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Abstract: With the improvement of intelligence and interconnection, Internet of Things (IoT) devices
tend to become more vulnerable and exposed to many threats. Device identification is the foundation
of many cybersecurity operations, such as asset management, vulnerability reaction, and situational
awareness, which are important for enhancing the security of IoT devices. The more information
sources and the more angles of view we have, the more precise identification results we obtain.
This study proposes a novel and alternative method for IoT device identification, which introduces
commonly available WebUI login pages with distinctive characteristics specific to vendors as the
data source and uses an ensemble learning model based on a combination of Convolutional Neural
Networks (CNN) and Deep Neural Networks (DNN) for device vendor identification and develops
an Optical Character Recognition (OCR) based method for device type and model identification. The
experimental results show that the ensemble learning model can achieve 99.1% accuracy and 99.5%
F1-Score in the determination of whether a device is from a vendor that appeared in the training
dataset, and if the answer is positive, 98% accuracy and 98.3% F1-Score in identifying which vendor
it is from. The OCR-based method can identify fine-grained attributes of the device and achieve an
accuracy of 99.46% in device model identification, which is higher than the results of the Shodan
cyber search engine by a considerable margin of 11.39%.

Keywords: IoT; WebUI; device identification; ensemble learning model; OCR

1. Introduction

Currently, the Internet of Things (IoT) devices, such as industrial control and wearable
devices, are becoming an important part of cyberspace and play an indispensable role in
daily human life. However, due to the limitation of hardware resources, IoT devices usually
cannot integrate sophisticated security detection or protection mechanisms and tend to
be victims of cyber attacks [1]. Meanwhile, due to the lack of management, compromised
IoT devices may lose control or be abused as a foothold for further network attacks for a
long time before being noticed [2]. The situation poses a nonnegligible security problem to
cyberspace as the scale of IoT grows continuously. Device identification is the basis of almost
all kinds of cybersecurity management in that it helps administrators to survey the types of
IoT devices in the networks, spot devices with vulnerabilities, and assess the risk level of
the network, thus supporting security operations such as asset assessment, vulnerability
defense, and situational awareness. Therefore, identifying IoT devices correctly is of great
importance for improving the security level of cyberspace.

The device identification process can be divided into two stages, namely, data acqui-
sition and type discrimination. Data acquisition may be conducted using active probing
or passive snooping. Active probing sends requesting messages to devices according to a
specific protocol and extracts information like banners, HTTP headers, HTML pages, and
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certificates from the response messages. Passive snooping intercepts and saves inward
and outward traffic of devices passing through gateways. Type discrimination can be
conducted by employing fingerprint matching or machine learning. Fingerprint matching
discriminates devices by searching specific signatures in information obtained during the
data acquisition stage, while Machine Learning (ML) tries to learn some models from
history traffic data and use it for device type classification.

The outcome of device identification may be represented by a multi-dimensional
vector composed of vendor, type, model, etc., which can be used to refer to a sort of device
uniquely. For example, “Cisco” or “MikroTik” are sample values for vendor dimension,
“printer” or “camera” for type dimension, and “RT-AC1200GU” or “SBR-AC1900P” for
model dimension. Information about vendor, type, and model is precious in the scenarios
such as vulnerability patching and security alerting.

For the fingerprint matching method, a fingerprint usually is a binding of a regular
expression (RE) and a set of device attributes. For device identification, the RE is used to
match a specific pattern against the message obtained from the device, and if matching, the
attributes associated with the RE will be returned as an ID of the device. The fingerprint
matching method has been adopted by some typical tools, such as Nmap [3], Zmap [4],
and SinFP [5], and by some arising cyber search engines, such as Shodan [6], Censys [7],
and ZoomEye [8]. Feng et al. [9] implemented an acquisitional rule-based engine that uses
the association rule algorithm in data mining to automatically generate fingerprints. The
advantage of the fingerprint matching method is its high certainty and accuracy. However,
the drawbacks of the method are also noteworthy in that the construction of fingerprints
requires a lot of manual effort, and with the increasing security awareness of vendors,
many devices prefer not to provide useful information for identification in their response
message to active probing.

Methods of ML try learning some classification models from physical or traffic fea-
tures. Physical features may be microscopic deviations in the clock skews [10,11] or Radio
Frequency [12,13], while traffic features may be characteristics manifested by timestamp or
length of datagrams. Recently, device identification by learning from traffic features has be-
come a hotspot of research. The related supervised ML algorithms [14] include Random For-
est (RF) [15–18], K-Nearest Neighbors (KNN) [19], Support Vector Machine (SVM) [20–22],
Gradient boosting [23], Naive Bayes [24,25], Decision Trees (DT) [26], NLP [27], and so on.
The related unsupervised ML methods include the Gibbs Sampling Dirichlet Multinomial
Mixture Model (GSDMM) [28], Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [29], Kmeans [30], and so on. Additionally, there are some multi-stage
ML methods for device type identification [31–34]. These ML algorithms heavily rely
on the selection of traffic features, which in turn rely on the prior knowledge of domain
experts, so it is not very friendly for inexperienced researchers. Deep learning (DL), an
important branch of ML, uses end-to-end learning to automatically learn implicit features
from data. For example, Neural Networks (NNs) [35,36] and CNN [37–40] can automati-
cally learn features from raw traffic data of devices, eliminating manual feature selection.
However, a single DL model may not fit all datasets, so ensemble learning models [41]
have been proposed and have obtained higher classification accuracy than the individual
model [42–45].

We argue that the existing research on device identification has some blanks or short-
comings. Firstly, the data currently used for device identification is mainly from the banner,
HTML source code, etc.; there is no work found yet using device login page screenshots
as the data source for device identification. Secondly, most research works try classifying
a device into vendors that appear in the labeled training dataset, even if the vendor of
the device is outside the dataset. A few studies can determine whether a device is from a
vendor in the labeled training dataset or from an outside-world unknown vendor, but the
conclusion is made only by referring to an empiric threshold in the SoftMax layer. These
works suffer from poor accuracy as a higher threshold may lead to higher false negatives,
while a lower threshold to higher false positives. Finally, existing studies heavily rely on
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the signature text in the traffic to discriminate the device type or model but are likely to fail
since such information is rare in traffic.

It is observed that IoT devices usually provide WEB UIs for management, whose login
pages have distinct characteristics such as logos or layouts specific to vendors or products.
Furthermore, some login pages may display the device type and model directly on it, which
can act as the signature for identifying the device at the fine-grained level. Inspired by the
above observations, we propose a device identification framework based on ML and text
extracted from device login page screenshots. At first, we grab login page screenshots as
datasets through WEB UIs of devices and label them automatically with vendor information
obtained from SSL certificates. Next, we train a CNN with a labeled dataset to learn implicit
features from those screenshots and get a multi-classifier for device vendors and append a
DNN to the CNN, particularly to get a bi-classifier for better distinguishing vendors that
appear in the labeled dataset (known vendors) from those vendors from the outside world
(unknown vendors). Eventually, we leverage the OCR technique to extract text strings from
the screenshots and search them in a pre-built corpus of IoT devices for fine-grained device
attribute identification.

The contributions to this paper are as follows.

(1) We propose a novel method for IoT device identification, which uses commonly
available login pages with distinctive characteristics specific to vendors as the data
source and transforms the device identification into an image classification problem
and can be used as an alternative measure for device identification.

(2) We present an ensemble learning model for device identification. Given a device, the
model can firstly judge it from a vendor that appeared in the training dataset, with an
accuracy of 99.1%, and if the answer is positive, then identify which vendor it is from,
with an accuracy of 98%.

(3) We develop an OCR-based method for extracting and identifying type/model at-
tributes from login page screenshots, with an accuracy of 99.46% in device model iden-
tification, which overcomes the shortcoming of the traditional method in the difficulty
of obtaining device model information from protocol responses or network traffic.

The rest of this paper is organized as follows. Section 2 describes the related work,
Section 3 details the framework for device identification based on device login pages, and
Section 4 analyzes the feasibility of the approach in this study. The experimental results are
given in Section 5. Finally, Section 6 concludes the paper.

2. Related Works

We give a brief review of prior relevant studies from three aspects: webpage-based
device identification, unknown class identification, and granularity of device identification.

2.1. Webpage-Based Device Identification

Li et al. [20,21] proposed a framework based on the content characteristics of device
web pages for surveillance device recognition. Firstly, the framework uses an HTML/XML
parser to extract the content of the web page of the device and convert it into textual data.
Then, it uses natural language processing technology to perform word splitting, stemming,
and redundant content removal to obtain a word vector. Next, it uses a feature selection
algorithm to automatically select features from the word vector. Finally, the supervised
machine learning algorithm is used to train bi-classifier to judge whether a device is of the
surveillance kind. Like [21], the Web-IoT Detection (WID) Tool [27] is written in Python
using Selenium, which not only crawls the index page of the device but also recursively
crawls sub-URLs. It then uses the Beautiful Soup library to extract data from HTML or XML
files to identify information such as the model number on the device page and the firmware
version running on the device. The above research has some similarities with our work,
but there are the following deficiencies. Firstly, the device classification based on textual
features in web pages may lead to a decline in accuracy when the features in web pages
exist in other styles such as images; secondly, the granularity of equipment identification is
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not detailed enough, which can only judge whether the device belongs to surveillance type;
Thirdly, a lot of manual annotation work needs to be done on the training data set to meet
the needs of supervised learning. The framework proposed in this paper can effectively
make up for the deficiencies of the above research. Firstly, we conduct device identification
based on the screenshot of the Web UI login page, and whether the features are given in
the form of text or image, they can be captured by image classification or OCR technology;
secondly, the paper can give the vendor, type, and model of the device simultaneously,
which is more practical in device identification application; Thirdly, the paper automatically
labels the training dataset with vendor tag, which has better operability.

IoTTracker [28] presented a device identification method based on web page source
code. The authors extracted the DOM tree as structural features and the Cascading Style
Sheets (CSS) selector as style features. In the discrimination stage, the structural feature sim-
ilarity is calculated based on the longest common substring between two feature sequences,
and the similarity between the style feature vectors is calculated using cosine similarity.
IoTTracker achieves an accuracy rate of 95.54% and a recall rate of 93.08%. This method
should extract many features, which are used for device identification by calculating feature
similarities. Instead, our method does not extract any features and uses CNN to obtain
features automatically.

2.2. Unknown Class Identification

Miettinen et al. [17] proposed the IoT SENTINEL framework, which extracts 23 features
from the packets when a device is first connected to the network. The RF algorithm was
used to identify device types, and the identification accuracy reached 81.5%. Similarly,
Sivanathan et al. [31,32] extracted features, such as flow duration, port number, DNS
domain name, and cipher suite from IoT device traffic and built multi-stage classification
models using NB and RF algorithms. Both methods used labeled traffic datasets, and
neither considered the identification of type unseen in the labeled datasets.

Pathmaperuma et al. [40] relied exclusively on a specific threshold to determine the
conversion between probability and class labels when classifying unknown applications.
Pmax is introduced to represent the highest component in the probability vector, and the
sample is marked as an unknown class when Pmax < threshold, where the value of the
threshold is determined by testing on a range of candidate values. The method judges the
value of the threshold by iterative testing and does not give the step size of change, so it is
somehow uninterpretable.

Due to the diversity of IoT devices, it is a common scenario to meet a device whose
class is unseen in the training data. Most of the literature on device identification does not
discriminate device classes outside training datasets. In the few works of literature that
have done this, the conclusion is made only by referring to an empiric threshold value
and the accuracy is poor. This study analyzes the probability distribution of known and
unknown vendors and uses machine learning algorithms to distinguish them, and the
results are more meaningful and accurate.

2.3. Granularity of Device Identification

Feng et al. [9] proposed an Acquisitional Rule-based Engine (ARE) to automatically
establish fingerprints for IoT device identification without any training data. ARE estab-
lished device identification rules with the help of terms in the application-layer response
data and used them as keywords to search the device description information obtained
on the device website. However, when there are no keywords about device type, vendor,
series, or product in the response data, the ARE method fails.

Search engines such as Shodan [6], Censys [7], and ZoomEye [8] collect many online
network devices. Users can obtain fine-grained data of IoT devices through keyword re-
trievals, such as device vendor, type, model, location, domain name, and other information.
However, the relevant technical details of these search engines have not been reported.
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Due to the concise layout and clear information presentation of the device login page
screenshots, it is possible to accurately extract the information about the device type, model,
and other attributes on the screenshots by using OCR technology. We propose a device
fine-grained device attribute identifying method based on OCR that can be used as an
alternative to the above methods.

3. Motivation

Driven by standards like Web-Based Enterprise Management (WBEM), most vendors
will integrate web-based management programs in their device firmware. Devices from
the same vendor usually share a common style of WEB UI, while devices from different
vendors usually have WEB UIs of totally different styles. As WEB UI has a high degree
of recognition, it may be used as an effective feature for device vendor identification.
Figure 1a shows two WEB UI login page screenshots of devices from the Maxis company,
and Figure 1b shows two screenshots of devices from the QNAP company. It is easy to
prove our opinion by observing these two groups of pictures, which assures us the intuition
and motivation to perform device identification using image classification techniques.
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Figure 1. Samples of device login page screenshot: (a) maxis; (b) QNAP; (c) ASUS and Juniper.

Figure 1c shows two WEB UI login page screenshots that come from ASUS and Juniper
company, respectively. Look out for the part on the pictures marked with underline, and
you can find that both screenshots provide information about vendors (ASUS and Juniper)
and models (TUF-AX3000 and SRX240H2). A screenshot from ASUS company contains
explicit type information (Router), though the screenshots from Juniper company does
not contain any type information, we can infer that the device is of type “firewall” by its
model (SRX240H2) and corpus. Therefore, it is reasonable to extract various kinds of device
attributes from the screenshots using OCR techniques.

Note that many vendors give their names in the form of some artistic logo pictures on
their WEB UI login pages, which are hard to identify using OCR techniques. For example,
OCR tools will identify the logo of Maxis in Figure 1b as “sixeuu” by mistake. Therefore,
rather than OCR techniques, the study uses an ensemble learning model based on CNN
and Res-DNN for device vendor identification.

4. Framework

The overall framework of device identification proposed in this paper is shown in
Figure 2, which can be divided into three parts: Data Crawling and Labeling Module,
Device Vendor Classifying Module, and Device Type/Model Identifying Module. The Data
Crawling and Labeling Module acquire device login page screenshots and automatically
labels them with the device vendor to form a labeled dataset for training. The Device
Vendor Classifying Module is an ensemble learning model consisting of two classifiers.
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The first level of the ensemble model is a CNN-based multi-classifier with screenshots
as input and the output is a probability distribution over vendors of prediction for those
screenshots. The second level is a DNN-based bi-classifier, which takes the probability
vector generated by the multi-classifier as the input and outputs the flag to indicate whether
the device belongs to the vendor in the labeled dataset. Finally, the probability vectors and
flags are arbitrated to obtain the final device vendor prediction. The Device Type/Model
Identifying Module extracts the strings from screenshots based on OCR technology and
matches them fuzzily with the pre-established corpus of device information to obtain
finer-grained attribute information such as the type and model of the device.
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4.1. Data Crawling and Labeling

The Data Crawling and Labeling Module selects devices that support the HTTP/HTTPS
protocol to build labeled image sets, which consist of Liveness Scanner, HTTP/HTTPS
Response Grabber, and Data Tagger. Given the IP address segment, Liveness Scanner probes
the liveness of each IP address and ports numbered as 80/8080/443/8443 commonly used
for HTTP/HTTPS services. If the IP addresses and ports are alive, the HTTP/HTTPS
Response Grabber uses Selenium 3.0 and ChromeDriver 2.38 to simulate a user accessing the
device login page through a browser. A screenshot of the browser window is taken after
the home page is successfully returned, and the HTTP/HTTPS response headers and/or
certificates are also saved. Afterward, the Data Tagger matches the obtained response
headers and/or certificates with the fingerprint entries in the Recog open-source fingerprint
repository. If the match is successful, we will get the vendor corresponding to the device
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and use it to mark the device login page screenshots and save the screenshot as labeled
data; otherwise, save the screenshot as unlabeled data. We will then get two datasets;
one is the labeled dataset, Dl = { (S1, v1) , (S2, v2), · · · , (Sn, vn)} , where the i−th element
(Si, vi) represents the screenshot Si from the vendor vi. The other is the unlabeled dataset,
Du = {s1, s2, · · · , sn}, where the i−th element si represents an unlabeled screenshot.

4.2. Device Vendor Classifying

The device vendor classifying is implemented by an ensemble learning model, which
consists of five components: input layer, CNN-based multi-classifier, DNN-based bi-
classifier, and output, as shown in Figure 3.
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The CNN-based multi-classifier takes screenshots from the dataset Dl as input, and
the input layer is connected to convolution layers to learn the features of the screenshots.
We use three convolution layers, each of which is followed by batch normalization, an
activation function, and a pooling layer to select the most prominent features and reduce
the number of parameters. The max-pooling function is chosen for the pooling layer.
The outputs of the last convolutional layer are flattened and passed to dense layers. We
designed five dense layers, and the first four dense layers are followed by the activation
function Rectifier Linear Units (ReLU. The final activation function is SoftMax, which
outputs a multi-dimensional probability vector. The probability vector is a numerical vector
whose entries range from 0 to 1. The number of classes determines the number of entries in
the multi-dimensional vector, and the final classification result depends on whether the
class corresponds to the maximum value in the entries.

The multi-classifier can identify the classes based on the dataset Dl . Suppose there
is a real-world screenshot from the dataset Du that has not been trained, which obviously
cannot be correctly classified by the multi-classifier. To be able to accurately discern whether
a screenshot is from Dl or Du, we label the data in Dl as known, label the data in Du as
unknown and merge the two into a new dataset. The new dataset is fed into the multi-
classifier to obtain the result set, R = {(P1 , k1), (P2, k2), ...(Pn, kn)} where (Pi, ki) is a tuple
consisting of the probability vector Pi =< pi1, pi2, · · · > predicted by the multi-classifier for
the i−th screenshot and the corresponding label ki (either known or unknown) of the i−th
screenshot. We train a bi-classifier with R as the input to discriminate whether a screenshot
belongs to a known or unknown class. For each screenshot, CNN output a probability
vector of 30 dimensions, and each probability vector belongs to a hyperplane according
to the class of its related screenshot. The neurons in the Res-DNN neural network can fit
the hyperplane so as to update the parameters of Res-DNN, making Res-DNN capable of
classifying the probability vector output by CNN.

In Res-DNN, we connect three network branches composed of different numbers
of fully connected layers using skip connect. The first branch has four fully connected
layers, and the second and third branches have only one fully connected layer, respec-
tively. Each fully connected layer consists of sense layers, Batch Normalization1D, and
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activation function. The predictive output of the fully connected layer is expressed as
pred =< y0 , y1, · · · , yn >, where the output of the j−th neuron is expressed as Equation (1),
and pi is the i−th component of a probability vector P, and n is the dimension of vector
input to the current fully connected layer.

yj = ReLU(
n

∑
i=1

(ωij pi + bij)) (1)

The predictive results of three DNN branches (pred1, pred2 and pred3) are connected
by skip connect according to Equation (2). We use the binary cross-entropy function shown
in Equation (3) as the loss function of Res-DNN, where N is the number of samples in the
current training batch.

pred = pred1 + pred2 + pred3 (2)

loss =
1
N ∑−[ki · log(pred) + (1− ki) · log(1− pred)] (3)

The bi-classifier is a skip connect that connects three network branches composed of
fully connected layers together, and we call this connection method Res-DNN. The first
branch has four fully connected layers, whereas the second and third branches have only
one. Each fully connected layer consists of a dense layer, a batch normalization, and an
activation function. The bi-classifier takes the probability vector R generated by the multi-
classifier as the input, and the output is a binary flag to indicate whether the screenshot
belongs to a known class. If the flag is true, the vendor corresponding to the maximum
component of the probability vector output by the multi-classifier is deemed as the final
result; else, the vendor of the screenshot is considered unknown.

4.3. Device Type/Model Identifying

Since most IoT device screenshots contain information such as the type and/or model,
this paper proposes an OCR-based method for device fine-grained attribute identification.
The main workflow is shown in Figure 4.
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Figure 4. Device Type/Model Identifying based on OCR.

Firstly, an IoT device corpus is constructed, which contains the device vendor, type,
and model. The device type is obtained from the list of mainstream device types provided
in the open-source fingerprint repository Recog. Considering the variety of device models
and the high cost of manual collection, we use a crawler program to automatically extract
and collect device models from the device-related web pages of e-commerce platforms.

Secondly, we use Paddle OCR [46], a lightweight image-to-text toolkit integrating
many detection and recognition algorithms, for textual information extracted from screen-
shots. To improve the efficiency of matching between the extracted text and the entries in
the corpus, text strings containing characterless words (login, username, password, etc.)
are removed.
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Finally, the entries in the corpus are matched with the strings extracted by OCR
based on the longest common subsequence (LCS) algorithm. Considering the inaccurate
recognition that Paddle OCR may have when the screenshot resolution is poor, we introduce
ratio defined by Equation (4) as an indicator to measure whether the matching is acceptable,
where Lcorpus is the length of an entry in the corpus Locr is the length of a string extracted
by OCR, and Llcs is the length of the LCS of the entry and the string.

ratio = (min(Lcorpus, Locr)− Llcs)/min(Lcorpus, Locr) (4)

The range of ratio is between 0 and 1, and ratio = 0 means a perfect match and
ratio = 1 means a total mismatch. In practice, we choose a threshold of 0.1 and accept a
match between entries in the corpus and strings extracted by OCR when ratio ≤ 0.1.

5. Experiments and Evaluation
5.1. Data Preparation and Parameter Setting

We grabbed device login pages from several IP address segments of the B class and
tried tagging them with vendor information obtained by fingerprint matching or from SSL
certificates, and finally got a dataset Dl of more than 36,000 pieces of screenshots labeled
with vendors. The screenshots in the dataset Dl come from 30 vendors and a broad range
of device types, including camera, router, firewall, etc., as shown in Table 1. The Recog
open-source fingerprint repository only contains about 5000+ fingerprint entries, so there
exist some devices that cannot be recognized and labeled due to the capability of Recog. We
totally get 7000 such devices that cannot be labeled and put into set Du representing devices
from the unknown world. To overcome the data imbalance problem, we perform (Synthetic
Minority Oversampling Technique) SMOTE [47] on samples from the same vendor but less
than 1000.

Table 1. 30 IoT vendor devices.

Vendor Type Quantity Vendor Type Quantity

AXIS Camera, etc. 1769 Samsung Camera 1597
Asus Router 1431 SonicWall Firewall 1286

Avtech Camera 1301 Sophos Firewall 2541
Check-Point Firewall, etc. 1523 Super-Micro Gateway 1862

Cisco Router, etc. 1409 Synology NAS 1131
Cyberoam VPN 354 TP-LINK Router, etc. 1747

D-Link Router, etc. 678 Technicolor Gateway 1032
Dahua DVR, etc. 635 Topsec Firewall 1428

H3c Firewall 685 Yamaha Network switch 527
Hikvision Camera, etc. 871 ZTE Router, etc. 2086
Huawei Switch, etc. 2378 Zyxel Router, etc. 740
Juniper Firewall 1023 maxis Router 462
Linksys Router, etc. 856 peplink Router 791

MikroTik Router 385 pfSense Firewall 692
QNAP NAS 2863 ruckus Access Controller 563

The resolution argument in ChromeDriver is set to 1024 × 768, which is a common
4:3 ratio and is suitable for screenshot capture of all the WebUI of devices in the experi-
ment. Screenshots too large may reduce the speed and accuracy of image analysis and
processing [39] and may also lead to a decrease in the training efficiency of the entire
neural network, so we transform the screenshots into images of 224 × 224 × 3 RGB with
data enhancement.

The input image size of the CNN is 224 × 224 × 3, where 224 × 224 is the dimension
of the image following empirical tests. We set the size of the convolutional kernels in the
convolutional block to be monotonically non-increasing and the number to be monotoni-
cally non-decreasing. Therefore, the shallow neural block has a smaller number of channels
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and a larger convolutional kernel size, and the deeper convolutional block has a larger
number of channels and a smaller convolutional kernel size to extract data features from
different network levels. The detailed parameters of the CNN and Res-DNN are shown in
Table 2.

Table 2. Parameters configuration of the CNN and Res-DNN.

Classifier Model CNN Res-DNN

Input size 224 × 224 × 3 16 × 16
Convolutional kernel number 16, 32, 64 -

Convolutional kernel size 7 × 7, 3 × 3, 3 × 3 -
Pooling type Max pooling -

pool_size (22) -
Optimizer SGD Adam

Sizes of dense layers 1000, 256, 128, 64, 30 L1: 1000, 500, 150, 10, 2; L2: 30, 2; L3: 60,2
Bach_size 128 128

Momentum 0.9 -
Learning Rate 0.005 0.002

Activation function ReLU, SoftMax ReLU
Loss function Cross entropy Cross entropy

5.2. Effects of Vendor Identification

The CNN model is rained from the dataset Dl using five-fold cross-validation. Then,
Du and the test set in Dl are input to CNN, whose output is used as a new data set to train
the Res-DNN model to distinguish between known and unknown vendors. The dataset
Dl is divided equally into five parts for the five iterations of training and prediction to
be performed. In each iteration, three parts of data are used for training, one part for
validation, and one part for the test. After iterations, five models are trained and five sets
of predictions are obtained. Then, the dataset Du is fed as test data to each model trained
to obtain five sets of predictions. Finally, all the above predictions as new datasets are split
into 80% training and 20% testing datasets to train the Res-DNN model.

5.2.1. Multi-Classifier

We analyzed the performance of CNN-based multi-classifiers using Accuracy, Preci-
sion, Recall, and F1-Score metrics. F1-Score is the weighted average of Precision and Recall,
which takes both false positives and negatives into account, and is more indicative of the
classification performance, especially when the data are unevenly distributed. Table 3
performs a five-fold cross-validation. The accuracy and precision of the models for every
cross-validation reached more than 97.8%, and the recall and F1-Score reached were greater
than 99%. After calculation, this multi-classifier has an average accuracy of 0.98% and an
averaged F1-Score of 0.983%.

Table 3. Performance of multi-classifiers in IoT device identification on cross-validation.

Times Accuracy Precision Recall F1-Score

1st cross-validation 0.978 0.987 0.980 0.983
2nd cross-validation 0.984 0.986 0.990 0.988
3rd cross-validation 0.978 0.984 0.983 0.983
4th cross-validation 0.981 0.980 0.987 0.983
5th cross-validation 0.978 0.977 0.980 0.978

average 0.98 0.983 0.984 0.983

The multi-classifier model has high average accuracy and well maintains stability
during the training. Figure 5 shows a visual representation of the training and validation.
The identification accuracy of the devices keeps improving gradually, and the loss value
decreases steadily and reaches a stable state after the 30th epoch of training.
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The confusion matrix of the classifier is shown in Figure 6, which describes the multi-
classifier in detail. Classification accuracy can be defined as the ratio of the correct device
vendors to the total number of predictions. In the confusion matrix, the elements on the
main diagonal represent the probability of correct classification of the test sample, while
the elements on the off-diagonal represent the probability of incorrect classification. Fifteen
vendors, such as Avtech, Cyberoam, Juniper, etc., could be classified completely correctly.
A few Cisco devices were misclassified as Dahua, H3c, Hikvision, etc. A few ZTEs were
misclassified as Cisco, Maxis, and Ruckus. The multi-classifier we built can effectively
discriminate the device vendors for the labeled screenshots.
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5.2.2. Bi-Classifier

We use a CNN-based multi-classifier to classify samples from the dataset Dl whose
vendor depends on the class of the maximum value of the probability vector output by
the CNN. The classes of samples from the dataset Du cannot be correctly predicted by the
trained classifier. To observe the probability distribution of the dataset Dl and Du, we input
them to the CNN model to obtain two sets of probability vectors. Next, we analyzed the
two sets of probability vectors using both the Probability Density Function (PDF) and the
Cumulative Distribution Function (CDF). As shown in Figure 7, the samples from Dl are
labeled as known and the samples from Du as unknown. In Figure 7a, the X-axis represents
the dispersion interval of the maximum value of the probability vector output from the
CNN, and the y-axis represents the probability that Pmax falls into a certain interval. In
Figure 7b, the x-axis has the same meaning as that of Figure 7a, and the Y-axis represents
the accumulation of the probability that Pmax falls into a certain interval. As shown in
Figure 7a, for samples of known class, the Pmax of 85% of the samples are concentrated
in the interval [0.9, 1], while for samples of unknown class the Pmax of most samples are
scattered in the interval [0.1, 0.5]. It is obvious that there is a significant difference in the
distribution of Pmax between the samples from the dataset Dl and the samples from the
dataset Du, so it is reasonable to choose a probability vector as input for the training of the
binary classifier.
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To demonstrate that the known and unknown samples are distinguishable, we vi-
sualized the probability vectors of the test samples. Since the probability vectors are
multidimensional (i.e., each data includes 30 entries) and not easy to visualize directly,
we used the Principal Component Analysis (PCA) [48] and the t-Distributed Stochastic
Neighbor Embedding (t-SNE) [49] dimensionality reduction techniques to project the data
onto two dimensions. As shown in Figure 8, the left figure is first reduced to three dimen-
sions by PCA and then to two dimensions using t-SNE. The right figure is first reduced to
16 dimensions by PCA and then to two dimensions using TSNE. From the two figures, we
find that the distribution of the maximum values from known samples is discrete, while
the distribution of the unknown samples is very concentrated. The distributions indicate
that the known and the unknown samples are separable.

We learn the distributions of known samples and unknown samples on the proposed
Res-DNN model. The performance of the Res-DNN-based bi-classifier reaches an average
accuracy of 99.1% and an F1-Score of 99.5%. It illustrates that the Res-DNN bi-classifier
can distinguish known and unknown vendors, and the vendors of the samples judged
as known are subject to the results predicted by the multi-classifier. We also test 7 other
machine learning algorithms such as Logistic Regression (LR), Decision Tree, KNN, SVM,
TCN, RF, and Wide Residual Networks (WideResNet) on the same dataset. The accuracy,
precision, recall, and F1 score of each algorithm are shown in Table 4. The results show
that when distinguishing known vendors from unknown vendors, all the performance
indexes of these algorithms reach more than 94%. Among them, the Decision Tree algorithm
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performed the worst, with its F1-Score of only 94.2%. These experimental results show that
our proposed Res-DNN can not only distinguish known and unknown vendors but also
outperforms other models.
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Table 4. Performance of the classifiers in distinguishing between the known and unknown vendors.

Model Accuracy Precision Recall F1-Score

Logistic Regression 0.957 0.956 1 0.9786
Decision Tree 0.969 0.990 0.8977 0.984

KNN 0.976 0.992 0.983 0.987
SVM 0.980 0.996 0.983 0.989
TCN 0.985 0.996 0.989 0.992
RF 0.987 0.991 0.994 0.993

WideResNet 0.989 0.990 0.996 0.994
Res-DNN 0.991 0.992 0.998 0.995

5.3. Effects of Fine-Grained Identification

To test the precision of fine-grained identification of IoT devices, we used the API
provided by the Shodan search engine to obtain 8000 IP nodes and their corresponding
device information using the vendor name “ASUS” as the keyword. We used these IPs to
crawl the login page screenshots on the Internet and obtained 7017 valid screenshots. Next,
we used the PaddleOCR SDK to extract text from the 7017 screenshots and matched them
with the corpus. Note that although vendor identification is not the main purpose of this
fine-grained identification experiment, we still identify the vendor in the screenshot.

As shown in the Sankey diagram in Figure 9, we found seven screenshots that do not
contain any device information, and the reasons may be that there is no textual information
in the screenshots or the extracted text could not be matched with the corpus. The remaining
7010 screenshots contained vendor information, of which 6977 contained both vendor and
type information and 33 had no type information. Six thousand nine hundred seventy-eight
screenshots contained model information and were successfully matched with the corpus;
24 screenshots contained suspected model information (strings composed of letters and
digits) but were unsuccessfully matched with the corpus, probably due to incomplete
information in the corpus. Eight screenshots did not contain any model text (e.g., only
vendor or type information). We can confidently identify the vendor, type, and model from
the screenshots. In the case of model information only, the vendor and type information
can also be obtained by inference. We can confidently identify the manufacturer, type, and
model of the device from the screenshots on the login page. In the case of model information
only, the manufacturer and type information of the device can also be obtained by inference.
Finally, we counted 20 vendors, 10 types, and 112 models from 7017 screenshots.
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Figure 9. OCR-based identification results.

We compare our identification results with that of Shodan and find that, of these
7017 devices, Shodan has got 606 errors in vendor identification, 187 errors in type iden-
tification, and 231 errors in model identification. For example, Shodan may identify by
mistake Ruijie, Netgear, and H3C as ASUS devices, identify ASUS RT-AC5300 as ASUS
RT-AC68U, and PHICOMM-K3 as RT-AC66U B1, etc. The accuracy of the OCR-based
method and Shodan was compared, as shown in Table 5. If the method proposed by us is
adopted, the accuracy of identification of vendors, types, and models can be improved by
8.54%, 2.28%, and 11.37%, respectively.

Table 5. Comparison of OCR-based method and Shodan.

Attributes # by Our
Method

Accuracy of Our
Method # by Shodan Accuracy of

Shodan

Vendor 7010 99.9% 6411 91.36%
Type 6990 99.62% 6830 97.34%

Model 6978 99.46% 6786 88.07%

Experiments show that the device type and model information is contained in the
device login pages. In the case of rich corpus information, the device fine-grained identifi-
cation method can accurately extract the device model information and find the match in
the corpus, then identify the device in finer granularity.

6. Conclusions

In this paper, we propose a novel and alternative method for IoT device identification,
which introduces commonly available login pages with distinctive characteristics specific
to vendors as the data source and uses an ensemble learning model based on a combination
of CNN and Res-DNN for device identification and develops an OCR-based method for
device type and model identification. The experimental results show that the ensemble
learning model can achieve 99.1% accuracy and 99.5% F1-Score in the determination of
whether a device is from a vendor that appeared in the training dataset, and if the answer is
positive, 98% accuracy and 98.3% F1-Score in identifying which vendor it is from. The OCR-
based method can identify fine-grained attributes of the device and achieves an accuracy
of 99.46% in device model identification, which is higher than the results of the Shodan
cyber search engine by a considerable margin of 11.39%. We will collect WebUI screenshot
samples from more manufacturers, establish a more richer device corpus, and implement an
open-source and usable system prototype based on existing methods to make more practical
contributions to the field of IoT identification. The method proposed in this paper can
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support the classification and identification of IoT devices from 30 manufacturers. However,
due to the large number of IoT equipment manufacturers and the continuous emergence of
new manufacturers, how to propose an open and rapidly scalable classification model will
be an important research direction for us in the future.
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