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Abstract: Diagnostics of mechanical problems in manufacturing systems are essential to maintaining
safety and minimizing expenditures. In this study, an intelligent fault classification model that
combines a signal-to-image encoding technique and a convolution neural network (CNN) with the
motor-current signal is proposed to classify bearing faults. In the beginning, we split the dataset into
four parts, considering the operating conditions. Then, the original signal is segmented into multiple
samples, and we apply the Gramian angular field (GAF) algorithm on each sample to generate
two-dimensional (2-D) images, which also converts the time-series signals into polar coordinates.
The image conversion technique eliminates the requirement of manual feature extraction and creates
a distinct pattern for individual fault signatures. Finally, the resultant image dataset is used to
design and train a 2-layer deep CNN model that can extract high-level features from multiple images
to classify fault conditions. For all the experiments that were conducted on different operating
conditions, the proposed method shows a high classification accuracy of more than 99% and proves
that the GAF can efficiently preserve the fault characteristics from the current signal. Three built-
in CNN structures were also applied to classify the images, but the simple structure of a 2-layer
CNN proved to be sufficient in terms of classification results and computational time. Finally, we
compare the experimental results from the proposed diagnostic framework with some state-of-the-art
diagnostic techniques and previously published works to validate its superiority under inconsistent
working conditions. The results verify that the proposed method based on motor-current signal
analysis is a good approach for bearing fault classification in terms of classification accuracy and
other evaluation parameters.

Keywords: bearing fault diagnosis; convolutional neural network (CNN); gramian angular field
(GAF); motor-current signal; time-series imaging

1. Introduction

Induction motors (IM) are one of the critical components in modern manufacturing
industries for maintaining production chains. They offer a simple control mechanism,
minimal cost requirements, a robust design, and great reliability. Induction motors are
so pervasively used that almost 40% of the world’s electric power is consumed by this
category [1]. The application fields of IM do not only belong to the electric utility and
mining industries, but also to aerospace, nuclear plants, and military activities [2]. Distinct
types of faults could occur because of the continuous electromechanical stresses in the
harsh and severe working surroundings, and initiations of these faults can show subtle or
tangible changes in the physical signals that are used for condition monitoring. Gradually,
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the initial symptoms could result in the sudden failure of rotating components and cause
personnel causalities, as well as high economic losses [3]. Sudden failures also lead to
increased downtime, which could cost more than the actual cost of the motor. If the faults
can be identified in the initial state of the condition-monitoring process, downtime and
financial loss can be lessened [4]. To avoid such unexpected situations, research on fault-
detection techniques has become a very delicate issue for researchers over the past few
years. Motor faults can be classified based on the components, such as bearing faults (40%),
rotor faults (10%), stator faults (38%), and others (12%). This indicates that faults that
occur due to bearings are the most common in practical scenarios [5,6]. In general, the
fault-diagnosis methods can be separated into model-based, signal-based, data-driven,
and hybrid approaches. A suitable amount of historical data is necessary to implement
the data-driven approach which will help to differentiate the fault modes of the system.
A good amount of sensor data is now available for condition-monitoring systems due to
the huge development of sensor technologies which represent the various states and fault
types of IM. The availability of sensor data is helping researchers to build robust data-
driven fault diagnosis models and reduce the possibility of faults causing sudden failures
in the industry [7]. Different types of signals captured by sensors, such as vibration [8],
current [9,10], temperature [11], acoustic emission [12], and stray flux [13] are used in
data-driven techniques. Identifying the technical conditions of an IM by analyzing the
extracted damage features from the measured signal is one of the main ideas behind the
data-driven methods.

The vibration sensors, i.e., accelerometers, are used around the bearing in the testbed
to acquire the vibration signals in different bearing conditions, which reflect the status of
the health condition of the bearing. However, the overall system installation process is
complex, the cost is quite high, and the system needs full-time monitoring to observe the
bearing conditions [14]. Due to this, vibration-based condition monitoring is not always
easy to implement in remote places. In recent times, the current signal-based data-driven
techniques have attracted researchers as they do not need any external sensors for collecting
data. However, with only current transducers, the single-phase stator current can be
recorded, where no extra current transformers or frequency inverters are required [15]. This
low-cost and non-invasive technique of data collection makes motor-current signal analysis
(MCSA) a suitable mechanism for condition monitoring and fault diagnosis. Further, the
sensor fusion scheme that integrates both the vibration and current signals were also
investigated to improve the fault-classification accuracy of the induction motor [16].

Most of the time, the collected signals do not exhibit distinct fault signatures due to
the surrounding noise. Therefore, different signal-processing techniques, such as time-
domain, frequency-domain, or time–frequency domain techniques are employed to find the
fault features [17]. Time-domain signals exhibit the basic representation of data, whereas
frequency-domain signals can separate the characteristics of the fault frequencies because
of their high processing gain and low noise sensitivity. In some cases, frequency-domain
analysis does not perform well in non-stationary signals. For such cases, time–frequency
domain approaches are used, which can extract fault characteristics from both stationary
and non-stationary signals. However, it becomes very difficult to extract accurate fault
features from these signal processing techniques due to the variable working conditions
and noisy environment around the IM, which makes research on the condition monitoring
of IMs trickier and more challenging for researchers [3].

In recent times, the combination of signal processing and machine-learning (ML)
algorithms has been utilized in the field of rolling-element bearing fault diagnosis [18–20].
In general, after the data-acquisition step, statistical features from the time domain, such as
root mean square (RMS), kurtosis, skewness, and frequency-domain features originating
from Fourier transforms are mostly used as the input of ML classifiers. Hence, it is not
guaranteed that these features can effectively distinguish among multiple health conditions
of the bearing due to the non-linear and non-stationary characteristics of the acquired
signals. In some cases, a time–frequency domain analysis is used to decompose the signals
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into a series of components that contain both time- and frequency-domain information.
Commonly applied time–frequency methods include wavelet transform; short-time Fourier
transform; Wigner–Ville distribution (WVD); empirical mode decomposition (EMD); and
enhanced empirical-mode decomposition (EEMD) [21]. The next step is to apply ML
algorithms to the extracted features to classify different states of the bearing, where the
algorithm provides the theoretical base for designing an efficient model. Support vector
machines (SVM) [22–24]; k-nearest neighbors (KNN) [20]; and artificial neural networks
(ANN) [25,26] are found to be effective ML algorithms in fault diagnosis tasks. Hence,
profound skill and expertise in signal processing techniques are required to effectively run
the feature extraction and selection method to achieve high efficiency in the classification
process. Further, any manual feature-selection method for any certain task may not be
effective in different working scenarios. Another fact to consider is that the traditional ML
algorithms cannot extract features automatically from the raw data and always need an effi-
cient feature extraction process to provide good results, which is not only time-consuming
but also requires more manpower [27,28]. Real-time fault identification also becomes impor-
tant to lessen the probability of sudden failure and ensure long-time operation to improve
the industrial environment. To ensure this, the online monitoring of the faulty conditions
of IM was also investigated in [29] by combining the Internet of Things (IoT) architecture
and effective ML techniques to recognize and classify the faulty conditions immediately.

The deep learning (DL)-based fault diagnosis method can be a helpful solution to the
drawbacks of traditional data-driven fault diagnosis methods based on ML algorithms. Due
to the automatic feature-extraction capabilities from the original signals, the DL-based fault
diagnosis becomes a promising tool in fault diagnosis. In the DL-based method, multi-scale
feature extraction and the final pattern recognition can be achieved altogether through
stacking multiple layers in a detailed hierarchical architecture [30]. Generally, collecting
time-series data from sensors and directly providing them as the input of the DL model to
obtain the fault-classification results for multiple faults are the basic steps of the DL-based
fault-diagnosis approach. However, in recent times, researchers extract features first and
then apply them to the DL model to obtain high-level features to automatically classify the
faults and improve model accuracy [31]. The DL-based fault diagnosis mainly consists of
deep auto-encoders [32,33], a deep belief network (DBN) [34], and a convolution neural
network (CNN) [28]. By using the time, frequency, and time–frequency domain features,
Deng et al. proposed a deep Boltzmann machine (DBM) for multiple fault classification of a
rolling bearing with high reliability [35]. In [36], the combination of a sparse auto-encoder
and a DBN is applied to classify faults by fusing the time- and frequency-domain features
from multiple signals. The combined technique using a DBN and the Dempster–Shafer
theory was employed to build an intelligent model for classifying the fault severities by
Yu et al. [37]. In some cases, the CNN-based method performs better in comparison with the
DBN method in complex scenario applications due to the advantage of sparse connection
and weight-sharing ability [38].

Many researchers use CNNs with raw time-series signals received from the sensors
for fault classification. Ince et al. [39] used a raw motor-current signal to design a 1-D CNN
for real-time monitoring where the feature extraction and classification were combined in
a single learning entity. In [40], the authors proposed a 1-D CNN for condition monitor-
ing which automatically extracted features and performed better than a manual feature
selection-based method. A CNN model with an adaptive learning rate and a momentum
component was proposed in [41] for both fault-pattern identification and fault-size mea-
surement with the raw signal. Another one-dimensional CNN with a deeper residual layer
was designed by Peng et al. [42], where features were learned adaptively from time-series
vibration signals and achieved quite a high accuracy on wheelset bearings.

Even though CNNs can learn distinctive patterns from raw data directly, in many
cases, the raw data are highly corrupted by noise from the environment. Therefore, various
domain-based processing algorithms incorporated with CNNs have been used to improve
the fault-diagnosis system in recent times. Several methods exist to represent the original
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1-D machinery data in a 2-D structure. Further, generating images from 1-D signals by
applying different techniques, such as wavelet packet transforms (WPT), spectrograms,
etc., and classifying them with a 2-D CNN model is found to be superior in the field of
fault diagnosis [43,44]. After the initialization of the CNN, different modified architectures
of CNNs were introduced, such as Res-net [45] and VGG-net [46], for improving feature
extraction from images and achieving high accuracy. In [47], an S-transform was added
with a CNN to construct a novel ST-CNN method, where the first S-transform converted
the sensor data into a 2-D time–frequency domain matrix, and the CNN was later applied
to perform fault classification. The envelope spectrum of an original signal using a Hilbert
transform is an efficient method to convert the 1-D data into 2-D. Then, a deep CNN model
was applied to learn the underlying features and classify different types of faults in [48].

Different types of wavelet transforms have been applied as data-to-image conversion
techniques which mostly produce two-dimensional images and will later be used as the
input of classifiers [43,49]. In [50], the Morlet function was applied in CWT to convert
the time-series vibration signal to scalogram images. It was also used as the input of
the convolutional attention neural network (CANN) to classify motor faults. In addition,
the scalogram image-conversion technique also become a very efficient technique in the
field of chatter identification and detection by creating distinctive images of every fault
condition [51]. In [52], the image conversion was carried out with the bispectrum method,
and a probabilistic neural network was proposed for image classification. Further, the
authors showed that the converted 2-D grayscale images could produce different patterns
among various fault types, and then various CNN models were applied to automatically
extract features and classify them [53,54]. The above discussion represents the CNN model
as a decent solution to diagnosis fault classification because it does not require expertise
and it works in a noisy environment.

In this analysis, a novel signal-to-image conversion method named Gramian angular
field (GAF) is applied to generate images [55,56]. The characteristics of the time-series
signal are stored in polar coordinates and then converted into two distinct types of images
by applying geometric operations. Finally, the generated images are classified with deep
CNN. As a CNN is inherently an excellent choice for solving classification problems
involving images, we aimed to convert 1-D time-series data to images through GAF
encoding so that the CNN could be fed with the type of data it naturally excels at. Through
this work, we prepared an equivalent GAF-image dataset from the KAT current signal
and proposed a CNN model that was good at classifying bearing faults. Here, the GAF
algorithm helps to increase the interpretability of switching from 1-D signals to 2-D images
and provides a foundation for the effective extraction of features, and the CNN’s weight-
sharing mechanism results in a much faster training speed than other networks. Our results
indicate that such an encoded dataset (time-series to the image) could be a novel approach
to the fault-classification research area.

The remainder of the paper is organized as follows: the detail of the theoretical back-
ground is provided in Section 2; the experimental testbed, data arrangement, and proposed
methodology based on GAF and CNN are described in Section 3; the experimental results
analysis and comparison with some build-in models and previous works are summarized
in Section 4; and the concluding remarks are provided in Section 5.

2. Theoretical Background
2.1. Bearing Fault Frequencies

Among the various elements in IMs, the rolling element bearings (REB) are regarded
as the most crucial elements due to their ability to reduce friction to operate the rotor
smoothly. The bearings work as an electromechanical interface between the stator and the
rotor, as well as a holding element to guarantee proper rotation from the shaft. Two types
of races, named the inner and outer race, a group of rolling balls, and the cage where all the
balls are enclosed with equal distance, are the basic elements of bearings. Faults in bearings
can occur for multiple reasons, such as extreme load, wrong installation, misalignments in
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the rotors, inappropriate lubrication, and material fatigue [57]. The fundamental structure
of the bearing and two fault conditions that are considered in this research (outer race fault
and inner race fault) are shown in Figure 1.

Figure 1. (a) Bearing geometry; (b) fault in the outer race; (c) fault in the inner race.

In general, every bearing element has a fundamental rotating frequency. During
rotation, if the rolling part passes through the damaged area of either the inner race or
outer race, a periodic impulse is generated due to the rise of vibration energy at a fixed rate.
This resultant frequency of the defect signal is known as the defect frequency, which can be
estimated with the geometric parameters (diameter of the rolling element, cage, pitch, and
the number of balls) and the rotation speed from the equations given in (1)–(3):

Outer race fault frequency : fO =
Nball

2
× fm ×

(
1−

(
Dball
Dcage

× cosβ

))
(1)

Inner race fault frequency : f I =
Nball

2
× fm ×

(
1 +

(
Dball
Dcage

× cosβ

))
(2)

Ball fault frequency : fb =
Dcage

2Dball
× fm ×

(
1−

(
Dball
Dcage

× cosβ

)2
)

(3)

Here, Nball indicates the number of balls, fm is the rotational frequency, β is the load
angle from the radial plane, and Dball and Dcage represent the diameter of the ball and the
cage, respectively.

As a result of bearing damage, a radial motion occurs between the stator and rotor
which induces characteristic fault frequencies into the current signals and results in oscil-
lations. Bearing defects cause radial displacements of the stator with the rotor, resulting
in fluctuations in the load torque and the rotating eccentricity. Therefore, motor-current
signals undergo amplitude, frequency, and phase modulation due to variations in ma-
chine inductances. The resultant motor-current signal i(t) due to fault can be written as in
Equation (4).

i(t) = ∑∞
k=1 ik.cos

(
ωck .t + φ

)
and ωck =

2π fbearing

p
. (4)

where ωck is the angular velocity, φ is the phase angle, and p is the pole number of the oper-
ating machine. The harmonic frequency due to the fault is denoted by fbearing = | fs ±m fv|.
Here, fs and m denote the fundamental frequency and harmonic index number, respec-
tively. fv will be either the inner race frequency ( finner) or the outer race frequency ( fouter),
depending on the fault that occurred.

2.2. Transformation of Time-Series Data into Images

The idea of transforming time-series data into 2-D images has evolved due to the rapid
expansion of computer vision techniques. An efficient data transformation approach can
reduce any massive amount of data into 2-dimensional or 3-dimensional feature sets. This
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equivalent visualization of time-series data provides a better understanding of the input
data and helps to distinguish different types of signal conditions [56].

In our work, the transformation from time-series data to the image is divided into two
stages. In the first step, data segmentation is applied to convert the long 1-D time-series
data into multiple segments, and after that, the GAF image conversion technique is applied
to the segments individually to generate the 2-D images.

2.2.1. Data Segmentation

A simple preprocessing method is applied to convert 1-D original time-series current
signal data into 2-D images by applying an adjustable sliding window mechanism [58] to
extract useful features and reduce the computational time of the method. The recorded long
current signal is divided into multiple segments by sliding a predefined window length.
The resulting small segments help to accommodate a fair amount of training data for the
training phase of the DL model. Along with that, this segmentation mechanism solves the
issue of handling lengthy 1-D data to the designed model and finally, stacking the current
signal together.

In this mechanism, the total number of samples CNt can be defined as:

CNt =

(CLt − CL f

CLs

)
+ 1 (5)

where, CLt, CL f , and CLs denote the total length of the current signal, the length of one
frame, and the step size, respectively. Here, the total length of the current signal is fixed,
and the step size must be less than the frame length. Both the frame size and step size value
should be set appropriately to generate enough samples. A larger frame size makes the
input layer big, which results in high computational time in the neural network processing.
On the other hand, a small frame may not cover the proper characteristics of the current
signal and produce low classification accuracy. Similarly, a large step size generates fewer
samples, which hampers the training method, and small steps result in many samples with
similar characteristics. Hence, depending on the experiment and collected data size, the
sizes must be defined appropriately. The overall process of the sliding window mechanism
is illustrated in Figure 2.

Figure 2. Data segmentation for converting time-series data into an image.

2.2.2. Gramian Angular Field (GAF)

The main idea of transforming time-series data into images with GAF is by implement-
ing a matrix based on polar coordinates, which preserves the temporal correlation between
the time-series signal of 1-D and the resultant Gramian matrices. Hence, using the polar
coordinates helps to maintain absolute temporal relations in comparison with the Cartesian
coordinates [59]. Two types of GAF images can be generated, namely, Gramian angular
summation field (GASF) and Gramian angular differential field (GADF) by following
the steps:

(i) Normalization of the time-series data
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In the first step, the input time-series signal is normalized within the minimum value
of 0 and maximum value of 1. The normalization operation is defined as (6):

b̃i =
bi −min(b)

max(b)−min(b)
(6)

Here, b̃i and bi represent the resultant signal after normalization of b and the raw
current signal at time i, respectively;

(ii) Transforming normalized data to polar coordinates

The second step of generating GAF images requires converting the normalized time-
series signal to polar coordinates. This operation is performed by computing the angular
cosine of every normalized value and time stamp as the radius. The formula of the polar
coordinates can be expressed as:

θ = arccos(b̃i); where 0 ≤ b̃i ≤ 1, b̃i ∈ B̃
r = ti

N ; ti ∈ N
(7)

where θ indicates the time-series value in the polar coordinates for every observation. ti
and N are the time stamp and a constant stabilization factor for the space of the polar
coordinate system, respectively. The range of the angle after applying this operation will
be in [0, π

2 ]. The polar representation provides a better scenario for understanding the
time-series data;

(iii) Calculating GASF and GADF

Finally, by applying the trigonometric operation, the resultant polar coordinates of
the original time-series signal can be converted into two different types of GAF. The
trigonometric sum and difference will apply to sample points and the time correlation
is generated from the angle perspective. The mathematical representations of GASF and
GADF in matrix format can be written as Equations (8) and (9), respectively:

GASF =

cos(θ1 + θ1) · · · cos(θ1 + θn)
...

. . .
...

cos(θn + θ1) · · · cos(θn + θn)

 (8)

GADF =

sin(θ1 − θ1) · · · sin(θ1 − θn)
...

. . .
...

sin(θn − θ1) · · · sin(θn − θn)

 (9)

This procedure of converting 2-D images with GAF can effectively maintain the order
of the original time-series signal from the top left to the bottom right. For an input time
series with a length of n2, the resultant matrix dimension of GAN transformation will be
n× n, where the original information is preserved in a positive diagonal and the relation
between other time sequences is reflected in other regions of the matrix. Figure 3 depicts the
steps of normalization, a transformation of the coordinate axis, and applying trigonometric
functions that are involved in the process of converting 1-D time-series data to 2-D images
using GAF.
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Figure 3. Steps of GAF: (a) normalized time-series signal; (b) converted signal in polar coordinates;
(c) GASF; and (d) GADF.

2.3. CNN Model

The convolution neural network (CNN) was proposed by Le Cun et al. [60] as a branch
of the neural network, developed for object recognition and based on functionalities of the
human visual cortex. It is widely used in computer vision and image classification due to
the similarity of the brain’s simple and complex cells of the visual cortex. This network is
also considered an effective feed-forward supervised machine-learning network as it can
be treated as the most efficient deep-learning method when large-scale CNN is considered.
Generally, a CNN consists of a convolution layer (CL), a pooling layer (PL), and a fully
connected (FC) layer. The overall structure performs feature extraction and classification,
where finally the decision is expressed as a probabilistic function [61].

2.3.1. Convolution Layer

The first layer of a CNN is named the convolution layer, which primarily extracts
various input features from the input. Multiple rectangular neurons are added together
to create a feature map. Neurons from the same map generally share weights, which are
known as convolution kernels. These kernels are initialized in the form of random matrices.
The sharing weights in the convolution layer help to reduce the possibility of overfitting by
minimizing the connection among the layers of the network [62].

Several learnable kernels are implemented in this layer, and a convolution operation is
performed between these kernels and the input image to generate feature maps. Then, these
maps are used as inputs to the activation functions to implement a nonlinear operation.

The output of the convolution operation of each layer can be mathematically calculated
as follows:

xl
j = f

(
∑

i=1,2,...,M
xl−1

i × kl
ij + bl

j

)
, j = 1, . . . , N (10)

where xl
j denotes the j-th output map of the convolution layer for the filter, k, and the

number of inputs, M. Further, xl−1
j represents the i-th input feature map of (l − 1) layer, bl

j
implies the bias value j-th filter, and f denotes the activation function. The number of layers
of a CNN completely depends on the variation, as well as the complex pattern of the input.
If the feature variant is quite high, a deep CNN must be designed to diagnose them all
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accurately. ReLU is the most used activation function in CNNs for increasing nonlinearity,
which can be defined as xj

i = max(0, xj,

i ).

2.3.2. Pooling Layer

To reduce the computational time, the pooling layer is connected after the convolution
layer, which reduces the feature map size with a down-sampling operation without chang-
ing the variance of the distinguishing feature scale. The connected pooling layer merges
the analogous features in a local position without altering the exact features and finally, the
produced output is less sensitive to the surroundings. The output feature maps of the l-th
layer can be calculated as:

xl
j = f

(
βl

j.down
(

xl−1
j

)
+ bl

j

)
, j = 1, . . . , M (11)

Here, xl
j and xl−1

j are the j-th output and input map. f and down(.) denote the activation
function and sub-sampling function, respectively. Two bias operations, multiplicative bias
and additive bias for the j-th filter, are denoted by βl

j and bl
j.

2.3.3. Fully Connected Layer

The final one or more fully connected layers are connected after adding multiple
convolutions and pooling layers to evaluate the results from previous layers and classify
the output. For the input length, M, and total output vector length, N, the resultant output
of the l-th layer can be calculated as follows:

xl
j = f

(
∑

i=1,2,...,M
xl−1

i × wl
ij + bl

j

)
, j = 1, . . . , N (12)

where xl
j denotes the j-th output value, xl−1

j is the j-th input value, bl
j and wl

ij are the bias
and weight of the j-th output, and f indicates the activation function for the fully connected
layer. In general, for the classification problem, the output of the fully connected layer is a
probability for every class or category, computed by a SoftMax activation function.

The CNN model that is applied includes two convolution layers with filter sizes of
16–3 × 3 and 32–3 × 3, where the input image size is 128 × 128 × 3. The max-pooling layer
has a size of 2 × 2. Finally, a fully connected layer is added to classify three different health
states of the IM. The structure of the deep CNN model that is used in this study is provided
in Figure 4.

Figure 4. The modified architecture of the deep convolution neural network.

The detailed sequential model of the designed deep CNN is provided in Table 1, which
includes the types of layers, activations in each layer, and the number of parameters of
each layer.
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Table 1. Layer-wise details of the deep CNN.

Layer (Type) Activations Number of Parameters

conv1d_1 (Conv1D) 128 × 128 × 16 448

Batch_Norm1 (Batch Normalization 1) 128 × 128 × 16 32

ReLU_1 128 × 128 × 16 0

max_pooling1d_1 (MaxPooling) 64 × 64 × 16 0

conv1d_2 (Conv1D) 64 × 64 × 32 4640

Batch_Norm2 (Batch Normalization 1) 64 × 64 × 32 64

ReLU_2 64 × 64 × 32 0

max_pooling1d_2 (MaxPooling) 32 × 33 × 32 0

FC (Fully Connected) 1 × 1 × 3 101,379

SoftMax 1 × 1 × 3 0

Output Class - 0

Total params: 106,563

Trainable params: 106,563

Non-trainable params: 0

The trainable parameters are first initialized in the CNN model, followed by optimiza-
tion using the adaptive second estimation (Adam) technique to reduce the error between
the original and predicted values. To measure the degree of training error, categorical
cross-entropy is used. Several types of CNN models were evaluated by varying each
of the defined layers, and it was discovered that the large deep model of CNN not only
provided higher accuracy, but also took a long time to train. In the training phase of the
deep-learning model, the suggested CNN runs for 50 epochs. During the experiment,
the dataset was randomly split into training, validation, and testing subsets and repeated
30 times to eliminate any possibility of contingency during the test, and the average values
of the experiments were considered as the final outcomes for analysis. Additionally, three
other deep neural network architectures, GoogleNet, ResNet-18, and AlexNet, were also
trained with identical 2-D images for comparison with the proposed model’s findings.

3. Methodology
3.1. Experimental Testbed

The current signal from the Paderborn University bearing dataset was used in this work,
which was developed by the mechanical engineering research center of Kat-Data Center and
described in [63]. In this massive dataset, a wide range of bearing conditions have been
considered; the dataset contains data from healthy bearings, data for artificially damaged
bearings, and finally, real damage data that are generated by an accelerated lifetime test.
For creating artificial damage on the bearing, drilling, electric discharge machining (EDM),
and manual electric-sculpting methods are used. In the case of the accelerated lifetime test,
two different damage methods, named fatigue (F) and plastic deformation (P), were applied.
The test rig followed the ISO 15243(2010) standard in terms of the damage size, geometry,
location, and type of occurrence. Different types of data, such as vibration, current, speed, and
temperature were recorded for every bearing condition. In our work, we used the current
signals of two different phases. The testbed contains a modular system consisting of an electric
motor, a torque measurement shaft, a test module of a rolling bearing, a flywheel, and a load
motor, as demonstrated in Figure 5. Here, a frequency inverter with a 16 kHz switching
frequency was used to control a 425 W permanent magnet synchronous motor (PMSM). A
LEM CKSR 15-NP modelled current transducer measured the current signal in two different
phases and a 25 kHz low-pass filter filtered the measured signal and converted it to a digital
signal with a sampling rate of 64 kHz.
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Figure 5. Organization of the UPB bearing test rig.

The experimental dataset contains 32 different bearings with various degrees of dam-
age. In our analysis, we considered current signals from 17 bearings corresponding to the
healthy condition, outer ring damage (ORD), and inner ring damage (IRD). These three
states are labelled as class 0, class 1, and class 2, respectively. Table 2 summarizes the details
of the bearing conditions that are considered in this work. Each bearing was run 20 times
under every load condition. In every case, the current signal was recorded for 4 s with a
sampling rate of 64 kHz. Thus, each recording has 256,000 sample points (approximately).

Table 2. Characterization of bearings considered in this work.

Type of Bearing Bearing
Code

Damage
Extent

Damage
Method Label

Healthy bearing (H)

K001 - -

0

K002 - -

K003 - -

K004 - -

K005 - -

K006 - -

Naturally
damaged
Bearing

Outer ring
damage
(ORD)

KA04 1 F

1

KA15 1 P

KA16 2 F

KA22 1 F

KA30 1 P

Inner
ring

damage
(IRD)

KI04 1 F

2

KI14 1 F

KI16 3 F

KI17 1 F

KI18 2 F

KI21 1 F

F = fatigue: pitting; P = Plastic deform: indentations.

Four different operating load conditions were considered during data collection, as
provided in Table 3. We consider the data for 1 s containing 64,000 points for every
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condition and after that divide them into multiple segments to generate enough images
for classification with 2D-CNN. Depending on the operating conditions, we split the total
dataset into 4 segments, and every part contained three described bearing health conditions.

Table 3. Details of the four different operating conditions of rolling element bearings.

Operating
Conditions

Rotational Speed
(S)

[rpm]

Load Torque
(M)

[Nm]

Radial Force
(F)
[N]

Bearing Heath
Type

Condition 1 1500 0.7 1000 H/ORD/IRD

Condition 2 900 0.7 1000 H/ORD/IRD

Condition 3 1500 0.1 1000 H/ORD/IRD

Condition 4 1500 0.7 400 H/ORD/IRD

3.2. Proposed Method

Figure 6 illustrates the overall methodology of the bearing fault classification using
the motor-current signal.

Figure 6. The workflow of the proposed method.

According to this figure, the proposed methodology of the fault-diagnosis approach
can be divided into the following steps:

(i) Split data based on operating conditions

As discussed in Section 3.1, we consider the motor-current signal for this study, which
includes four different working conditions (Table 3). Firstly, we split the overall data into
four sets based on these conditions. The segmented data consist of three different health
conditions of the bearing (healthy, outer, and inner). Instead of considering 4 s of signal,
we considered 1 s of the current signal.

(ii) Data segmentation
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The raw current signal needs proper segmentation to make it appropriate for the
transformation by using the encoding schemes. We applied a sliding-window technique,
which is discussed in Section 2.2.1, and created multiple signals from a long signal that
preserved the properties of the original signal.

(iii) Transforming to 2-D images

After proper segmentation of the original current data, the GAF algorithm (Section 2.2.2)
is applied to each segment to convert the 1-D signal into 2-D images. Here, the time-series
data are converted to a polar coordinate system before being converted into an image, which
helps to project the time-series amplitude variation to the angular variation in the polar
coordinate. This projection helps to create significant variation among the generated images
due to different types of bearing conditions.

(iv) Classification using a CNN

Finally, the generated image dataset is used as the input of the deep CNN model
(described in Section 2.3) for training and testing. Then, we compare the performance of
our designed model with some other existing models, as well as some previous works, to
validate our proposed fault-diagnosis model with the current signal data.

3.3. Performance Evaluation Parameters

In any classification problem, the samples can be classified into four different cate-
gories, depending on the original class and the predicted class output. The categories are:
TP (True Positive: both the original and predicted class are positive); FP (False positive:
the original class is negative, but the predicted class is positive); FN (False negative: the
original class is positive, but the predicted class is negative); and finally, TN (True Negative:
both the original and predicted class are negative). By using these categories, we evalu-
ate the model performance with four commonly used matrixes named recall, precision,
F1-score, and model accuracy (Equations (13)–(16)).

Precision (P) =
TP

TP + FP
(13)

Recall (R) =
TP

TP + FN
(14)

F1_score (F1) =
2× Precision× Recall

Precision + Recall
(15)

Accuracy (Acc) =
TP + TN

TP + FP + TN + FN
(16)

Additionally, a visual summary of the classification results can be represented with the
four mentioned categories, which is known as the confusion matrix. From this matrix, the
correctly and incorrectly predicted values of the model can be expressed with numerical
values and the misclassified samples can be easily understood.

4. Experimental Results
4.1. Analysis of Current Signal Imaging with GASF and GADF

The motor-current signals that are recorded from the Paderborn University bearing
dataset are considered to generate the 2-D image by applying the Gramian angular field
(GAF) image encoding technique. As we mentioned earlier, the overall dataset is split up
based on the four working conditions, where each condition contains three health states of
the bearing (normal, outer race fault, and inner race fault), which helps to create distinct
patterns for each working condition. To produce enough images for the classification with
the CNN, we segmented the 1 s of the current signal data into multiple portions before
encoding them as images. Figure 7 presents the resultant images after applying the GASF
and GADF for the four different working conditions in three different states of the bearing.
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Figure 7. The resultant 2-D images after applying GASF and GADF algorithms on four considering
working conditions.

A total number of 3600 images are created from current signal segments that represent
all the operating conditions. Among them, 2304 images are used for training and 576 im-
ages are used for validation. After completing the training phase, the remaining 720 images
are used as the testing samples to evaluate the model performance. The sample splitting
ratios for every working condition are presented in Table 4.

Table 4. The splitting ratio of the dataset into training, validation, and test sets.

Training (80%)
Testing
(20%)

Sample
Count

Sample/
ConditionDataset Training

(80%)
Validation

(20%)

Condition 1 576 144 180 900 300

Condition 2 576 144 180 900 300

Condition 3 576 144 180 900 300

Condition 4 576 144 180 900 300

2304 576 720

4.2. Diagnosis Performance of the Proposed Method

Our proposed CNN model (detail architecture in Table 1) containing two convolution
layers took the resultant images as the input to classify the bearing conditions. Transform-
ing the time-series data to polar coordinates with GAF helps to create individual patterns
for each considering condition, which helps the CNN model to automatically learn and
extract features, and finally, classify the normal or faulty bearing conditions successfully.
The results are provided in Table 5. The resultant images for the four working conditions
mentioned in Table 4 are individually grouped for both GASF and GADF. The images for
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GASF are named GASF_1, GASF_2, GASF_3, and GASF_4, and the images for GADF are
labelled as GADF_1, GADF_2, GADF_3, and GADF_4 for the four different conditioned
data, respectively. It can be observed that the proposed approach can achieve excellent
performance, attaining test accuracies of approximately 99% to 100% for all four working
conditions with GADF- and GASF-encoded images. Not only the accuracy, but also the
other three performance matrices show similar scores. The experiments were repeated
30 times to test the repeatability of the model, and in every case, the values of the accu-
racy matrices were between 99% and 100%. Therefore, to validate the performance of the
proposed model, three different popular existing CNN models, GoogleNet, ResNet-18,
and AlexNet, were also trained and tested with the generated 2-D images. The evaluation
parameters presented in Figure 8 indicate that the benchmark CNN models also provide
high classification performance with GADF and GASF images, which implies that this
imaging approach can be coupled with a CNN for bearing fault classification from the cur-
rent signal. Moreover, with our proposed model, it is evident that a very good classification
accuracy can be achieved using CNN architecture with relatively small depth when GADF
and GASF images are used. Therefore, computation complexity and training time are also
reduced in comparison with the existing CNN architectures that are mentioned above.

Table 5. The performance measurement of the designed CNN architecture.

Datasets Accuracy (%) Precision (P) Recall (R) f1_Score (f1)

GADF_1 99.44 0.99 0.99 0.99

GADF_2 100 1.0 1.0 1.0

GADF_3 100 1.0 1.0 1.0

GADF_4 98.89 0.98 0.98 0.98

GASF_1 100 1.0 1.0 1.0

GASF_2 100 1.0 1.0 1.0

GASF_3 100 1.0 1.0 1.0

GASF_4 100 1.0 1.0 1.0

Average 99.79 0.996 0.996 0.996

Figure 8. The performance of the three existing models: (a) accuracy and (b) precision, recall, and
F1_score for the four conditioned GADF-encoded images.

Finally, we merge all the generated images for every working condition and train
the CNN model to classify the bearing health conditions. The accuracy of this model is
99.58%, which also demonstrates that the generated images with GAF can successfully
create distinguishable patterns for every condition and help the CNN model to achieve
high classification accuracy in classifying bearing conditions. All the presented results are
generated with the train-to-test ratio of 80:20. Along with this, we varied the train and test
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ratio to observe whether or not the designed CNN model could train the model with a
smaller number of samples. The accuracy of the model with different train and test image
sets is provided in Table 6. It is shown that for a low amount of training samples, the
performance is quite high with the designed model.

Table 6. Accuracy value for different train-test ratio.

Train-Test Ratio Accuracy (%)

80:20 99.58

70:30 99.91

60:40 100

50:50 99.94

40:60 99.95

30:70 99.96

20:80 99.69

Figure 9 represents the training and validation accuracy and loss curves of the deep
CNN model for 50 epochs. The classification accuracy of the training phase reached 99.58%,
which is also true for the validation dataset.

Figure 9. Accuracy and loss curve of the deep CNN model.

A feature mapping technique was applied to verify the self-learning ability of the
designed deep-learning method using t-distributed stochastic neighbor embeddings (tSNE).
As shown in Figure 10, different bearing conditions of motor-current signals were easier
to recognize using the deep CNN model. The visualization of each layer of the CNN
demonstrates how the nonlinear mapping helps to capture prominent features in every



Sensors 2022, 22, 4881 17 of 23

step. In the early layers, none of the fault signals were separable, and the model could not
perform well. However, deeper in the layers, the system can fully utilize the self-learning
capability for fault classification. As a result, three bearing conditions of the current signals
are properly clustered in the final layer.

Figure 10. Feature visualization via t−SNE: (a) input image; (b) initial convolution layer; (c) final
convolution layer; and (d) output layer.

4.3. Comparison with Some State-of-the-Art Methods

We compare the outcomes of our proposed method with some basic ML techniques
in the field of fault diagnosis by validating its performance. In the first approach, the
CNN model was kept unchanged, and the original segmented current signal as mentioned
earlier was used as the input to see if the transformation technique from 1-D to 2-D signal
contributed significantly to model performance. This approach [64] (Original + 1-D CNN)
could not perform well and only achieved a 61.67% accuracy. Later, the continuous wavelet
transform (CWT) techniques were applied to the original current signal and converted to
2-D images. They were then classified with the same designed CNN model (CWT + 2-D
CNN) [65]. Here, the resultant images fail to generate a significant pattern in different
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bearing conditions and exhibit a classification accuracy of 64.58%. Due to the drawbacks of
the recorded current signal, such as low signal-to-noise ratio (SNR), saturation harmonics,
and information loss, the discussed techniques cannot attain superior performance in this
scenario. Both models showed significantly lower accuracy, precision, recall, and f1_score
values in comparison to our proposed method, which is shown in Table 7.

Table 7. The resultant evaluation matrices for three different approaches.

Techniques
Evaluation Parameters

Precision Recall f1_Score Accuracy (%)

Original + 1-D CNN 0.61 0.59 0.61 61.67

CWT+2-D CNN 0.61 0.61 0.61 64.58

GAF+2-D CNN
(Proposed) 0.99 0.99 0.99 99.44

The resultant confusion matrix of the three above-mentioned methods is provided in
Figure 11a–c, where only data from a single operating condition were considered. Finally,
Figure 11d represents the confusion matrix, where data for all four conditions were taken
into account to observe the wrongly detected samples of each bearing condition with our
proposed fault-classification approach.

Figure 11. The confusion matrix of three different basic techniques: (a) Original + 1-D CNN; (b) CWT
+ 2-D CNN; and (c) GAF + 2-D CNN for a single condition data. (d) GAF + 2-D CNN for the
complete dataset.

4.4. Comparison with Existing Works

As a final step, we compared our bearing fault classification approach with some
other existing methods that utilize the same dataset of motor-current signals as listed in
Table 8. Lessmeier et al. [63] used a wavelet packet decomposition method up to three levels,
along with a special SVM approach called SVM-PSO (SVM-particle swarm optimization).
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This method achieved an accuracy of 86.03%. In [61], the combination of an information
fusion and grayscale image conversion technique was applied to convert the time-series
signal, and finally, the images were classified with three supervised algorithms (Multilayer
perceptron, Support vector machine, and k Nearest Neighbor). Therefore, with the same
dataset of the current signal, Hsueh et al. used the empirical wavelet transform to transform
the 1-D current signal into 2-D grayscale images, and later to classify the fault using a CNN
with 97.3 (%) accuracy [27].

Table 8. The classification results of some existing works.

Applied Models Classification Accuracy (%)

WPD + SVM-PSO [63] 86.03

Information fusion + MLP [61] 98.0

Information fusion + SVM [61] 98.3

Information fusion + kNN [61] 97.7

EWT+CNN [27] 97.3

GAF+2-D CNN
(proposed) 99.58

The GAF-based imaging technique is used in various fault-classification scenarios. In
this work, we also demonstrated that this technique could exhibit superior performance for
motor-bearing fault classification when the current signal is considered. A brief comparison
of several other scenarios is tabulated in Table 9. Although the aims of these studies may
be different, they employed the GAF-based imaging method, and the research outcome
proved it to be an effective technique to convert time-series data into 2-D images.

Table 9. Summary of GAF-based imaging techniques in different applications.

Serial No. Ref Aim of the Research Methods Applied Result Dataset

1 [66] Fault classification with
vibration data

A lightweight CNN bearing fault
intelligent diagnosis model

combining GAF and coordinated
attention (CA) (GAF-CA-CNN)

Accuracy: 99.62%
Standard

deviation: 0.154

Case Western Reserve
University (CWRU) bearing

vibration dataset

2 [67] Classify time-series data Time-series data to 2D images with
GAF/MTF + Tiled CNN

Mean square
error (MSE): 0.00889
with GASF images

ECG, CBF, Gunpoint,
SwedishLeaf, and 7 Misc

3 [55]
Fault diagnosis and

classification with vibration
data

GAF and MTF techniques with
capsule networks

(GAFMTF-CapsNet)
Accuracy: 99.81% CWRU bearing dataset

4 [56] Predictive maintenance
framework of conveyor motors

Principal component analysis (PCA)
+ GAF + CNN (used PReLU

activation function)
Accuracy: 100%

5 [68] Sensor classification Piecewise aggregate approximation
(PAA) + GDF/MTF + ConvNet

Error rate:
0.4 (Wafer dataset)
5.35 (ECG dataset)

The Wafer and ECG databases

6 [69] Human activity recognition
classification

GAF + multi-dilated kernel residual
network (Fusion Mdk-ResNet)

Accuracy:
97.27%

WISDM dataset, UCI HAR
dataset, and Opportunity

Dataset

7 [70]
Classification of the

conventional faults in
hydraulic component

An improved data-enhanced
Gramian angular sum field

(DE-GASF) + multichannel dual
attention convolutional neural

network (MC-DA-CNN)

Accuracy: 96.48% (axial
piston pump fault) and

98.08% (hydraulic
reversing valve fault)

8 [71] Bearing fault diagnosis with
time-series vibration data

Piecewise aggregation
approximation (PAA) with GAF +
convolutional channel attention

residual network (CCARN)

Accuracy: 100%
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Table 9. Cont.

Serial No. Ref Aim of the Research Methods Applied Result Dataset

9 [72] An FDGAF-based intelligent
wheel flat diagnosis technique

Frequency-domain Gramian
angular field (FDGAF) + transfer

learning network

Disparities between
intra-class and

inter-class distance for
FDGAF under all four
considered velocities

10 This work Bearing fault classification with
motor-current signal

Image segmentation+ GAF + 2-D
CNN Accuracy: 99.58%

KAT bearing
dataset

(current signal)

5. Conclusions

Intending to improve both the diagnosis capability and adaptability of the approach
for diagnosing faults in an IM’s bearing system under different working conditions, we
presented a new technique that was based on GAF image encoding and a deep CNN
model. Data-driven fault-classification approaches became one of the focused research
areas in the fault-diagnosis field because of the availability of a massive amount of sensor
data. Due to the low cost, easy accessibility, and smooth data acquisition capability of the
motor-current signal, it is considered to be a smart solution among the various available
sensor data. The proposed method incorporates a GAF-based image generation technique
from a 1-D current signal for a 2-layer CNN model to construct a data-driven intelligent
fault-diagnosis approach for bearings. Firstly, the original current signal data are divided
based on the working conditions and then segmented into multiple samples for image
conversion. Two different types of images named GASF and GADF were generated where
the time-series information was converted into polar coordinates. As the current signal
is affected by surrounding noises, it becomes very difficult to extract the fault signatures
manually. When the data are converted into the polar coordinates for image transformation,
the different bearing-condition data create distinctive patterns, which helps the CNN
model to easily extract the necessary high-level features. In all considering operating
conditions, this proposed GAF + 2-D CNN based approach can attain good accuracy. Three
predefined CNN models, GoogleNet, ResNet-18, and AlexNet, were also trained and tested
with the GAF images to validate the image encoding technique in the fault classification
area. The shallower depth of our proposed CNN model also results in less training time
and computation complexity. Moreover, a comparative study was conducted with some
reference approaches, as well as with recent works, to examine the effectiveness of the
proposed approach. According to the analysis of all experimental results, our overall
method achieves more than 99% accuracy, and the same is true for the other performance
measuring parameters. However, in this work, we considered only one dataset, as few
current signal datasets for bearing faults are publicly available. In the future, we would like
to test the performance of our proposed methodology in other datasets. Further, we only
considered the presence of a fault in the bearings when the data were preprocessed, but
fault severity was not considered. In the future, we also intend to analyze the performance
of this proposed model using a fault severity analysis. To make the decision-making process
more automated and enhance the reliability and robustness of the system in future research,
we plan to extend the proposed technique with multiple sensors and integrate a systematic
hyperparameter tuning approach for the CNN structure.
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