatic classifiers (LDA, RF,
Decision Trees, KNN) applied in two agricultural areas (Valencia, Spain, and Buenos
Aires, Argentina). Based on the Kappa Index, they obtained a land-use map from the best
classifier. They determined that the best classifiers for Sentinel-2 images are KNN and
the combination of KNN with RF. They obtained 96.52% overall accuracy. Detection of
abandoned soils and lucerne was better.

On the other hand, Liu et al. [57] present a pixel-based algorithm and phenological
analysis to generate large-scale annual crop maps in seven areas of China. They used
Landsat 8 and Sentinel-2 images from 2016 to 2018. They use GEE for image processing and
several spectral indices to examine the phenological characteristics of the crop. The results
show the importance of spectral indices for crop phenological detection. In addition, they
allowed working with different image repositories in GEE. Overall accuracy was 78%,
76%, and 93% using Landsat and Sentinel-2. Detection of abandoned soils and lucerne
was better.

Ashourloo et al. [58] presented a method for mapping the potato crop in Iran in 2019.
They analyzed and used Sentinel-2 images and the machine learning method SVM and
Maximum Likelihood (ML). The method is based on the potato’s spectral characteristics
during its life cycle. The results show that SVM obtains better results—an overall accuracy
of better than 90% in the study sites. Finally, Macintyre et al. [59] tested Sentinel-2 images
for use in vegetation mapping. They used SVM, RF, Decision Tree (DT), and K-Nearest
Neighbors (KNN) algorithms. The algorithm that obtained the highest performance in the
classification was SVM. Furthermore, the authors state that Sentinel-2 is ideal for classifying

https://developers.google.com/earth-engine
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vegetation composition. The obtained results were: SVM (74%), KNN (72%), RF (65%),
and CT (50%).

Hudait et al. [60] mapped the heterogeneous crop area according to the crop type in
the Purba Medinipur District of West Bengal. They used Sentinel-2 multispectral imagery
and two machine learning algorithms: KNN and RF. Plot-level field information was
collected from different cropland types to frame the training and validation datasets for
cropland classification and accuracy assessment. The maps obtained allowed us to identify
the cultivated surfaces of Boro rice, vegetables, and betel. They got 95% overall accuracy.
The study showed that RF is the more accurate.

Silva et al. [61] developed an algorithm (phenology-based) for soybean crop mapping
by spectral indices and Landsat and Sentinel-2 images. The study season was 2016–2017.
The algorithm is based on the soybean’s phenology during their growing cycle. Therefore,
they divided their life cycle into two stages: (1) vegetative and (2) reproductive. The results
demonstrate the difficulty of obtaining many images with little noise in the study area.
On the other hand, the images acquired by the MODIS sensor (from the Terra satellite
program) [32] were slightly better than MSI. However, MSI images have better resolution.

3. Materials and Methods

The methodology applied for mapping crops is divided into five stages (see Figure 1)
described below.

Study area

Sentinel-2A Image
collection

Images selection
Atmospheric correction

T1 T2 Tn

...

Preprocessing

Spectral indices
calculation

Supervised Classification

Training data collection

Validation

Accuracy assessment

Territorial extension
calculation by classes

Land cover map

Classifier training setup

Scene selection and collection building

Cloud masking

Spectral band
selection

Mosaic creation

Percentiles calculation

Kappa Index calculation

SVM, RF, CART

Figure 1. Proposed methodology for land-cover classification.

3.1. Location

The study area is located in the eastern part of Tabasco, Mexico (see Figure 2a).
Approximately between latitude 17◦15′29.7329′′ N, y 18◦10′45.0525′′ N, and between lon-
gitude 90◦59′12.4464′′ O y 91◦44′22.1932′′ O. The area includes the towns of Balancán,
Emiliano Zapata, and Tenosique, with an approximate size of 6079 km2 (see Figure 2b).
It has large volumes of aquifers and sediments collected by streams, rivers, and lagoons; the
region’s climate is hot-humid with abundant rains in summer; its mean annual temperature
is 26.55 ◦C; the average humidity is 80% and maximum 85%. Due to the terrain and climate,
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the main activities are cattle ranching and agriculture, with corn, sorghum, and sugar
cane growing.
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Figure 2. Study area map’s. (a) Tabasco in Mexico; (b) Study area.

Data. Sentinel-2 satellite images with the Google Earth Engine (GEE code) platform
through the Copernicus/S2 repository. Because crop coverage is identified in the different
seasons of the year, time series per year were created considering the crop cycles and
weather type of study area. The images were selected in two annual time series: (1) Spring–
Summer (20 March–20 October) and (2) Autumn–Winter (21 October–20 March), from 2017
to 2019, obtaining six collections of images.

To delimit the study area, a shapefile file obtained from the National Commission for
the Knowledge and Use of Biodiversity (CONABIO) [62] was used. An images fitering was
applied with less than 20% clouds to obtain better images. Thus, 309 images were obtained
(see Table 2).

Table 2. Time series imaging dataset.

Season Img 2017 Img 2018 Img 2019

Spring–Summer 12 70 66
Autumn–Winter 46 63 52

3.2. Image Selection

To obtain cleaner and sharper images, pixels with small accumulations of clouds (dense
and cirrus) were removed by cloud masking using the QA60 band. The thick clouds were
identified by the reflectance threshold of the blue band, and to avoid erroneous detection
(e.g., snow), the SWIR reflectance and the Band 10 reflectance were used. For identification
of cirrus clouds, a filter was applied based on morphological operations in dense and cirrus
masks: (1) erosion, to eliminate isolated pixels, and (2) dilation, to fill the gap and extend
the clouds.

3.3. Preprocessing

Spectral indices were calculated for collections of masked images. Spectral indices
are based on vegetation’s red and infrared spectral bands and electromagnetic energy
interactions. For vegetation detection, the following were calculated: Normalized Differ-
ence Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI),
Improved Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), and Normalized
Difference Moisture Index (NDMI). For water bodies: Normalized Difference Water Index
(NDWI). The Sentinel-2 bands used for each spectral index are:

NDVI =
(B8− B4)
(B8 + B4)

(6)

GNDVI =
(B8− B3)
(B8 + B3)

(7)
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EVI =
(2.5 ∗ (B8− B4))

(B8 + 6 ∗ B4− 7.5 ∗ B2 + 1)
(8)

SAVI =
(B08− B04)

(B08 + B04 + 0.428)
∗ (1.428) (9)

NDWI =
(B3− B8)
(B3 + B8)

(10)

NDMI =
(B8− B11)
(B8 + B11)

(11)

For image correction, mosaics were formed by cutting out the contour of the study area
and a reduction method by histograms, and linear regression (supplied by GEE through
the ee. Reducer class) was applied to allow the data aggregation over time. This required
reducing the image collection (input) to a single image (output) with the same number of
bands as the input collection. Each pixel in the output image bands contains summary
information for the pixels in the input collection. To provide additional information to
the classification methods on the dynamic range of the study area, five percentages (10%,
30%, 50%, 70%, and 90%) and the variance of each band that composes the reduced image
were calculated. The electron spectrum is recorded by placing the minimum, medium,
maximum, and intermediate points to form a 78-band image.

3.4. Supervised Classification

In the classification stage, the study area’s main types of land were identified. This
was done by visual analysis of satellite images, vegetation maps, and crop estimation
maps obtained from the agricultural and fishing information service (SIAP, Ministry of
Agriculture and Rural Development of Mexico).

Two types of crops (corn and sorghum) and six types of land use were identified:
water masses (extensions of water), lands in recovery (grounds without sowing with little
or no presence of vegetation), urban areas (towns or cities), sandy areas (accumulation of
mineral or biological sediments), forests or tropical jungle (zone with a high vegetation
index), and others (grasslands, etc.). For crops and soil types identification, three super-
vised classification algorithms were applied: Random Forest (RF), Support Vector Machines
(SVM), and Classification and Regression Trees (CART). Supervised learning classifica-
tion methods require datasets labeled with land-use categories for learning and training.
GeoPDF (https://www.gob.mx/siap/documentos/mapa-con-la-estimacion-de-superficie-
sembrada-de-cultivos-basicos, accessed on 3 January 2022) (estimation of crop sowing
area) documents and Google Earth files provided by SIAP (https://datos.gob.mx/busca/
dataset/estimacion-de-superficie-agricola-para-el-ciclo-primavera--verano, accessed on
24 August 2021) with hydrographic maps and vegetation maps and visual identification
were selected to compose the training dataset.

Crop cycles and seasonal climate change cause differences in spectral indices in crops
and soil types, leading to misclassifications. Therefore, it was decided to form independent
datasets corresponding to each crop cycle. To address this issue, two separate data sets were
created using sample points or pixels corresponding to each growing process. The pixels of
the spring–summer and autumn–winter cycles were selected and entered manually in GEE
based on the collection of images from 2019 and 2018 (see Figure 3), forming two datasets
with 2510 sample points for spring–summer and 3012 for autumn–winter (see Table 3).

https://www.gob.mx/siap/documentos/mapa-con-la-estimacion-de-superficie-sembrada-de-cultivos-basicos
https://www.gob.mx/siap/documentos/mapa-con-la-estimacion-de-superficie-sembrada-de-cultivos-basicos
https://datos.gob.mx/busca/dataset/estimacion-de-superficie-agricola-para-el-ciclo-primavera--verano
https://datos.gob.mx/busca/dataset/estimacion-de-superficie-agricola-para-el-ciclo-primavera--verano
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Figure 3. Sample points on the GEE platform.

Table 3. Sample points collection.

Coverage Spring–Summer Autumn–Winter

Corn crop 194 190
Sorghum crop 969 822
Water bodies 324 324
Land in recovery 152 628
Urban areas 100 100
Sandy areas 191 233
Tropical rainforest 353 378
Others 227 337

Considering the data-driven framework of machine learning models to evaluate the
performance and accuracy of classification methods [63] and avoid overtraining, the dataset
was divided into 70% for the training set and 30% to evaluate the performance and accuracy
of classification methods.

The SVM, RF, and CART classification algorithms were evaluated and executed with
different configurations on the GEE platform to improve classification efficiency.

For SVM, a kernel with a radial and gamma base function of 0.7 was used with a cost
of 30. Two pieces of training were carried out: spring–summer and autumn–winter. RF
was configured so that the random forest limits 20 trees and avoids misclassifications; this
configuration obtained significant improvements. The base GEE configuration was used
with CART since it acquired a lower number of classification errors.

4. Results Evaluation

From the data, two categories were defined: (1) types of crops and (2) types of land use.
Corn (CC) and sorghum (SC) are found in crops. Soil types are water bodies (WB), land in
recovery (LR), urban areas (UA), sandy areas (SA), tropical rainforest (TR), and others.

For the test of the classified maps, 30% of the sample points were used: 742 for the
spring–summer season and 868 for the autumn–winter season (see Table 4).
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Table 4. Collection of sample points for test.

Coverage Spring–Summer Autumn–Winter

Corn crop 56 57
Sorghum crop 285 262
Water bodies 95 95
Land in recovery 49 177
Urban areas 28 38
Sandy areas 54 63
Tropical rainforest 112 125
Others 63 107

The overall training accuracy (OA) and the kappa index (KI) were calculated for each
season and classification method. Table 5 shows that SVM obtained the best performance
in both seasons; OA and KI were 0.996%. The RF method brought an OA and a KI greater
than 0.990 in the spring–summer season; in the autumn–winter season, it was 0.96% and
0.95%, respectively. Lastly, the CART method obtained an OA of 0.94% and a KI of 0.92%
in the first season, and in the second season, it received 0.98% and 0.97%, respectively.
Values closer to 1 indicate better performance, and therefore, the results are more reliable,
while values relative to 0 indicate unreliable results.

Table 5. Overall accuracy (OA) and Kappa index (KI) of the seasons.

RF SVM CART

Season OA KI OA KI OA KI

Spring–Summer 0.9671 0.9580 0.9973 0.9966 0.9426 0.9260
Autumn–Winter 0.9920 0.9904 0.9988 0.9986 0.9815 0.9777

Coverage of Sorghum and Corn Crops with Government Data

The SIAP oversees collecting crop data. However, these data only consider the hectares
planted. Consequently, those that do not sprout or do not grow are ignored. That makes
these data unreliable. As a result, the margins of error of the hectares detected by the
algorithms and the SIAP data are enormous.

The types of crops were compared with data obtained from the SIAP. Table 6 shows
the hectares of produce for the spring–summer (s-s) and autumn–winter (a-w) seasons.

Table 6. Coverage in hectares of corn and sorghum crops provided by SIAP for the spring–summer
(s-s) and autumn–winter (a-w) seasons.

Emiliano Zapata Balancán Tenosique

Year Corn Sorghum Corn Sorghum Corn Sorghum

2017 s-s 1045 298 10,267 2538 2860 no data
2017 a-w 1340 323 7577 4025 2146 339
2018 s-s 1017 37 11,654 107 4262 no data
2018 a-w 1370 95 7926 3872 1738 262
2019 s-s 1175 50 11,357 1606 4305 120
2019 a-w 1425 115 8086 3972 2485 421

Figure 4 shows the maps generated by the SVM method. Table 7 shows the results
of the estimation of the coverage of the crop types and land use using the SVM method.
Results are reported in square hectares. They are classified by municipality (zone) and in
two seasons of each year: spring–summer (s-s) and autumn–winter (a-w). The gray cells
indicate the extensions with the highest coverage, corn in 2019 autumn–winter (1514.59 ha)
and sorghum in 2017 autumn–winter (348.11 ha) for zone 1. For zone 2, it was corn in 2018
spring–summer (11,856.54 ha) and sorghum in 2017 autumn–winter (4248.01 ha).
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Figure 4. SVM-generated maps.

Table 7. Land-use coverage classified by SVM. Coverage in hectares.

Season CC SC WB LR UA SA TR Others

Zone 1. Emiliano Zapata

2017 s-s 1128.31 318.12 2697.58 445.77 369.16 23.54 15,263.43 38,985.48
2017 a-w 1422.23 348.11 4441.97 1141.84 441.71 224.77 21,411.62 29,799.01
2018 a-w 1409.32 104.99 2499.00 820.43 343.68 432.84 22,769.34 30,354.33
2019 s-s 1238.68 57.12 1515.61 339.56 374.70 47.11 9651.58 44,665.69
2019 a-w 1514.59 124.28 2391.12 1079.26 420.81 92.18 21,616.85 31,992.72

Zone 2. Balancán
2017 s-s 10,572.43 2720.76 5573.76 9431.75 1971.42 64.75 49,028.55 278,072.51
2017 a-w 7820.23 4248.01 7457.56 5339.38 648.59 183.14 118,043.15 213,995.85
2018 s-s 11,856.54 112.31 6350.09 2402.60 449.38 26.99 95,198.04 245,288.92
2018 a-w 8354.53 4060.53 5575.26 6459.76 623.32 528.99 100,175.72 231,858.86
2019 s-s 11,763.25 1723.65 4958.37 3374.17 572.66 131.95 45,152.25 278,353.70
2019 a-w 8362.46 4150.80 5317.32 4871.12 788.57 179.20 107,152.55 226,615.16

Zone 3. Tenosique
2017 s-s 3080.31 190.15 3569.70 2561.97 762.54 19.49 51,663.70 126,387.18
2017 a-w 2245.22 365.40 4435.46 2900.94 622.71 86.30 87,333.25 90,146.37
2018 s-s 4568.87 156.32 3933.85 1603.03 423.14 10.12 77,259.58 101,880.44
2018 a-w 1856.00 290.86 3060.32 3871.29 593.40 159.43 76,436.89 101,967.70
2019 s-s 4675.46 142.43 2885.48 3174.07 625.46 52.29 34,752.37 141,926.51
2019 a-w 2269.37 452.24 3038.07 2497.06 708.77 64.25 87,729.06 93,745.83

Figure 5 shows the maps generated by the RF method, and Table 8 shows the results
in land cover.
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Figure 5. RF-generated maps.

Table 8. Land-use coverage classified by RF. Coverage in hectares.

Season CC SC WB LR UA SA TR Others

Zone 1. Emiliano Zapata
2017 s-s 2769.57 1127.54 2931.90 472.56 316.34 10.78 11,841.73 39,760.49
2017 a-w 2097.25 400.71 5091.82 1015.73 359.71 279.25 21,870.46 28,115.99
2018 s-s 1369.75 577.45 3135.05 205.12 270.71 12.66 18,826.37 34,833.81
2018 a-w 1925.99 498.32 2978.68 610.61 346.99 350.18 23,395.11 29,125.03
2019 s-s 2307.29 1,330.62 1500.89 315.94 316.96 44.63 11,915.94 41,364.37
2019 a-w 2444.86 488.26 2853.61 789.13 400.51 124.95 21,574.19 30,555.41

Zone 2. Balancán
2017 s-s 12598.43 5191.36 5752.22 5840.99 832.99 32.41 28,248.56 299,238.95
2017 a-w 6960.48 4725.05 8167.37 6800.37 524.80 284.70 119,955.66 210,317.24
2018 s-s 5077.67 2661.62 6598.98 893.01 333.37 55.21 110,099.69 232,016.35
2018 a-w 5848.83 4291.23 6134.84 6918.09 689.55 536.95 101,651.32 231,665.08
2019 s-s 8608.91 4436.02 957.58 2227.57 495.57 122.34 42,612.84 294,275.07
2019 a-w 9502.74 3217.59 5739.21 5667.76 692.72 308.39 109,065.48 235,420.01

Zone 3. Tenosique

2017 s-s 4036.99 3230.39 3782.10 1596.70 495.61 10.09 47,177.75 127,905.39
2017 a-w 3203.48 1243.79 4774.91 4049.55 460.66 273.88 86,276.84 87,951.92
2018 s-s 2879.73 1664.45 4011.87 830.06 288.98 25.66 86,444.81 92,089.46
2018 a-w 3307.66 1555.56 3313.37 4636.41 517.43 317.57 77,226.23 97,360.76
2019 s-s 3651.14 3821.04 2948.24 1967.18 516.83 49.17 41,891.19 133,390.22
2019 a-w 4646.64 1454.98 3256.64 3336.57 577.33 123.29 88,130.18 86,709.40

Finally, Figure 6 and Table 9 show the results obtained with the CART method.
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Figure 6. CART-generated maps.

Table 9. Land-use coverage classified by CART. Coverage in hectares.

Season CC SC WB LR UA SA TR Others

Zone 1. Emiliano Zapata
2017 s-s 7842.29 4393.24 2267.24 314.17 326.06 121.26 13,546.98 30,419.69
2017 a-w 5441.09 2383.54 4353.35 1764.45 443.26 287.30 20,304.49 24,253.44
2018 s-s 8962.11 1710.50 2633.75 236.01 247.73 49.14 17,263.76 28,127.93
2018 a-w 4711.87 1614.52 1688.28 1194.54 378.51 1098.5 20,915.14 27,629.57
2019 s-s 5958.21 3524.67 1718.43 372.18 285.36 97.77 10,477.66 36,765.65
2019 a-w 5683.84 2510.76 1738.65 1306.61 459.65 913.41 19,569.59 27,048.42

Zone 2. Balancán
2017 s-s 52,951.22 32,589.6 6820.26 2452.76 1890.40 1095.26 54,479.32 205,457.03
2017 a-w 24,318.22 22,800.81 7246.54 6072.87 835.25 612.87 116,901.50 178,947.87
2018 s-s 52,631.68 13,250.7 6634.00 606.79 381.43 149.91 120,140.88 164,940.43
2018 a-w 27,318.82 13,204.62 5092.27 7121.10 867.07 889.55 98,020.03 205,222.44
2019 s-s 39,514.52 26,606.6 5807.00 1546.87 471.27 258.93 5200.33 238,330.39
2019 a-w 29,281.72 15,707.49 3216.92 4647.01 1070.98 2476.39 110,215.11 191,120.28

Zone 3. Tenosique
2017 s-s 21,547.47 13,259.8 3231.72 1199.76 744.97 252.75 59,488.63 88,510.64
2017 a-w 12,161.45 9266.72 4325.92 3491.13 584.33 284.85 83,586.10 74,534.53
2018 s-s 25,649.19 6545.0 4,153.16 572.72 273.31 107.84 91,325.50 59,608.26
2018 a-w 13,428.54 5993.69 2798.79 4093.97 546.92 277.96 75,955.14 85,140.02
2019 s-s 15,836.97 13,948.9 3379.60 1638.31 487.28 174.50 44,401.90 108,368.25
2019 a-w 13,933.62 8180.23 2161.82 2671.43 689.34 1112.83 83,780.06 75,705.71

The predictions of the three classifiers were compared with the ground truth provided
by SIAP. Percentage errors for each classifier are shown in Table 10. The results obtained by
SVM were superior to the actual data. The SVM method received a 5.86% general error in
corn and 9.55% in sorghum crops. On the other hand, the accurate data may have a margin
of error because some lands may be cultivated occasionally. This means that small crops or
lands where crops are intermittent are not accounted for.
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Table 10. Percentage of corn and sorghum crop error by each classification method.

Corn Sorghum

Season SVM RF CAR SVM RF CAR

Zone 1. Emiliano Zapata

2017 s-s 7.9% 62.26% 86.67% 6.32% 73.57% 93.21%
2017 a-w 6.11% 36.1% 75.37% 7.73% 19.39% 86.44%
2018 s-s 7.9% 25.75% 88.65% 12.42% 95.15% 98.36%
2018 a-w 2.87% 29.86% 70.92% 9.51% 80.93% 94.11%
2019 s-s 5.41% 49.07% 80.38% 10.4% 96.24% 98.58%
2019 a-w 5.41% 191.84% 74.92% 7.82% 76.44% 95.41%

Zone 2. Balancán

2017 s-s 2.95% 18.5% 80.61% 6.71% 51.11% 92.21%
2017 a-w 3.21% 8.85% 249.37% 5.54% 14.81% 82.34%
2018 s-s 1.7% 129.51% 77.42% 4.96% 95.97% 99.19%
2018 a-w 5.39% 35.51% 70.98% 4.85% 9.76% 70.67%
2019 s-s 3.45% 31.92% 72.25% 7.34% 63.79% 93.96%
2019 a-w 3.41% 14.9% 72.38% 4.61% 23.44% 74.71%

Zone 3. Tenosique

2017 s-s 7.7% 29.15% 86.72% – – –
2017 a-w 7.66% 33.01% 82.35% 7.55% 72.74% 96.34%
2018 s-s 7.2% 47.99% 88.84% – – –
2018 a-w 6.68% 47.45% 87.05% 10.68% 83.15% 95.62%
2019 s-s 8.6% 17.9% 72.81% 18.68% 96.85% 99.13%
2019 a-w 6.07% 13.37% 71.11% 6.87% 71.06% 94.85%

5. Discussion

We obtained that optical satellite images are beneficial for land and land-cover maps.
Some approaches that use the same technologies and tools for the land-cover
map are [48,50,64].

These images have characteristics that allow different research types in various fields
to be carried out. However, Sentinel-2 photos are obtained through passive sensors; they
usually present cumulus clouds that make it difficult to collect scenes in areas where
the high frequency of cloudiness prevents the taking of large amounts of images. In the
southeast of Mexico, specifically the state of Tabasco, as it has a high humidity index, large
amounts of clouds are frequent, making investigations using Sentinel-2 images difficult,
which makes it necessary to be preprocessed to obtain cleaner images. On the other hand,
supervised classification methods can perform soil classifications. All this is according to
the configuration, and data sets used.

Some studies in the literature used Sentinel-2 and the three classification algorithms
mentioned. Praticó et al. [48] and Loukika et al. [64] used Sentinel-2 and the RF, SVM,
and CART algorithms. The best results obtained were with RF and SVM. Both our approach
and that of Praticó et al. and Loukika et al. used NDWI for water body detection and
vegetation NDVI, GNDVI, and SAVI. The processing tool was GEE.

It is important to note that for NDVI and NDWI, training points and polygons were
created for each class, and each pixel within the polygon represents training data. Since the
assigned value for each pixel is known, we can compare them with the classified ones and
generate an error and precision.

It should be noted that a bagging technique was applied for the RF training. For SVM,
an instance was created that looks for an optical hyperplane separating the decision bound-
aries between different classes. RF and SVM receive the training data, detectable types,
and spectral bands (bands 2, 3, 4, 5, 8, 11, NDVI, NDWI). Furthermore, in RF, the number
of trees and variables in each split is needed, while in SVM, the Gamma costs and kernel
functions are required [65].

On the other hand, Tassi et al. [50] analyze land cover by Landsat 8 images, RF,
and GEE. They use two approaches: pixel-based (PB) and two object-based (OB). SVM and
RD are the algorithms with the best results in these mentioned approaches.
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The three mentioned approaches, as well as our proposal, use supervised algorithms
for land-cover classification. They also use the Google Earth Engine for image processing.
The results obtained from the three approaches are like our proposal. They also use the
same spectral indices for land-use and land-cover maps. The evidence presented above
demonstrates the importance of Sentinel-2 satellite imagery in the field of soil classification
and crop detection. Sentinel-2 images have characteristics that allow different investigations
to be carried out in different fields.

However, Sentinel-2 images usually present cumulus clouds that make it difficult to
collect scenes in areas where cloudiness is high, preventing the taking of large amounts
of photos. This is because passive sensors obtained them, making it necessary to be
preprocessed to get cleaner images.

6. Conclusions

Sentinel-2 satellite images have characteristics that allow them to be used in land-use
clasification, crop detection, and different research fields. However, since they are obtained
through passive sensors, they can present cumulus clouds that make it difficult to collect
scenes in gray areas. The area and seasons studied presented a high rate of humidity, which
made the research difficult. On the other hand, the execution capacity of the Google Earth
Engine platform proved to be effective in land-use analysis and classification. The methods
used for land-use classification and crops of sorghum and corn were SVM, RF, and CART,
which obtained different results. SVM obtained 0.99%, RF 0.95%, and CART 0.92% overall
accuracy. SVM had the lowest percentage of false positives and the lowest margin of error
compared to the real data. According to the data obtained, the corn crop has the greatest
presence in the study area, and sorghum has a decreased presence.

Food production in the study area does not show significant changes. Compared to
population growth, production is inefficient, which is a risk to food security in the area.
This makes it necessary to import products.

Future work intends to improve the sample datasets to have a better data range,
use unsupervised learning methods, and use SAR data (Sentinel-1) and other satellites to
increase the images and build maps with greater precision.
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