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Abstract: The classification of surface myoelectric signals (sEMG) remains a great challenge when
focused on its implementation in an electromechanical hand prosthesis, due to its nonlinear and
stochastic nature, as well as the great difference between models applied offline and online. In
this work, the selection of the set of the features that allowed us to obtain the best results for the
classification of this type of signals is presented. In order to compare the results obtained, the Nina
PRO DB2 and DB3 databases were used, which contain information on 50 different movements of
40 healthy subjects and 11 amputated subjects, respectively. The sEMG of each subject was acquired
through 12 channels in a bipolar configuration. To carry out the classification, a convolutional neural
network (CNN) was used and a comparison of four sets of features extracted in the time domain was
made, three of which have shown good performance in previous works and one more that was used
for the first time to train this type of network. Set one is composed of six features in the time domain
(TD1), Set two has 10 features also in the time domain (TD2) including the autoregression model
(AR), the third set has two features in the time domain derived from spectral moments (TD-PSD1),
and finally, a set of five features also has information on the power spectrum of the signal obtained
in the time domain (TD-PSD2). The selected features in each set were organized in four different
ways for the formation of the training images. The results obtained show that the set of features
TD-PSD2 obtained the best performance for all cases. With the set of features and the formation
of images proposed, an increase in the accuracies of the models of 8.16% and 8.56% was obtained
for the DB2 and DB3 databases, respectively, compared to the current state of the art that has used
these databases.

Keywords: sEMG; classification; convolutional neural network; gesture recognition; prosthesis

1. Introduction

The use of sEMG for the recognition of gestures focused on the control of a hand pros-
thesis is currently the most widely used method because it is a noninvasive measurement
technique that is easy to implement [1]. Due to the stochastic, nonlinear and nonstationary
nature of this type of signal [2], it is impractical to analyze the raw myoelectric signals, and
that is why the typical procedure for the control of a prosthesis using this type of signal
is: sEMG acquisition, digital processing, data segmentation, feature extraction, and finally
classification [3], where we can find a large number of variables, such as the number of
acquisition electrodes, the bandwidth of the applied digital filter, the appropriate size of
the segmentation of each window, and above all, the set of features to be extracted and the
optimal classification method. In this sense, recent works have shown promising results
when using deep learning algorithms that can take the analysis of physiological signals to a
more advanced level [4]. Currently, the use of CNN [5] to classify sEMG has given the best
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performance [6–10]. For this, the interpretation of the signal as an image to train a CNN
can be divided into two; the first is to obtain a window in time and the image is composed
of the number of channels (high) by the data in the time (width). Park et al. [6] used this
type of image to generate a model trained by data from several subjects and obtained better
performances than when using support vector machine (SVM). Atzori et al. [8] used the
same representation of image to classify DB1, DB2 and DB3 databases from the Nina Pro
project [11] using CNN and comparing it with traditional classification methods such as
k-NN, SVM, Random Forest, and LDA, and they showed that the results were comparable
in performance even using a very simple CNN structure, revealing a new area to explore.
The second way to represent a sEMG image is the one proposed by Geng et al. [7], who
introduced the concept of “instantaneous sEMG image”, which consists of obtaining the
sEMG signals through a high-density array of acquisition channels spaced close to each
other and thus record the electrical activity of the muscles in a specific area. Each value
of each channel represents the value of each pixel of the image formed and allows the
analysis of sEMG signals in time and space. For their work they evaluated the classification
performance using these images in a CNN scheme implemented in three public databases,
Nina Pro DB1, Nina Pro DB2, and CSL-HDEMG [12]; their results showed that there are
indeed patterns within an instantaneous image with which gestures can be recognized,
opening a new panorama for sEMG analysis. Du et al. [9] also used this type of image to
evaluate the classification performance using a CNN structure in three databases, Nina Pro
DB1, CSL-HDEMG [12], and CapgMyo, the latter generated by themselves. In addition,
they proposed an adaptation scheme in the deep domain for the classification of gestures,
thus increasing performance published in previous works. Otherwise, before starting to
use CNN structures for pattern classification, the most common way to classify gesture
patterns was to use feature extraction and train machine learning [13–19] and deep learning
algorithms, mainly artificial neural networks (ANN) [20–24]. Within the most used features
are those extracted in the time domain (TD) due to their good performance and because they
do not require transformation and therefore do not require much computational time [13].
Returning to these beginnings, and also considering the good performances that CNNs
have shown, some works have chosen to form images using the features extracted from the
signal to train CNN networks. Hu et al. [10] extracted the set of TD features from Phiny-
omark [17] to propose a new sEMG image representation, where the width of the image
is the number of features and the height is the number of rearranged channels [25]. They
evaluated the performance using CNN, hybrid CNN-RNN and attention-based hybrid
CNN on four databases, Nina Pro DB1, Nina Pro DB2, BioPatRec, and CapgMyo, obtaining
the best performance published up to that time in all cases. Moreover, Wei et al. [26] used
the same technique to generate images to evaluate the performance of eight sets of features
in TD and three more derived from the Wavelet transform. They used a new multi-view
CNN to evaluate the performance on several databases, among them the Nina Pro and
BioPatRec, obtaining better performance than its predecessors. On the other hand, based on
the idea that sEMG signals are by nature nonlinear and nonstationary, Pancholi et al. [27]
proposed to use two features derived from power spectrum moments in time (TD-PSD1) to
stabilize the signal and reduce the size of the training dataset, and using a CNN network
they improved the performance in the Nina Pro DB1, DB2, and DB3 databases. Without
a doubt, much progress has been made in the generation of models that obtain better
performance and that allow their implementation in a real prosthesis to be more and more
natural. We intend to contribute to generating a better model by proposing two things:

1. Derived from the good performance obtained with the features TD-PSD1 [27], we
propose to extract the set of five features derived from spectral moments in time
(TD-PSD2), which Khushaba et al. [28] demonstrated decreases the variability in the
classification performance by changing limb position and to use these features to
generate the image set for training a CNN, where the width of the image is TD-PSD2
features and the height is the acquisition channels rearranged accordingly so that each
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signal has the opportunity to be adjacent to all the others, which allows the CNN to
obtain all the possible correlations between the signals involved [25].

2. A new type of image is proposed where not only the channels but also the features are
reorganized, in such a way that the image has all the possible correlations between
features and channels involved, the width of the image is TD-PSD2 features rearranged
and the height is the channels rearranged.

This work is based on the hypothesis that by increasing the number of power spectrum
features in the time domain and rearranging channels and features of the sEMG image to
find more correlation patterns, the performance of the models generated for the DB2 and
DB3 databases will improve. The results show that the best performance published so far
was obtained for both databases.

2. Materials and Methods

In this work, the typical procedure for classifying gestures using sEMG signals was
followed, adding one more step to form the images proposed for training a CNN. This
section describes each of the steps shown in Figure 1.
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Figure 1. Block diagram for the classification of sEMG signals using CNN.

2.1. sEMG Acquisition
2.1.1. Nina Pro Database

The largest and most complete database with information on sEMG signals is that
of the Nina Pro project. We decided to work with two of its sub-databases denoted DB2
and DB3 [29]. They used 12 electrodes for the acquisition of the signals for both databases
with a sampling rate of 2 kHz, eight of the electrodes were equally spaced around the
forearm at the height of the junction of the radius and humerus. Two more electrodes were
placed on points of more significant activity of the fingers’ flexor muscles and extensor
muscles, and two more electrodes on the points of most significant activity of the biceps and
triceps. DB2 database contains data obtained from 40 intact subjects (28 males, 12 females;
34 right-handed, 6 left-handed; age 29.9 ± 3.9 years). In comparison, DB3 contains data
obtained from 11 trans-radial amputated subjects (11 males; 10 right-handed, 1 left-handed;
age 42.36 ± 11.96 years), the movements that were recorded for both databases are divided
into three different categories, including 23 grasping and functional movements, nine
wrist movements, eight hand postures, and nine finger force patterns, giving a total of
49 movements plus rest, for this work, rest was considered as one more movement giving
a total of 50 movements to classify. The set of movements was selected to help cover
the majority of hand motions found in activities of daily living, taking into account the
taxonomy of the hand and information from robotics and rehabilitation [29]. Table 1 shows
more details of both databases.
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Table 1. Specifications of the databases Nina Pro used in this process experimental.

DB2 DB3

Intact subjects 40 0

Amputated subjects 0 11

sEMG Electrodes 12 Delsys 12 Delsys

Number of gestures to be classified 50 50

Number of trials 6 6

Sampling rate 2 kHz 2 kHz

2.1.2. Acquisition Protocol

For the recording of the signals, they asked the people to perform six trials of each
movement with a duration of five seconds each, alternated by three seconds of rest to avoid
fatigue. The sequence in which the movements were performed was not random; that
is, the six repetitions of each movement of the first category were performed, continuing
with the second category and finally the third, to encourage almost unconscious repetitive
movements. For acquisition, intact subjects were asked to perform the protocol with their
right hand. In contrast, amputee subjects were asked to think of repeating the movements
as naturally as possible with their limb missing.

2.2. Signal Processing

Prior to the publication of the database, these were synchronized using high-resolution
timestamps. In addition, they used a relabeling algorithm [30] to correct the errors in the
synchronization of each movement made and make it coincide as best as possible with
the signal that contains the information of interest. The electrodes have a 20–420 Hz
Butterworth-type bandpass filter covering the frequencies of interest for sEMG signals [31].
When acquiring the signals, they also implemented a 50 Hz filter to eliminate any noise
signal originating from the network power supply. For this work, we implement a 10th
order bandpass digital filter in the 20–450 Hz range to guarantee the removal of any signals
that are not of interest.

2.3. Data Segmentation

Data segmentation was performed using the overlapping windows technique [32].
We chose to use two different sizes to compare with similar works, 200 ms [10,11,28] with
an overlap of 100 ms, and 150 ms [8,27] with an overlap of 25 ms, both response times
less than 300 ms in order to satisfy the restrictions for its implementation in a real-time
system [32] oriented to the control of an electromechanical prosthesis.

2.4. Feature Extraction

We decided to use four sets of features obtained in TD. The TD1 set [33] is composed of
Integrated EMG (IEMG), Variance (VAR), Willison Amplitude (WAMP), Waveform Length
(WL), Slope Sign Change (SSC), and Zero Crossing (ZC), the TD2 set [34] is composed
of Mean Absolute Value (MAV), SSC, WL, VAR, WAMP, ZC and four coefficients of the
autoregression model (AR), these first two sets were selected due to the good performance
obtained by Wei et al. [26] to classify the DB2 and DB3 databases, the third set is TD-PSD1,
which consists of two features derived from the moments of the power spectrum in the
time proposed by Pancholi et al. [27], the first feature is the number of peaks multiplied
by the signal power (MPP) and the second feature is the zero crossings multiplied by
the signal power (MZP), and the fourth set used is the TD-PSD2 features taken from
Khushaba et al. [28], which have shown to reduce the variability of the error in the classi-
fication to the modify the position of the limb, and that for the first time are used for the
training of a CNN network, these features were obtained from Parseval’s theorem, which
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establishes that the sum of the square of a function is equal to the sum of square of its
transform, and is given by

N−1

∑
j=0
|x[j]|2 =

1
N

N−1

∑
k=0
|X[k]X∗[k]| =

N−1

∑
k=0

P[k] (1)

Furthermore, this is equal to the sum of the amplitudes of the power spectrum P[k],
where k is the frequency index, X[k] is the sEMG signal expressed as a function of frequency,
and X*[k] is its conjugate obtained through the Discrete Fourier Transform (DFT). We must
also consider that the complete description of the Fourier transform is symmetric with
respect to the zero frequency and that due to this and to the fact that from the time domain,
we cannot access the power spectral density, the analysis in the time domain must include
the entire spectrum, considering the positive and negative frequencies, consequently,
according to the definition of a moment m of order n of the spectrum P[k] which is given for

mn =
N−1

∑
k=0

knP[k] (2)

We can define the odd moments as zero from a statistical approach to the frequency
distribution form. So, with Equation (2), we can use Parseval’s theorem to calculate the
moment m0 as

m0 =
N−1

∑
k=0

k0P[k] =
N−1

∑
j=0
|x[j]|2 (3)

which is an indicator of the total power in the frequency domain, and to calculate the rest
of the moments, we can use the time-differentiation property of the Fourier transform,
which says that the nth derivative of a function in TD (∆n) for discrete-time signals, it is
equivalent to multiplying the spectrum by k raised to the nth power.

F [∆nx[j]] = knX[k] (4)

Considering this property, the moment m2 can be obtained by

m2 =
N−1

∑
k=0

k2P[k] =
N−1

∑
k=0

(knX[k])2 =
N−1

∑
j=0

(∆x[j])2 (5)

In the same way the moment m4 can be calculated by

m4 =
N−1

∑
k=0

k4P[k] =
N−1

∑
j=0

(
∆2x[j]

)2
(6)

Then, the TD-PSD2 features are derived from calculating moments m0, m2 and m4,
and are detailed in Table 2. As in [28] we decided to scale logarithmically the obtained
features and normalize them to obtain invariance in the scale.
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Table 2. Description of the five TD-PSD2 features.

Feature Description Equation

f1 Indicator of total power in the frequency domain log(m0) (7)

f2 Noise stabilizer log
(
m2/m2

0
)

(8)

f3 Noise stabilizer log
(
m4/m2

0
)

(9)

f4 Indicator of how much energy of a vector is accumulated in few elements log
(

m0√
m0 −m2 ∗

√
m0 −m4

)
(10)

f5 Irregularity factor within a defined wavelength log


√√√√ m2

2
m0 ∗m4

WL

 (11)

2.5. Image Formation

Inspired by the good results obtained in [10], we decided to use four different methods
of representing the images derived from the feature extraction of the previous section, each
type of image used is described below.

• Feature Image is obtained directly from the feature extraction of each window, with a
size of 12 ×W, where 12 is the height of the image (channels) and W is the width of
the image, equal to the number of features extracted, which depends on the feature
set used.

• MixChannel Image is obtained by applying the rearranged algorithm to the acqui-
sition channels as in [25], leaving an image of 72 ×W, where 72 is the height of the
image after applying the algorithm and W is the width of the image, equal to the
number of features extracted, which depends on the feature set used.

• MixFeature Image is obtained by applying the rearranged algorithm [25] to the fea-
tures, with a size of 12 ×W, where 12 is the height of the image (channels) and W is
the width of the image, the result of applying the algorithm to the features, leaving
a different image width for each proposed set of features. For the TD-PSD1 set, this
type of image is not implemented because only two features are already adjacent to
each other.

• Mix Image is obtained by applying the rearranged algorithm [25] both to the channels
and to the features, with a size of 72 ×W, where 72 is the height of the image after
applying the algorithm to the channels, and W is the width of the image, the result of
applying the algorithm to the features, leaving a different image width for each set
of features proposed, in the same way. For the TD-PSD1 set, this type of image is not
implemented since it has only two features, and the image would be identical to the
MixChannel Image.

2.6. CNN Architecture

The architecture used (Figure 2) for model training is GengNet [7]. The network is
composed of eight layers in total. The first two are convolutional layers with 64 filters of
3 × 3. After each of these layers, a 2 × 2 max-pooling was applied, and the subsequent two
layers are locally connected with 64 filters of 1 × 1 each; for these first four layers, Batch
normalization [35] was applied to reduce the internal covariance change, the subsequent
three layers are fully connected with 512, 512 and 128 neurons respectively, and at the end
of the network, an output layer with 50 neurons determined by the number of gestures
to classify, for the first seven layers the rectified linear unit (ReLU) function was used
while for the last layer a softmax function was used. For the training of the network, the
stochastic gradient descent was used with a learning rate of 0.01 and a momentum of 0.9.
The batch size was set to 128 and a number of epochs for training was set to 32. These
hyper-parameters were selected by manual hyper-parameter tuning [36].
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Figure 2. GenNet architecture composed of eight layers, this structure was used for the classification
of 50 movements of the DB2 and DB3 database, using as input the images described in Section 2.5.

For the network training, we used the same scheme as in [8,10,37], which consists of
using 2/3 of the repetitions of each subject as the training set; the remaining part was used
as the test set; therefore, of the six repetitions of each movement detailed in Section 2.1.2,
four were taken for training and two for the test. The classification accuracy for each of the
combinations shown in Figure 3 was calculated as

Classification Accuracy (%) =
Number of correct classifications

Total number of test samples
∗ 100% (12)
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Figure 3. Combinations of all schemes tested for this study, using two databases, four feature
extraction sets, four ways of organizing input images, and the CNN structure for classification.
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3. Results
3.1. DB2 Database

The performances obtained for DB2 databases using the four sets of features and the
four types of images described can be seen in Figure 4. For a window segmentation of
200 ms with an overlap of 100 ms, TD-PSD2 features showed the highest performance for
all cases; however, the highest average performance for the 40 subjects was obtained when
using the type of image “Mix Image” and was 87.56 ± 4.46%. The second-best performance
was 87.19 ± 4.53%, and it was also obtained when using the same features and the type of
image “MixChannel Image”, only 0.37% below the highest. On the other hand, the lowest
performance was 75.08 ± 6.47% and was obtained with TD-PSD1 features and the type of
image “Feature Image”.
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Figure 4. Classification accuracy using Feature Image, MixChannel Image, MixFeature Image, and
Mix Image images to train a CNN network for: (a) DB2 database with a window size of 200 ms and
overlap of 100 ms; (b) DB2 database with a window size of 150 ms and overlap of 25 ms.

The performances for the same database with a window segmentation of 150 ms with
an overlap of 25 ms showed, in general, an increase in all the performances compared to
the first type of segmentation; the highest average performance was also obtained with
TD-PSD2 features and the type of image “Mix Image” and was 97.61 ± 1.55%. However,
the second-best performance was 97.44 ± 1.11%, and this time it was obtained with TD2
features and the same type of image, only 0.17% below the highest. The lowest performance
was 87.60 ± 5.52% and was obtained with the TD-PSD1 features and the “Feature Image”
image type.

The set of features that offers the best performance is TD-PSD2. For most cases, the
type of image with the best performance is “Mix Image”. However, the difference in the
performance obtained with the type of image “MixChannel Image” is small, and that is
why we decided to make a direct comparison between the 40 subjects of the DB2 database
using TD-PSD2 features, both types of image, and the two segmentation sizes. The results
can be seen in Figure 5.

The results show that although there is little difference in the average performances
for all subjects, in using a 200 ms segmentation the performance for 30 of the 40 subjects
was increased when using “Mix Image” compared to “Mix Channel Image”, while for
segmentation of 150 ms, 34 of the 40 subjects presented a better performance using “Mix
Image” too.
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Figure 5. Classification accuracy of the 40 subjects of the DB2 database using: (a) A window size of
200 ms and overlap of 100 ms; (b) A window size of 150 ms and overlap of 25 ms.

3.2. DB3 Database

The average performance obtained from the DB3 database showed similar behavior to
that obtained with the DB2 database, as shown in Figure 6. The results show that when
using 200 ms segmentation with 100 ms overlap, the highest performance was 74.24± 9.45%
and was obtained when using TD-PSD2 functions with the “Mix Image” image type. The
second-best performance was obtained with the same set of features but with the image
type “Mix Channel Image,” and it was 73.55 ± 9.08%, only a 0.69% difference from the first
one. The lowest performance was obtained with TD-PSD1 features and “Feature Image”
image type, and it was 60.94 ± 9.44%.
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Figure 6. Classification accuracy using Feature Image, MixChannel Image, MixFeature Image, and
Mix Image images to train a CNN network for: (a) DB3 database with a window size of 200 ms and
overlap of 100 ms; (b) DB3 database with a window size of 150 ms and overlap of 25 ms.

The results obtained for the same database with a segmentation of 150 ms with an
overlap of 25 ms, as with the DB2 database, showed an increase in performance for all
cases. The highest performance was 90.23 ± 6.82% and was obtained again when using
TD-PSD2 features with the image type “Mix Image”, the second highest performance
was obtained with the same set of features but with the image type “MixChannel Image”
and was 90.03 ± 7.57%, only 0.2% below the highest, and the lowest performance was
76.77 ± 9.07% and, like the previous analyses, it was obtained with TD-PSD1 features with
the image type “Feature Image”.

The difference between the best performances, as with the DB2 database, was slight.
For that reason, we decided to compare performances for each subject individually using
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the two schemes that gave the best results, using TD-PSD2 features and the types of images
“Mix Image” and “MixChannel Image”; the results are shown in Figure 7.
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Figure 7. Classification accuracy of the 11 trans-radial amputated subjects of the DB3 database using:
(a) A window size of 200 ms and overlap of 100 ms; (b) A window size of 150 ms and overlap
of 25 ms.

The results show that despite the little difference between the average accuracies,
using segmentation of 200 ms, the performance increased for 9 of the 11 subjects when
using the type of image “Mix Image,” while for segmentation of 150 ms, it was 7 of the
11 who presented an increase in performance using the same type of image.

Table 3 shows a summary of the highest classification accuracies obtained from each
of the databases for both segmentations, indicating the type of image and the set of features
with which they were obtained.

Table 3. Highest classification accuracy achieved for DB2 and Db3 databases.

Database Segmentation Feature Set Image Type Classification Accuracy

DB2
200 ms TD-PSD2 Mix Image 87.56 ± 4.46

150 ms TD-PSD2 Mix Image 97.61 ± 1.55

DB3
200 ms TD-PSD2 Mix Image 74.24 ± 9.45

150 ms TD-PSD2 Mix Image 90.23 ± 6.82

3.3. Processing Time Comparison

For this work, an analysis of processing time was also carried out, including the
time it takes for a sample to be processed from the window segmentation, the extraction
of the features, and even the application of CNN model generated after training. We
took five subjects from each of the databases for the analysis, and the processing time
of all their samples for each of the schemes under analysis was averaged. The analysis
was performed in the MATLAB R2021a software on a CPU with an Intel Core i7-6700HQ
2.60 GHz processor.

The results shown in Figure 8 are the processing times relative to the time obtained
with TD-PSD2 features and the type of image “Mix Image”, which was 12 ms. This scheme
was selected as the basis because it was the one that showed the best performance for both
databases and both types of window segmentation.
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with “Mix Image” image.

The analysis shows that the processing time for each of the schemes is consistent with
the number of features in each case and, therefore, with the size of the input images (see
Table 4). For example, the TD-PSD1 set has only two features, and it is the scheme that, on
average, took less time to process the samples for the “Feature Image” and “MixChannel
Image” with 36.44% and 56.07% of the time that was obtained for the best performance,
respectively, considering that for the other two types of images it was not implemented
because mixing two features would give us the same result as the “MixChannel Image”
image type. The TD2 set has the highest number of features with 10, and it is the one that,
on average, took the longest processing time for all cases. With these features and the type
of image “Mix Image”, the most significant difference was found, 313.76% larger processing
time than the scheme with the best performance. It is essential to mention that all the
calculated times are below 200 ms, the minimum response time to satisfy the restrictions of
human–computer interaction [38].

Table 4. Size of each image relative to the size of the best performing image given in percentage.

Image Type TD1 TD2 TDPSD1 TD-PSD2

Feature Image 9.0 15.1 3.0 7.5

MixChannel Image 54.5 90.9 18.1 45.5

MixFeature Image 27.2 75.7 - 16.6

Mix Image 163.6 454.5 - 100

The results for the DB2 database using a 200 ms segmentation showed that the highest
accuracy obtained was only 0.37% higher than the second-best. On the other hand, the
difference between both times was 23.08%, requiring more processing time the first one. For
the case of the same database but with 150 ms segmentation, the difference in the accuracy
of the scheme with better performance with TD-PSD2 features and the second with TD2
features was only 0.17%, the first being better. However, for this chance, the difference in
time was more significant, with the scheme in second place taking 313.76% longer. With
this analysis, the advantage of using the TD-PSD2 features scheme is accentuated because
of the slight increase in precision and significant savings in processing time.
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3.4. Comparison of Results with Previous Works

Table 5 compares the most recent works that have used DB2 and DB3 databases, show-
ing the highest accuracies obtained, the type of classifier used, the window segmentation
size, the number of moves to classify, and the type of features extracted to get the best
performance.

Table 5. Classification accuracy of the proposed method and previous works using DB2 and DB3
databases.

Author Database Classes Windows Size Type of Features Classifier Accuracy in %

Atzori et al. [8]
2016

Nina Pro DB2
49 150 ms TD Random Forest

SVM
75.27

Nina Pro DB3 46.27

Zhai et al. [37]
2017

Nina Pro DB2
50 200 ms Spectrogram TD CNN

78.71
Nina Pro DB3 * 73.31

Hu et al. [10]
2018 Nina Pro DB2 50 200 ms TD CNN-RNN 82.20

Wei et al. [26]
2019

Nina Pro DB2 50
150 ms

MV-CNN
82.70

200 ms TD ** 83.70
Nina Pro DB3 200 ms 64.30

Pancholi et al. [27]
2021

Nina Pro DB2
49 150 ms TD PSD DLPR

89.45
Nina Pro DB3 81.67

This work

Nina Pro DB2

50

150 ms TD PSD

CNN

97.61

Nina Pro DB3
200 ms 87.56
150 ms 90.23
200 ms 74.24

* They only use data from 10 movement. ** They carry out the study with various types of features, in time, in
frequency, and in time and frequency domain.

4. Discussion

In this work, we use for the first time the type of features TD-PSD2 for the training of
a CNN for pattern recognition using sEMG signals; a new type of image is also proposed
where both channels and features are reorganized to search for patterns adjacent to each
of them. The results show that the classification of the DB3 database has been more
complicated, which was an expected result since the muscular structure of the amputee
person’s limb after amputation is different from that of an intact subject [18]. From Atzori
et al. [8], who obtained 75.27% and 46.27% performance for DB2 and DB3, respectively,
using a 150 ms window to present, the performance in the classification of these databases
has been increasing, being the CNN classifier and its variants, which have shown the
best performance. The schemes that showed the highest performance in this experimental
process were the set of features proposed TD-PSD2 and the type of image proposed “Mix
Image”, so they are the ones that we compare with the rest of the works in Table 3. For
the DB2 database with a window of 150 ms, the highest performance was 97.61%, which
is 8.16% more than the highest performance achieved by [27] using the same window
segmentation.

On the other hand, the scheme proposed by [27] is replicated in this work with the
type of features TD-PSD1 and the type of image “MixChannel Image”, our result was 0.15%
higher, that is, practically the same. For the DB2 database with a 200 ms segmentation, our
best performance was 87.56%, which is 3.86% higher than the best performance obtained
by [26], who used the same window segmentation and a multi-view CNN classifier. For
the DB3 database with the segmentation of 150 ms, the highest performance obtained was
90.23%, 8.56% higher than that reported by [27]. When comparing similar schemes, our
performance was 0.05% higher than obtained by [27], so we can say that the results were
successfully replicated. For the DB3 database and segmentation of 200 ms, the highest
performance obtained was 74.24%, which is 9.94% higher than the performance obtained
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by [26]. It should be noted that [37] reported a performance of 73.31% for the DB3 database
using a 200 ms segmentation; however, they only used 10 of the 50 available moves. Even
so, our performance was 0.93% higher using all moves.

In general, the comparison of our proposal with previous works shows that the features
that currently give the best performance for all cases are the features in the time domain,
specifically those extracted from the power spectrum in the time domain. We demonstrated
that both the set of features and the type of image proposed provide an increase in the
performance of the databases analyzed in this study. It is also important to mention that
the performance using the 150 ms window seems to have a better result. However, the
increase in performance seems to be more related to the decrease in the overlap of these
windows. That is, for both [26] and in this work, an overlap of 25 ms was considered for
the 150 ms windows, and they are the ones that have shown better performance so far in
the literature. A direct comparison of the overlap was not made because not all the works
report the size of the overlap.

5. Conclusions

The most current works for gesture recognition using sEMG have obtained the best
performance using CNN and feature extraction to form the training images. However,
the processing time is also a factor to consider because the purpose will be to implement
the model obtained in a real-time system to control an electromechanical hand prosthesis.
This work focused on comparing four sets of features selected due to performance shown
in previous works, one of them used for the first time to train a CNN, and with them to
form four different types of images to compare performance in classification and times of
processing. The conclusions of this work are:

• The results shown by the features obtained from the power spectrum in the time
domain were the ones that showed the best performances. Additionally, when reorga-
nizing channels and features, the performance of the model is increased.

• As mentioned above, the performance increases (by less than 1%) when using images
with rearranged channels and features. However, the processing time for this type of
image increases by approximately 20% compared to using images where only channels
are rearranged.

It is important to mention that when a real-time implementation is required, the
processing time should not be less than the size of a window, but the size of the overlap
of that window, since it will be the time in which the system must return the result of
classification. That is why, although in this and other works better performances have been
obtained using a slight overlap, it should be considered that for a real implementation the
processing times used by the system will be the ones that set the standard for the model to be
used, that is, we can choose to use a small set of features and a small image type sacrificing
the general performance of the model and use the majority voting technique to increase
performance sacrificing response time, which will allow the hardware requirements not be
so strict, or we can use the features and image size that give better performance and use
better-capacity hardware. The time analysis performed in this study gives a perspective
of the time difference involved in using one set of features or another, combined with one
type of image or another, leaving the possibility of selecting a suitable scheme according to
the kind of implementation to perform or to choose the appropriate hardware according to
the type of scheme to be implemented.
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