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Abstract: In the last decades, data-driven methods have gained great popularity in the industry,
supported by state-of-the-art advancements in machine learning. These methods require a large
quantity of labeled data, which is difficult to obtain and mostly costly and challenging. To address
these challenges, researchers have turned their attention to unsupervised and few-shot learning
methods, which produced encouraging results, particularly in the areas of computer vision and
natural language processing. With the lack of pretrained models, time series feature learning is still
considered as an open area of research. This paper presents an efficient two-stage feature learning
approach for anomaly detection in machine processes, based on a prototype few-shot learning
technique that requires a limited number of labeled samples. The work is evaluated on a real-world
scenario using the publicly available CNC Machining dataset. The proposed method outperforms
the conventional prototypical network and the feature analysis shows a high generalization ability
achieving an F1-score of 90.3%. The comparison with handcrafted features proves the robustness of
the deep features and their invariance to data shifts across machines and time periods, which makes
it a reliable method for sensory industrial applications.

Keywords: feature learning; CNC machining; machine monitoring; machine learning; few-shot
learning; vibration data; two-stage learning

1. Introduction

The latest advances in technology coupled with an aim to realize smart intelligent
systems have contributed to a rapid move towards the next industrial revolution. Unlike the
third industrial revolution powered by electronics and information technology, digitization
and automation have been the front runners to revolutionize industry to its fourth chapter.
The fourth industrial revolution has proved to be a boon to the traditional machining
processes as it brings some key advantages such as improvement in the production and
quality, cost reduction, and monitoring of machining processes in real time. As a result,
condition monitoring and process condition monitoring systems are integral parts of
intelligent manufacturing that support the quality inspection. Such highly automated
systems rather support the flow of huge volumes of data that can be analyzed in real time
without interrupting any machining workflow [1].

Enabled by the significant advancements in industrial Internet of Things (IIoT), the pro-
cess involved in collecting and monitoring data from industrial environment is made more
convenient. The initial step usually involves the acquisition of different types of signals
such as vibration, cutting force, and a few others that can determine the health of machining
parts and tool processes. This work largely focuses on the vibration-based signals as it
provides critical information about the machining health. However, the vibration signals
collected from the sensors are largely affected by several environmental factors and are
commonly characterized by their nonlinearity, nonstationarity and noisiness. This brings
us to the next steps of monitoring systems that are filtering the collected signals [2]. Feature
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extraction as means of signal filtering is a crucial step in the data processing pipeline. With
the gradual development in machine learning (ML) algorithms and eventually deep neural
networks, the idea of feature extraction from the raw vibration signals has varied over
time. Traditionally, the feature extraction mainly involved signal processing techniques
such as statistical analysis on the time, frequency or time–frequency domain [3–6]. Al-
though these techniques have produced fair results over the years, they also present some
major drawbacks. These algorithms often require extensive domain knowledge as well as
human expertise specifically designed for a specified task. As the volume of the collected
data increases, which is particularly huge in modern automated smart systems, the effort as
well as time to produce meaningful representation increases. One implementation done by
Christ et al. named as TSFRESH [7] has achieved remarkable results. It can automatically
extract statistically based features and observe dynamics without much human expertise.
Lines et al. [8] also presented a hierarchical transformation ensemble method for time series
classification. However, these methods fail to meet the demands of a fast reliable algorithm
due to the high computational time.

Recently, encouraged by the outstanding performance of deep learning (DL) in several
fields, some interesting end-to-end DL algorithms have been proposed to replace tradi-
tional time-consuming monitoring systems. Unlike image processing, research in machine
monitoring has mostly overlooked the advantages of deep neural networks due to their
hard interpretability and their nonacceptance in industry [9]. Nevertheless, state-of-the-art
research works [10,11] have integrated DL techniques on vibration data that are treated
as one-dimensional time series data and showed state-of-the-art results, bypassing the
handcrafted-based methods. However, these supervised methods require a huge quantity
of labeled data to achieve satisfying performance. Data annotation is another critical factor
in real-world production plants, as labeling large quantities of data is often an inconvenient,
costly, and erroneous approach under human supervision. Moreover, in a highly automated
system, the occurrence of anomalies is a rare event that causes a huge imbalance between
OK and NOK samples. These factors deteriorate the performance of supervised DL algo-
rithms that fail to generalize on noisy time-series (TS) data. To tackle these shortcomings,
unsupervised feature extraction technique has proved to be promising. In particular, au-
toencoders have been found to be most beneficial algorithm [12]. Sun et al. [13] showed that
a sparse autoencoder with a small number of trainable parameters can learn good features
based on induction motor data. Shao et al. [14] also proposed a work that addresses the
generalization of autoencoders on unseen working conditions in fault diagnosis.

Despite its huge success, conventional DL techniques require huge quantities of data
to offer meaningful generalization on unseen data. In the literature, the problem of insuffi-
cient labeled data samples has been handled in different ways. Data augmentation plays
a crucial role in processing such raw vibration data. Overlapping input data samples to
generate small snippets of new samples is one such technique used by [10]. In the fault
diagnosis applications, a few works have showed how data augmentation could generate
new synthetic samples using GANs [15,16]. However, they suffer from overfitting problems.
To overcome the challenge of limited labeled data, certain ML algorithms named few-shot
learning (FSL) methods have been proposed in the state-of-the-art literature [17]. Such
a learning paradigm has been designed to tackle scenarios where data with appropriate
labels are difficult to produce, such as in an industrial environment. Considering a small
training dataset (x, y), FSL can be best described as an optimization algorithm that searches
for the best hypothesis space from x to y described by the set of optimal parameters [18].
Current state-of-the-art literature has produced FSL for various applications mostly featur-
ing computer vision tasks and only a few implementations can be found for time-series
classification. The authors in [19–22] proposed a metalearning model for few-shot fault
diagnosis applications. The prototypical network is also a popular FSL technique for time-
series classification. It has proved to achieve state-of-the-art results for both few-shot and
zero-shot classification problems [23,24]. Tang et al. [25] proposed a novel few-shot learning
approach for time-series classification. In the feature learning research on rolling bearing
fault diagnosis, Wang et al. [21] proposed a metric-based metalearning method named
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relational network which learns fault features from the input FFT frequency signals. A few
studies [21,26] also explored few-shot learning for fault diagnosis on rotatory machines
such as CNC machines.

To address the problem of costly data annotation and the imbalance between normal
and abnormal machine faults, this work aims to propose a novel two-stage feature learning
framework using the prototypical few-shot technique. Recently, researchers have largely
benefited from the two-stage frameworks, which have gradually attracted a lot of attention.
The existing methods in the state-of-the-art literature fall into two categories. The first
category is the two-stage predicting category, which aims to improve the performance of
the prediction task by decomposing the application task into two sequential tasks. Few
studies [6,27,28] have explored the two-stage predicting category. To detect defective rolling
element bearings, Yiakopoulos et al. [6] presented a two-stage method, where the first task
was to detect the existence of a bearing fault while the second stage task classified the type of
detected anomaly. The second category is the two-stage learning framework, which aims to
improve the learning following a graduated training methodology. In the image processing
field, Das et al. [29] tackled the problem of the high dimensionality and the variable
variance among the base classes with a two-stage feature learning approach. The first
stage produces a relative feature extractor, while the second stage handles the classification
task by measuring the variance using distance metrics such as the Mahalanobis distance.
Afrasiyabi et al. [30] aimed to represent rich and robust features from input images using
mixture-based feature learning (MixtFSL). The proposed end-to-end approach learned
in a progressive manner till the best feature representation was achieved. Ma et al. [31]
proposed a two-stage training strategy called partner-assisted learning, where soft anchors
were generated by a partner model in the first stage and the main encoder was trained by
aligning its outputs with the soft anchors in the second stage. In wind turbine condition
monitoring applications, Afrasiabi et al. [32] presented a sequential training pipeline that
resolved the limited data problem by generating artificial data in the first stage and training
a robust deep Gabor network in the second stage.

This work falls into the second category and proposes a novel two-stage feature learn-
ing framework for industrial machining processes. The study focuses on the performance
of the resulting feature extractor trained with limited labeled data, its ability to generalize
over unseen machining process operations with different working conditions as well as its
robustness against data drift. The work is divided into sections. The second section presents
the background of the prototypical network (PN) and the different distance measures used
in this work. In the third section, we define the smart data sampling technique for noisy
time series and the proposed two-stage learning approach. In the fourth section, we in-
troduce the publicly available Bosch machining dataset and present a real-world scenario
mapped in the dataset-splitting part. In the fifth section, we describe the experiments
performed, followed by an in-depth analysis of the results as well as a comparison with
different types of feature extractors. Finally, we conclude with a short summary and the
prospect of some future work.

2. Background
2.1. Prototypical Networks

This work greatly focuses on prototypical networks [23] for few-shot learning. For
an N-way and K-shot FSL, we have a small training dataset D with k labeled samples.
D = {(x1, y1), .., (xk, yk)}, where xi represents a D-dimensional input feature vector and
each yi represents its corresponding label. The training is divided into several episodes
termed as training episodes. For each episode, training sets are sampled to form a support
set S and a query set Q.

Support Set: A random subset of classes from the training set is selected as support set
containing K examples from each of the N classes.

Query Set: A set of “testing” examples called queries.
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Taking each class into consideration, prototypical networks generate the embedded
points for each example in S using an embedding function fθ . For each class Nk, a mean
vector of the embedded points Ck is computed using Equation (1) and represents the
prototype of the Nk class.

Ck =
1
|Sk| ∑

x∈Sk

fθ(x) (1)

By computing a distribution over classes, the prototypical network classifies the
queries using a softmax function over the distances to the prototypes following Equation (2).
Snell et al. [23] highlighted the significance of using a squared Euclidean distance as a
distance function in image classification tasks. In this paper, we further studied different
distancing functions for noisy time-series classification tasks.

Pθ(y = k|x) = exp(−d( fθ(x), Ck))

∑k′ exp(−d( fθ(x), Ck′))
(2)

Finally, the network is optimized by minimizing the negative log-probability of the
true class with an Adam optimizer [33] and updating the parameters θ of the embedding
function f using the loss Equation (3).

L←− L +
1

NC NQ

[
d( fθ(x), Ck) + log ∑

k′
exp(−d( fθ(x), Ck)

]
(3)

2.2. Distance Metrics

L2 Euclidean: Given two vector points U: (u1,. . . , uk) and V: (v1,. . . ,vk), the Euclidean
L2 distance is defined as the shortest distance between two vector points, a commonly used
similarity metric in various applications.

D(U, V) =

√√√√ k

∑
i=1

(ui − vi)2 (4)

DTW distance: DTW or dynamic time warping [34] was coined as a distance metric to
find the similarities between two time sequences. Unlike the Euclidean distance, which
is prone to both global and local shifts in time dimension, DTW tackles such unintuitive
results and aims at finding the minimum warp path between two time sequences. Given
two time sequences P and Q and their individual lengths |P| and |Q|, respectively, DTW
constructs a warp path which is given by

W = w1, w2, .., wk, where wk = (i, j) and wk + 1 = (i∗, j∗) (5)

The warp path begins at index (1,1) and ends at (|P|,|Q|). The optimal warp path
Dist(W) is thereby given by the sum of the distances between the individual warp paths
from index i in P to index j in Q, meaning

Dist(W) =
k=K

∑
k=1

Dist(wki, wkj) (6)

To reduce the time complexity of DTW from O(N2) to O(N), FastDTW has been
proposed in the state-of-the-art literature [34]. Keeping the whole DTW algorithm simi-
lar, it introduces three constraints: coarsening (shrinking the time sequence into smaller
time steps), projection (calculating the minimum warp distance at low resolution), and
refinement (refining the low-resolution warp path through local adjustments) to reduce the
time complexity.
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Cosine distance: The cosine distance is another metric that is used to measure the
similarity between two vector points. It measures the cosine of the angle between two
vector points. The cosine similarity metric and cosine distance metric are correlated and
can be found in the following equations.

Cosine similarity(U, V) = cos(θ) =
U.V
‖U‖‖V‖ =

∑k
i=1 uivi√

∑k
i=1 u2

i

√
∑k

i=1 v2
i

(7)

D(U,V) = 1− Cosine similarity(U,V)

3. Method

In this paper, we propose a generic feature learning method for monitoring machining
processes using limited TS data annotations. In the next sections, the mixture-based data
selection method is defined, followed by the proposed two-stage feature learning method.

3.1. Mixture-Based Data Selection

The learning performance depends mainly on the input data. This makes data selection
not only the first but also a crucial step in FSL since it aims at choosing the training
query and support sets. In computer vision, sample selection is straightforward given
the standardized format of the image data. However, TS data, such as process vibration
data, is characterized by the variation of signal length due to the different measurement
lengths. This leads to an imbalance of data after data windowing and degrades the learning
performance. In this work, we used a mixture-based data selection technique (MDS), which
is illustrated in Figure 1.

labeled set 

windowing

windowed set  

random 
picking

SB 1

SB 2
Class 1

Class 2
SB 1 SB 2 SB 3

SB 1

Class 1

Class 2

SB 2

SB 1

SB 2

SB  3 training set 

SB 1
Class 1

Class 2

SB 2

SB 1 SB 2 SB 3

Figure 1. Mixture-based data selection method used in a 2-way and 5-shot FSL for single-axis
vibration signals (C = 1). SB: subclass

The data signals x ∈ D in each class Nk are first windowed using a sliding window
with a fixed ws. In online industrial applications, data are buffered in chunks, which
explains the use of the sliding window when developing industrial data processing tech-
niques and speeds up the computing by avoiding additional data analysis steps. The output
of the first step is a set of same-shaped signals xw ∈ Rws×C, where C is the number of
channels. In the case of the vibration data used in this work, C was equal to 3 with refer-
ence to the {X, Y, Z} axes. For the sake of simplicity, only one axis of the vibration signal
(C = 1) is shown in the MDS illustration in Figure 1. The windowing step is followed by
a random selection step that samples the training sets, i.e., the query and support sets,
during the episodic learning process. For an FSL task with N ways and K shots, the MDS
outputs support set S = (x, y)N×K and query set Q = (x, y)NQ with NQ being the number
of queries per iteration. As stated above, the measurement length mismatch leads to an
imbalance between the different subclasses, i.e., the different machining processes. The
MDS sampling technique produces an equal number of data samples in the OK and NOK
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training sets at each training episode, which reduces the negative impact of the imbalance
rate and results in more unbiased models. The second advantage of the MDS method is
the high informativeness of the training sets in terms of the diversity of signals in each
class. In fact, at each training episode, thanks to the windowing step followed by a random
selection, the MDS leads to a more diverse selection of samples from different periods,
machines, and processing operations, which allows the FSL models to be drift invariant
and facilitates the search for discrepancy between the OK and NOK classes. This result
increases the robustness of the feature extractor, which is insensitive to the challenging
conditions in machining applications.

3.2. Two-Stage Learning Framework

The proposed method represents a two-stage learning framework for noisy industrial
TS data and is shown in Figure 2. The first stage consists of an unsupervised pretraining
stage, while the second step consists of fine-tuning the learned feature extractor using very
limited annotations and is therefore referred to as the metalearning stage.

		𝑓!

		𝑓!unlabeled set pre-trained FE

Unsupervised Pre-training Stage  

Meta-Learning Stage  

representation transfer

support set 

mean

		𝑓!query sample 

		𝑑𝑖𝑠𝑡
score label

loss

feature vector

𝑔"

Figure 2. Two-stage few-shot feature learning framework. The OK and NOK classes are shown in
green and red respectively.

3.2.1. First Stage: Unsupervised Pretraining

Industrial use-cases are characterized by their large volume of unlabeled data, in
particular for time series data. In order to take advantage of the unannotated data and
overcome the imbalance effect on supervised learning, the two-stage learning starts with
an unsupervised feature learning using the autoencoder (AE) method [12]. In this phase,
the encoder f with parameters θ learns the representation of the unlabeled datasetDunlabeled
by encoding the input signal x into a compressed vector xenc. The encoder architecture,
which represents the deep feature extractor of the proposed method, was designed based
on a convolutional neural network (CNN) and is illustrated in Figure 3. To best evaluate
the two-stage learning method, a simple stacked CNN was chosen with 3 consecutive con-
volutional blocks followed by a final bottleneck layer. Each convolutional block consisted
of a 1-D convolutional layer, a batch normalization layer [35], a ReLu (Rectified Linear Unit)
activation function, and a max pooling layer.



Sensors 2022, 22, 4813 7 of 17

C
onv, K

127, F3

B
N

 + R
eLu

M
axPool, K

3

C
onv, K

11, F3

B
N

 + R
eLu

M
axPool, K

3

C
onv, K

3, F64

B
N

 + R
eLu

M
axPool, K

2

C
onv, K

1, F1

Flatten

Figure 3. Architecture of the deep feature extractor fθ . MaxPool: maxpooling layer; Conv: 1D
convolutional layer; BN: batch-normalization; K: kernel size; F: filter channels

The decoder gφ is a transposition of the encoder fθ and performs the decoding of
the encoded feature vector xenc into the reconstructed signal xrec. The objective function
of the autoencoder E is the mean square error (MSE) between xrec and the input signal x
according to the following equation:

E =
1
n

n

∑
i=1

[
x− gφ( fθ(x))

]2 (8)

The result of this phase consists of the pretrained parameters of the encoder function
fθpretrained and the decoder part is dropped. The training process of the first stage follows the
pseudocode in Algorithm 1.

Algorithm 1 First stage: unsupervised pretraining

Input: Unlabeled data set Dunlabeled
Output: Pretrained encoder function fθpretrained

θ, φ← Initialize randomly
for number of epochs do

compute MSE error E using Equation (8)
θ, φ← Update using gradients of E . compute backpropagation

end for

3.2.2. Second Stage: Metric Meta Learning Stage

The second stage consists of fine-tuning the unsupervised pretrained feature extractor
fθ for a specific task using very limited annotated dataset Dlabeled in an episodic manner.
The first step consists of sampling the training steps using the Section 3.1 method resulting
in highly informative support sets. For each signal in the support set, the embedded
vector is extracted using the feature extractor fθ and these deep feature vectors are then
averaged by class. This results in N representative Ck prototypes for each class. Using a
distancing function, each prototype is then matched against each embedded query point,
which is classified by simply finding the closest class prototype. The distancing function is
crucial to the feature learning process as it defines the loss function L (3) and therefore the
optimization of the feature extractor parameters. To find the optimal distance function for
the noisy vibration data, we evaluated in the experimental section different TS measures
(Euclidean, cosine, and DTW). The parameters θ are later updated using the gradients of
the loss function L using the Adam optimizer function [33]. Once the metric metalearning
stage is completed, the resulting feature extractor fθ is evaluated on an unseen dataset Dtest
and on the visualization of the embedding space of vibration data. The training process of
the second stage follows the pseudocode in Algorithm 2.
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Algorithm 2 Second stage: metric-based fine-tuning

Input: Labeled data set Dlabeled, pretrained encoder function fθpretrained

Output: Two-staged trained encoder function fθ

fθ ← fθpretrained . initialize encoder with the pretrained parameters
L← 0
for number of epochs do

Sample SQ and SS from Dlabeled using the Section 3.1 method
Generate prototypes CS using the averaging Equation (1)
Calculate L for the minibatches using the loss Equation (3)
θ ← Update using gradients of L . compute backpropagation

end for

4. Real-World Case Study
4.1. Data Description

CNC milling machines are widely used in a variety of machining industries, commonly
known for their precision and high production speed. The dataset in consideration offers a
great insight into the complexity and challenges of the CNC machine monitoring use case as
it closely represents a real-world industrial case inside a production plant. This work used
a publicly available dataset [36] comprising sensor data recorded with the help of a triaxial
accelerometer mounted on top of the machining parts of the CNC machine. The data
collection was stretched over four different periods of five months each starting from
February 2019 to February 2021. Such collection procedures help to tackle the challenges
of data drift and the generalization of data-driven approaches. The training and the
test dataset host both the normal and abnormal vibration data samples caused by the
tool misalignment. Typical process operations that are being carried out by a machining
workpiece greatly vary from drilling to cutting. In the scope of this work, each machine
hosted 15 different process operations carried out with different physical tools and under a
unique configuration. Each sample was a triaxial (X-, Y-, Z-) acceleration data acquired with
a sampling rate of 2 kHz. The data were collected from three different CNC machines (M01,
M02, and M03) in contention, each containing 15 different process operations ranging from
OP00 to OP14. Each data sample was accompanied with the necessary labeling parameters,
such as Label, Machine, and Period.

4.2. Data Splitting

This section describes the data splitting used in this work. The data were mainly
divided into 2 unique sets: training set and test set. The training dataset contained 172 dif-
ferent samples with 156 OK samples and 16 NOK samples, while the test dataset contained
1702 different samples with 1632 OK samples and 70 NOK samples. This reflected the
real-world scenario where we generally have a limited labeled data set (training set) with
an imbalanced OK/NOK ratio and a relatively large number of unlabeled data (test set).
This is illustrated in Figure 4 where the color “violet” represents the training set samples,
whereas “orange” denotes the test set samples. To assess the generalization to unseen data
and the robustness of the models to data drift, the data splitting was performed according
to three different criteria:

• Machine-wise: This allowed the evaluation of the scalability of the models across
different machines. We had 3 CNC Machines in consideration (M01, M02, and M03).
Even though, they generated data samples representing the same tool process opera-
tions, they varied due to external conditions. Both the training and the test sets were
uniformly distributed across the three machines as shown in Figure 4. With a uni-
form distribution, the model was not offered any unnecessary bias across a particular
machine. M03 was not included in the training and was placed aside for testing.

• Process-wise: This allowed the evaluation of the generalization of the models across
unseen tool processes. In industrial applications, new processes are constantly being
added due to technological progress and market demand. The training set only
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contained 4 different tool operations whereas 11 new tool process operations were
introduced in the test set.

• Period-wise: This allowed the evaluation of the robustness of the models across
unseen periods. Worn components and aging cause a drift in the data, which affects
the data-driven models. For that purpose, the periods of August 2020 and August
2021 were not included in the training and were placed aside for testing.

a. Distribution per machine b. Distribution per timeframe

c. Distribution per process operation

Figure 4. Distribution of the training and test datasets per machine, timeframe, and machining
process. To reflect the challenges of industrial practice, a limited amount of data is included in the
training set (violet) and unseen data from different machines, time periods and process operations is
included in the test set (orange).

5. Experiments and Analysis

The following section describes the experiments carried out in the scope of this work.
The goal of this work was to investigate different strategies for training feature extractors
(FEs) for raw industrial time-series data and evaluate them in terms of robustness and
generalization. The training of the FE was conducted in a progressive manner. We started
by evaluating the performance of the single-stage prototypical network. Once the best
parameters were obtained, we proceeded to a comparison with the proposed two-stage
model framework. The trained FE models were evaluated on unseen data samples from
the test set. We concluded by comparing the FE model obtained by the proposed method
with the handcrafted FE and the end-to-end supervised trained FE using a distribution
analysis coupled with a feature space analysis. All the experiments were performed under
similar conditions with identical training parameters (learning rate = 8 × 10−4, number of
epochs = 4, window size ws = 4096 and optimizer = Adam). N was fixed to 2 as we only
considered two distinct classes for our experiments {Class 1: OK, Class 2: NOK}. While
training, the data samples from OP00 to OP04 were separated into the OK and the NOK
class sets. During each episode, we randomly picked a number K of data samples from
these two classes to create the support and query set using the MDS method. The value of
K representing the number of shots during each episode was varied to determine its effect
on the performance of the model. To test generalizability, the models were evaluated using
sample data from all available machining operations (OP00 to OP15). The sample data
were then picked following the same way as for the training set. The experiments were
conducted three times and averaged over their sum to produce the final results. The PN
FE models were thereafter evaluated for 1000 episodes of four epochs. The models were
trained on a GPU NVIDIA Tesla K80 and generated in Python (version 3.7.4) using the
PyTorch library (version 1.8.1).
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5.1. Single-Stage Prototypical Network

Experiment: The single stage prototypical network proceeded with a vanilla imple-
mentation of FSL for process failure on the industrial vibration data. The first phase of
the experiments used a PN technique with a randomly initialized encoder fθ with the
architecture presented in Figure 3. This experiment was designed to vary two distinctive
parameters: K , the number of shots, and dist, the distance metric. First, K was varied
between 1 and 10 shots and the dist was set to the Euclidean distance. Second, dist was
varied between Euclidean, DTW, and cosine and K was set to seven. Combined with
the MDS sampling technique, we focus on obtaining the best set of prototypical learning
parameters for industrial vibration data.

Results: Tables 1 and 2 list all the results from the experiments that are compared
using different metrics such as “train loss”, “test loss”, “train Accuracy”, “accuracy” (test
set), “F1-score” (test set), “precision” (test set), “recall” (test set). For the K -shot analysis,
all the models converged with 100% accuracy on the training data. The PN model with one-
shot learning had the worst F1-score of 76.70%. This is plausible, especially for machining
anomaly detection applications, where we face large variations within a single class and
often require more samples on the support set to produce better representations (prototypes)
and thus a better generalization. The performance of the models gradually increased with
the number of shots as can be seen in Table 1. The convergence of the F1-score was reached
by the seven-shot PN model at the 87.3% mark. We also noted that the test loss was reduced
to 22.76 with a precision score of 89.3%. Upon further increasing the number of shots to
10, we suffered a minimal deterioration of the training loss that can be explained by the
drawback of the averaging function performed on the noisy time-series feature vectors.
In fact, averaging a relatively large number of deep TS-type features affects the information
richness of the prototype vector at some point.

Table 1. Results of the K-shots experimentation.

Model Train Loss Test Loss Accuracy F1-Score Precision Recall

1-shot 0.1340 87.31 0.765 0.767 0.759 0.773

3-shot 0.0304 36.95 0.848 0.847 0.856 0.835

5-shot 0.0053 29.33 0.860 0.859 0.869 0.848

7-shot 0.0048 22.76 0.876 0.873 0.893 0.855

10-shot 0.0079 21.73 0.882 0.878 0.906 0.853

Table 2. Results of the distance measures experimentation.

Distance Train
Accuracy Accuracy F1-Score Precision Recall

Euclidean 0.999 0.876 0.874 0.894 0.855

DTW 0.737 0.663 0.535 0.865 0.387

Cosine 1.000 0.842 0.851 0.803 0.905

Table 2 compares the results achieved with different distance metrics. With an F1-score
just below 54% and a training accuracy of only 66.3%, the DTW-based PN failed to learn.
One assumption why the DTW technique failed can be due to the failure to find the best
alignment between the prototype vectors and the query vector due to the cyclic behavior
of the data. The Euclidean distance, on the other hand, gave the best results, followed
by the cosine distance metric, the former getting an F1-score of 87.6% (2.3% higher). This
confirmed the findings from Snell et al. [23] for image classification tasks. However, the
cosine-based PN offered a better recall (90.5%) over the Euclidean distance recall (85.5%)
meaning that it was more reliable in detecting the faulty processes but returned more false
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positives. This is usually important for industrial applications where quality checks are
crucial and demand to be accurate in detecting anomalies, thus prioritizing detecting faulty
parts rather than accurately detecting all the good parts.

5.2. Two-Stage Prototypical Network

Experiment: Using the Euclidean distance and the K equal to seven shots, we evalu-
ated and compared the two-stage proposed FE learning framework with the conventional
single-stage learning method. Instead of randomly initializing the FE encoder fθ , a pre-
training CNN autoencoder was added as an additional layer on top of the prototypical
network as stated in Section 3.2. The AE was trained on the full dataset irrespective of the
splitting scenario mentioned earlier. This was justified by the fact that today, thanks to
IIoT advancements, a huge quantity of unlabeled sensory data is available in the industry
and could be used for unsupervised training. We considered a batch size of 32 windows
each spanning over 4096 data points which were trained for 40 epochs with a learning rate
of 8·10−4.

Results: The goal of stage one consisted of pretraining the feature extractor fθ via a
CNN AE network in order to break down the complex architecture of high-dimensional
sensor data. The results are shown in Figure 5 where we visualize the feature extracted by
the fθpretrained and the reconstructed signal using gφpretrained . The reached training loss value is
as low as 0.2.

		𝑓! 𝑔"

Input signal Reconstructed signal

Encoded signal

Figure 5. Performance of the resulting AE model at the end of stage one.

Upon initializing with the learned weights, the PN as part of the two-stage model
shows a clear improvement over the single-stage network. It significantly tops the per-
formance chart by achieving an F1-score of 90.3% and an accuracy of 91.0% as shown in
Table 3. The two-stage model also proves to have better generalizability on unseen data
samples from new class labels as the test loss is significantly decreased from 22.76 for the
standard PN to 6.582. It can be further explained with the confusion matrices of both
models in Figure 6. The two-stage confusion matrix shows a similar improvement with
the inclusion of the pretrained network. The proposed model reaches a prediction rate
among its OK samples with an accuracy of 97.62% compared to the single-stage being
only at 88%. However, we see a slight deterioration in the NOK accuracy of 1.06%. This
can be explained by the pretrained weights in the two-stage training, as the number of
OK samples dominated the full dataset over the NOK samples, with an 816:35 imbalance
rate. It created a slight bias on the OK samples. We also note a longer training time of
1298 seconds due to the unsupervised pretraining of the feature extraction. The effect of
pretraining on the FE model is illustrated in Figure 7. The 2D feature map was generated
using a principal component analysis (PCA) [37]. The feature maps changed over time
upon increasing the number of epochs. After training four epochs with 1000 episodes each,
a clear distinction in the clusters between OK and NOK samples on the two-stage model
can be seen in Figure 7, in contrast to the single-stage model where a large number of false
positives are observed (in the PC1 > 1 range). That confirms the results of the confusion
matrices from Figure 6.



Sensors 2022, 22, 4813 12 of 17

Table 3. Evaluation of the proposed method against the single-stage method. The training was run
on a GPU NVIDIA Tesla K80.

Model Test Loss Accuracy F1-Score Precision Recall Training
Time (s)

Single-
Stage 22.76 0.876 0.873 0.893 0.855 295.91

Two-Stage 6.582 0.910 0.903 0.973 0.843 1295.68

a. Single-Stage PN b. Two-Stage PN

17,598
87.99%

17,080
85.40%

19,524
97.62%

16,868
84.34%

2,402
12.01%

476
2.38%

3,132
15.66%

2,920
14.60%

Figure 6. Comparison of the confusion matrices of the single-stage and two-stage learning methods.

a. Single-Stage PN

b. Two-Stage PN

Pretrained FE (AE) FSL FE (1-epoch) FSL FE (4-epoch)

FE (random init) FSL FE (1-epoch) FSL FE (4-epoch)

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

× 10!

Figure 7. Comparison of the PCA feature spaces of the single-stage and two-stage PN on the
pretraining, 1-epoch, and 4-epoch levels. The encoder of the single-stage PN was not pretrained and
its parameters were therefore initialized randomly.

5.3. Handcrafted vs. Supervised vs. Two-Stage FE

Experiment: This section provides a detailed comparison of the proposed two-stage
model with the handcrafted features and with a feature extractor trained using the tra-
ditional end-to-end supervised method. The handcrafted features were extracted using
TSFRESH, a state-of-the-art handcrafted feature learning algorithm for industrial time-
series data. The supervised method consists of building a classifier block on the top of the
feature extraction block presented in Figure 3 and training the network in a conventional
end-to-end manner. The classifier block consists of two sequential fully connected layers
and a sigmoid as activation function. For the proposed and handcrafted methods, the exper-
iments consisted of training the classifier NN separately using the features extracted with
the two-stage FE and TSFRESH, respectively. All the experiments were performed under
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similar conditions with identical training parameters (epochs: 8, learning rate: 8·10−4, batch
size: 32, optimizer: Adam, loss function: binary cross-entropy). The end-to-end supervised
method uses the state-of-the-art weight-balancing factor.

Results: Table 4 and Figure 8 lay out the results of each of the three methods. The su-
pervised learning delivers the lowest performance among the other methods. Therefore,
the F1-score of predicting the correct class only stands at 5.6%. This can be explained by
the fact that conventional supervised training requires a huge quantity of labeled data and
fails to learn using limited quantity of data. Table 4 shows that features extracted using
the two-stage FE outperform the handcrafted FE method with an accuracy of 98.9% (vs.
86.6%) and an F1-score of 88.4% (vs. 84.8%). This performance further highlights the high
precision of the proposed method (99.55%) with the classification of the OK class that is
shown in the confusion matrix in Figure 8. This confirms the efficiency of the unsupervised
pretraining phase where the model learns reliably the dynamic representations of the
vibration data and turns more robust against data drift caused by time and wear of the
machining components. This can be seen in Figure 9, where the drift across machines and
across timeframes is visualized.
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535
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113
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16,048
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145
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4,405
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20,360
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Figure 8. Comparison of the handcrafted (a), supervised (b), and the proposed method (c) trained
feature extractors: the top row shows the confusion matrices obtained by the MLP classification,
and the bottom row shows the 2D visualization of the FEs’ feature spaces.

Table 4. Evaluation of the proposed method against handcrafted and supervised trained feature
extractors. The extraction was performed on a CPU Intel Core i7 9850H.

Feature
Extractor Accuracy F1-Score Precision Recall

Training
Time per

Window (s)

Handcrafted 0.868 0.845 0.862 0.848 2.2502

Supervised 0.767 0.056 0.200 0.032 0.0054

Two-Stage 0.989 0.884 0.905 0.885 0.0054
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The features extracted from the OK class of the exact same process operations using
the handcrafted method vary from one machine to another and also over time (when
considering the same machine). In contrast, Figure 9 shows the robustness of the two-
stage FE, where the OK class data points have the same distribution, with no drift for the
across-machine and across-time analysis. We note also that this holds true for the process
operations not seen during training (OP06, OP07, and OP12 in Figure 8, as well as for
the timeframe (Feb_2020) and the machine (M3) not included in the training set. This
result is supported by Table 5, which presents the quantitative analysis of the drift between
machines and over time based on the handcrafted features and the deep features extracted
by the proposed method. The drift between the U and V domains was measured using the
Wasserstein distance. The two-stage FE shows excellent robustness to drift across the seen
and unseen domains within the OK class. We also see a larger distance between the OK
and NOK classes, which is consistent with the results from Figure 8.

a. Handcrafted FE b. Two-Stage FE
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Figure 9. Evaluation of the data drift across machines and time of the handcrafted FE and the
proposed method FE within the OK class.

On the other hand, the handcrafted FE provides less robustness as the distance between
the OK domains is not consistent and in some cases, even higher than the distance between
the OK and NOK domains. In fact, the OK–NOK Wasserstein distance is equal to 35,869,
which is more or less equal to the distances: (M2, M3), (M1, M2), (August 2019, February
2019), and (February 2020, February 2019). A further analysis of Figure 8 reveals the
superiority of the proposed two-stage method in OK/NOK separation in the feature space
generated by the first two principal components. The two-stage method in Figure 8 shows
a clear separation of the normal and abnormal classes compared to the handcrafted and
supervised FE methods. It is also important to note that the handcrafted FE has slightly
better NOK accuracy, which can be seen in the confusion matrices, with 82.56% compared
to 77.47% (two-stage FE). However, the major drawback of the handcrafted technique is the
high extraction time (2.2502 s/window) compared to the deep feature learning techniques
(0.0054 s/window). This is an important feature for industrial applications that require
real-time execution when dealing with real-world use cases.
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Table 5. Quantitative drift analysis of the handcrafted and two-stage trained feature extractors across
time and machines using the Wasserstein distance between the different domains (U and V).

(a) Handcrafted FE

Within only OK class

U= Aug_2019 Feb_2020 Aug_2019 M1 M1 M2 OK
V= Feb_2019 Feb_2019 Feb_2020 M2 M3 M3 NOK

37,680.36 36,229.76 6435.13 37,919.52 14,147.56 37,602.05 35,868.79

(b) Two-Stage FE

Within only OK class

U= Aug_2019 Feb_2020 Aug_2019 M1 M1 M2 OK
V= Feb_2019 Feb_2019 Feb_2020 M2 M3 M3 NOK

0.484 0.529 0.146 0.337 0.513 1.001 6.22

6. Conclusions

In the field of machine condition monitoring, industrial time-series data face major
challenges, such as class imbalance, data drift, and most importantly, the lack of pretrained
feature extractors. To overcome these challenges, we proposed an efficient two-stage
feature learning approach. The proposed technique bridged the gap between unsupervised
learning and few-shot learning, which makes it suitable for the industrial scenario where
a large quantity of sensory data is available with a limited number of labels. Intuitively
adding an autoencoder to a prototype network has proven to be effective. Through a
rigorous experimentation and analysis process, we showed that initializing the network
with pretrained weights enabled the FE network to upgrade its learning performance.
The two-stage learning method produced a feature extractor with higher generalization
capabilities compared to the traditional prototypical network, achieving an F1-score of
90.3% with very limited samples. However, it had the disadvantage of a longer training
time and a slight decrease in the recall score, while significantly improving the precision
score. The research experiments conducted with the traditional prototypical network
showed that Euclidean and cosine distance performed best on noisy industrial data, with
the Euclidean distance being the best choice in terms of accuracy and the cosine distance in
terms of recall. This makes the cosine a better choice for critical quality-testing applications.
Finally, the proposed method slightly outperformed the traditional handcrafted feature
extractor with an improvement of 4% in the F1-score. Although handcrafted features have
the potential to match the performance of the proposed two-stage learning method in terms
of classification performance, they have a disadvantage in terms of computation time and
robustness to drift. However, this opens the door for future research on hybrid solutions
combining handcrafted and deep features. Indeed, extracting handcrafted values from
deep features would reduce computation time since it creates a compression of the raw
data with the most informative patterns.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Autoencoder
CNC Computer numerical control
DL Deep learning
DTW Distance time warping
FE Feature extractor
FSL Few-shot learning
IIoT Industrial Internet of things
MDS Mixture-based data selection
MSE Mean square error
NN Neural network
PCA Principle component analysis
PN Prototypical network
TS Time series
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