
����������
�������

Citation: Bianconi, F.; Palumbo, I.;

Fravolini, M.L.; Rondini, M.;

Minestrini, M.; Pascoletti, G.; Nuvoli,

S.; Spanu, A.; Scialpi, M.; Aristei, C.;

et al. Form Factors as Potential

Imaging Biomarkers to Differentiate

Benign vs. Malignant Lung Lesions

on CT Scans. Sensors 2022, 22, 5044.

https://doi.org/10.3390/s22135044

Academic Editor: Barry K. Lavine

Received: 30 May 2022

Accepted: 2 July 2022

Published: 4 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Form Factors as Potential Imaging Biomarkers to Differentiate
Benign vs. Malignant Lung Lesions on CT Scans
Francesco Bianconi 1,* , Isabella Palumbo 2 , Mario Luca Fravolini 1 , Maria Rondini 3 , Matteo Minestrini 4,
Giulia Pascoletti 5 , Susanna Nuvoli 3 , Angela Spanu 3 , Michele Scialpi 6 , Cynthia Aristei 2

and Barbara Palumbo 4

1 Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti 93, 06125 Perugia, Italy;
mario.fravolini@unipg.it

2 Section of Radiation Oncology, Department of Medicine and Surgery, Università degli Studi di Perugia,
Piazza Lucio Severi 1, 06132 Perugia, Italy; isabella.palumbo@unipg.it (I.P.); cynthia.aristei@unipg.it (C.A.)

3 Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences,
Università degli Studi di Sassari, Viale San Pietro 8, 07100 Sassari, Italy; maria.rondini01@ateneopv.it (M.R.);
snuvoli@uniss.it (S.N.); aspanu@uniss.it (A.S.)

4 Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università degli Studi
di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy; matteo.minestrini@ospedale.perugia.it (M.M.);
barbara.palumbo@unipg.it (B.P.)

5 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24,
10129 Torino, Italy; giulia.pascoletti@polito.it

6 Division of Diagnostic Imaging, Department of Medicine and Surgery, Piazza Lucio Severi 1,
06132 Perugia, Italy; michele.scialpi@unipg.it

* Correspondence: francesco.bianconi@unipg.it; Tel.: +39-075-585-3706

Abstract: Indeterminate lung nodules detected on CT scans are common findings in clinical practice.
Their correct assessment is critical, as early diagnosis of malignancy is crucial to maximise the
treatment outcome. In this work, we evaluated the role of form factors as imaging biomarkers to
differentiate benign vs. malignant lung lesions on CT scans. We tested a total of three conventional
imaging features, six form factors, and two shape features for significant differences between benign
and malignant lung lesions on CT scans. The study population consisted of 192 lung nodules from
two independent datasets, containing 109 (38 benign, 71 malignant) and 83 (42 benign, 41 malignant)
lung lesions, respectively. The standard of reference was either histological evaluation or stability
on radiological followup. The statistical significance was determined via the Mann–Whitney U
nonparametric test, and the ability of the form factors to discriminate a benign vs. a malignant
lesion was assessed through multivariate prediction models based on Support Vector Machines.
The univariate analysis returned four form factors (Angelidakis compactness and flatness, Kong
flatness, and maximum projection sphericity) that were significantly different between the benign and
malignant group in both datasets. In particular, we found that the benign lesions were on average
flatter than the malignant ones; conversely, the malignant ones were on average more compact
(isotropic) than the benign ones. The multivariate prediction models showed that adding form factors
to conventional imaging features improved the prediction accuracy by up to 14.5 pp. We conclude
that form factors evaluated on lung nodules on CT scans can improve the differential diagnosis
between benign and malignant lesions.

Keywords: lung cancer; radiomics; form factors; computed tomography

1. Introduction

According to the World Health Organisation, lung cancer is the second most common
form of neoplastic disorder and the first cause of cancer-related deaths worldwide [1].
The most common forms of lung cancer are Non-Small Cell Lung Cancer (NSCLC), which
accounts for ≈84% of the cases, followed by Small Cell Lung Cancer (SCLC) with ≈13% [2].
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The American Cancer Society’s projections for 2022 place the number of new cases and
fatalities in the USA at ≈230.000 and ≈130.000, respectively, with an overall chance of
developing lung cancer in a lifetime of about 1 in 15 for men and 1 in 17 for women [2].
In Italy there were, in 2020,≈41.000 newly diagnosed cases (≈67% men) and≈13.300 deaths
(≈69% men [3]).

The survival of patients with lung cancer strongly depends on the stage at which the
disease is first detected, and early diagnosis is a key to maximise the treatment outcome.
In Italy the 5-year overall survival is estimated at 16% for men and 23% for women [3].
At an early, stage lung cancer usually appears as a round, solid, subsolid, or ground-glass
opacity (lung nodule), although only a small fraction of such abnormalities (estimated
between 3.7% and 5.5%) actually represent malignancies [4]. The evaluation of suspicious
lung lesions involves the assessment of clinical (e.g., age, sex, history of smoking, exposure,
and other risk factors) and radiographic features such as size, margins, contour, density,
and internal characteristics [5,6]. The updated guidelines (2017) from the Fleischner Soci-
ety [7] recommend no routine followup for low-risk patients with solid and subsolid lung
nodules smaller than 6 mm; in the other cases, the management may involve periodic CT
scans, PET/CT imaging, and/or tissue sampling.

In recent years, quantitative computerised analysis of imaging data (radiomics) has in-
troduced opportunities for the management of patients with suspicious and/or confirmed
lung cancer [8–13]. The overall objective of radiomics is to extract quantitative data from
the input images, which should be ideally repeatable, interpretable, and, of course, corre-
lated with the clinical endpoint of interest [14]. The rationale behind this paradigm is that
medical images are a source of diagnostic and prognostic data not directly revealed through
traditional qualitative visual inspection [10,15–20]. The extraction of quantitative informa-
tion in a mineable way also enables the resulting data to be fed into artificial intelligence
algorithms to build automatic classification and/or regression models [21,22]. Furthermore,
whereas other diagnostic procedures, such as biopsy, usually focus on a limited portion of
the lesion, radiomics enables full-field analysis of the region of interest [23].

The radiomics pipeline involves six steps [12,21]: acquisition, preprocessing, segmenta-
tion, feature extraction, postprocessing, and data analysis. Feature extraction, in particular,
consists of computing a set of quantitative parameters (features) from the imaging data.
Ideally, the features should correlate with the clinical endpoint investigated—benignity
or malignancy—in this case. Feature extraction methods can be classified into two main
families: the ‘conventional’ (also referred to as ‘traditional’ or ‘hand-designed’) ones and
those based on deep learning [24,25]. The conventional features can be further categorised
into shape and texture features [15,26].

The literature has consistently reported the potential benefits of radiomics in several
decision-making scenarios related to the management of patients with lung cancer. These
include, among others, the discrimination between histological subtypes and between
primary vs. metastatic lesions [27–31], prediction of the overall survival, disease-free
survival, and response to therapy [32–36], and the detection of gene mutation status [37,38].
In particular, the role of deep learning and/or conventional features to help discriminate
a benign vs. a malignant lung lesion on a CT scan has been assessed in a number of
previous studies [39–54]. In this context, however, shape features have received little
attention on their own, since they are usually investigated along with texture features
to build high-dimensional predictive models in which the role of each single feature
is not the main focus of the study [46,48,51,55]. Yet, shape features have a number of
potential advantages, which make them particularly appealing in radiomics, such as
intuitive interpretation and robustness to changes in the acquisition and reconstruction
settings [56,57]. Among the three-dimensional shape features most commonly used to
discriminate benign vs. malignant lung lesions on CT scans are the compactness, sphericity,
spiculation, spherical disproportion, and the surface-to-volume ratio [48,55,58–60].



Sensors 2022, 22, 5044 3 of 16

The objective of this study was to investigate one specific class of shape features, form
factors, and, in particular, the potential of elongation, flatness, and compactness as recently
defined in [61] to discriminate between benign and malignant lung lesions on CT scans.
The main advantage of these parameters is that they have simple mathematical definitions
and relatively easy/intuitive interpretation, as they can be seen as percentages of an overall
form, respectively elongated (rod-like), flat (platy), and compact (equant). Furthermore, these
parameters have all values in [0, 1], which facilitates clinical readings and comparisons.

We tested the above features along with three other form factors (Kong’s elongation
and flatness and maximum projection sphericity), three conventional features (maximum
3D diameter, volume, and surface area), and two shape features (sphericity and volume den-
sity) for significant differences between benign and malignant lung nodules. Furthermore,
we evaluated the effectiveness of these features within multivariate prediction models to
discriminate between benign and malignant lesions.

The remainder of the paper is organised as follows. We describe the materials and
methods in Section 2 including a description of the study population, the image acquisition
and lesion delineation procedure, the feature extraction step, and the statistical analysis.
We report the main results in Section 3 followed by a thorough discussion of the results in
Section 4. We conclude the paper with some final considerations (Section 5), the main limi-
tations of the study, and prospective future research (Section 6). Mathematical formulations
of the imaging features are reported in Appendix A.

2. Materials and Methods
2.1. Study Population

We considered a total of 192 lung lesions from two retrospective datasets, denoted as
‘SSR-1’ and ‘LUNGx’ in this paper.

Dataset ‘SSR-1’ contained baseline CT scans of 109 lung nodules (38 benign, 71 ma-
lignant) from as many patients (45 females, 64 males, age = 68.3 ± 8.9 (44–84) year) who
received a thoracic PET/CT at the Unit of Nuclear Medicine of the Università degli Studi
di Sassari, Sassari, Italy, between November 2014 and May 2019. Benignity or malignancy
was assessed via histological examination. The CT scans for attenuation correction were
acquired in helicoidal mode on a Discovery 710 PET/CT system (GE Healthcare, Chicago,
IL, USA) with the following settings: tube voltage 120 kVp, slice thickness 3.75 mm, spacing
between slices 3.27 mm, in-plane inter-voxel spacing 1.37 mm in both directions, and image
size 512 px × 512 px. Table 1 summarises the characteristics of the patient series; further
details about the acquisition procedure are available in [51].

Dataset ‘LUNGx’ included 83 nodules (42 benign, 41 malignant) from 70 patients
(42 females, 28 males, age = 60.2 ± 13.4 (18–84) year) who underwent thoracic CT exami-
nation at The University of Chicago, Chicago, IL, USA between February 2006 and May
2007. Benignity or malignancy was determined by followup imaging (stability over two
years and/or spontaneous resolution were considered indicative of benignity) and/or his-
tological assessment. The scans were obtained from different systems (see [62] for details),
and the acquisition settings were: tube voltage 120–140 kVp, slice thickness 1.00 mm, spac-
ing between slices 1.00 mm, in-plane inter-voxel spacing 0.55–0.90 mm in both directions,
and image size 512 px × 512 px. This dataset is publicly accessible through The Cancer
Imaging Archive (TCIA [63,64]). The characteristics of the patient series are reported in
Table 2.



Sensors 2022, 22, 5044 4 of 16

Table 1. Dataset SSR-1: Characteristics of the patient series.

Attribute [Data Format] Value

Demographics
Age [Mean ± SD] 68.3 ± 8.9 year
Female [N (%)] 45 (41.3)
Male [N (%)] 64 (58.7)

Histology
Benign [N (%)] 38 (34.9)
Malignant [N (%)] 71 (65.1)
Adenocarcinoma [N (%)] 45 (41.3)
Atypical carcinoid (NSCLC) [N (%)] 1 (0.9)
Metastasis [N (%)] 1 (0.9)
Neuroendocrine tumour [N (%)] 1 (0.9)
Small-cell lung cancer [N (%)] 2 (1.8)
Spinocellular carcinoma [N (%)] 4 (3.7)
Squamous cell carcinoma [N (%)] 9 (8.3)
Unspecified [N (%)] 8 (7.3)

Table 2. Dataset LUNGx: Characteristics of the patient series.

Attribute [Data Format] Value

Demographics
Age [Mean ± SD] 60.2 ± 13.4 year
Female [N (%)] 42
Male [N (%)] 28

Histology
Benign [N (%)] 42 (50.6)
Malignant [N (%)] 41 (49.4)
Adenocarcinoma [N (%)] 17 (20.5)
Carcinoid tumour [N (%)] 2 (2.4)
Small-cell lung cancer [N (%)] 9 (10.8)
Squamous cell carcinoma [N (%)] 1 (1.2)
Suspicious lung cancer [N (%)] 2 (2.4)
Unspecified NSCLC [N (%)] 10 (12.0)

2.2. Lesion Delineation

In both datasets the three-dimensional regions of interest (ROI) representing the
suspicious areas were delineated manually, slice-by-slice, on the open-access LIFEx 7.1.0
platform [65], as shown in Figure 1. The segmentation was carried out together by two
experts, one radiation oncologist (I.P., >15 year experience) and one nuclear medicine
specialist (B.P., >20 year experience).
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Figure 1. Illustration of the lesion delineation process. The top row shows the cropped areas from
contiguous axial slices containing the suspicious lesion; the fuchsia overlays in the bottom row
indicate the manually-delineated regions of interest. The lesion in the picture was diagnosed as
adenocarcinoma in a 76-year-old man.

2.3. Shape Features

A total of 11 shape features were extracted from each ROI as detailed in Table 3. Math-
ematical definitions and formulae are reported in Appendix A. All the features, apart from
the conventional ones, represented dimensionless quantities, and were, therefore, volume-
independent by definition. Furthermore, they all had values in [0, 1], which facilitated
empirical evaluations, comparisons, and potential translation into clinical practice.

Table 3. Summary table of the shape features considered in this study (see Appendix A for the
mathematical definitions and formulae).

Group Name Acronym/Abbreviation

Conventional
Maximum 3D diameter Max3Ddiam
Surface area SurfArea
Voxel volume Volume

Form factors

Angelidakis elongation AEL
Angelidakis flatness AFL
Angelidakis compactness ACO
Kong elongation KEL
Kong flatness KFL
Maximum projection sphericity MPS

Other Sphericity -
Volume density VDN

As for the form factors, these were defined by the ratios of the three main dimensions
of the lesion, which in the remainder we refer to as length (l), breadth (b), and thickness
(t), with l ≥ b ≥ t. We took the side lengths (sorted in descending order of magnitude)
of the rectangular axis-aligned bounding box of the ROI, respectively, as l, b, and t (also
refer to Figures 2 and 3 for a graphical explanation). Although this was a simplified
way to compute these parameters (other approaches, for instance based on the principal
axes of inertia, are also possible), it had the clear advantages of ease of calculation and
straightforward interpretation.
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Figure 2. Adenocarcinoma in a 76-year-old man: lesion on the CT scan (left) and the reconstructed
three-dimensional volume within the axis-aligned bounding box (right).

Figure 3. Fibrosis in a 46-year-old man: lesion on the CT scan (left) and the reconstructed three-
dimensional volume within the axis-aligned bounding box (right).

2.4. Univariate Analysis

For each of the shape features described in Section 2.3, significant differences between
the benign and malignant group were assessed by the nonparametric Mann–Whitney
U test [66]. Correction for multiple tests was based on the Benjiamini–Hochberg proce-
dure [67] at a false discovery ratio FDR = 0.05.

2.5. Multivariate Prediction Models

The ability of the form factors to improve the discrimination capability between the
benign and malignant lesions beyond standard imaging features was also assessed through
multivariate prediction models. To this end, we considered two feature sets denoted as
base, which included the conventional imaging features, that is, maximum 3D diameter,
surface area, and volume, and extended, composed of all the features of the base set plus the
form factors that were significantly different between the benign and malignant group in
both datasets, which were: AFL, ACO, KFL, and MPS (see Tables 4 and 5).

Prediction models based on linear Support Vector Machines (lSVM) were fitted and
tested both internally (intra-dataset) and externally (across datasets) through four train/test
combinations: SSR-1/SSR-1, LUNGx/LUNGx, SSR-1/LUNGx and LUNGx/SSR-1 (see
Table 6 for the details of the results). Since the magnitude of the base features differed
significantly from that of the form factors, all the features were preliminarily normalised
to zero-mean and unit-variance (Z score). The normalisation was carried out feature by
feature separately and independently on the two datasets (each dataset was blind to the
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data contained in the other one). The optimal value for the lSVM penalty factor C was
determined through a grid search over C ∈ {0.01, 0.1, 1.0, 10.0}. For each feature set +
classifier combination, we retained the value of C that achieved the best performance.
The performance of the prediction models was estimated as the percentage of nodules of
the test set classified correctly (accuracy). For intra-dataset validation the split into train
and test set was based on the leave-one-out procedure.

Table 4. Results of the univariate analysis on the SSR-1 dataset. Units of measure: maximum 3D
diameter [mm], surface area [mm2], and volume [mm3]; all other features are in dimensionless units
(range 0–1).

Feature Benign Malignant p-Value Significant

Max 3D diameter 18.8 ± 7.4 23.6 ± 7.7 0.001 Yes
Surface area 846.7 ± 630.3 1414.4 ± 819.6 <0.001 Yes
Voxel volume 2138.1 ± 2369.2 4209.2 ± 3481.3 <0.001 Yes
Angelidakis elongation 0.077 ± 0.056 0.070 ± 0.059 0.193 No
Angelidakis flatness 0.123 ± 0.111 0.077 ± 0.079 0.009 Yes
Angelidakis compactness 0.800 ± 0.115 0.853 ± 0.097 0.008 Yes
Kong elongation 0.140 ± 0.096 0.126 ± 0.099 0.200 No
Kong flatness 0.205 ± 0.163 0.136 ± 0.124 0.010 Yes
Maximum projection sphericity 0.810 ± 0.117 0.864 ± 0.092 0.005 Yes
Sphericity 0.774 ± 0.067 0.769 ± 0.061 0.280 No
Volume density 0.435 ± 0.112 0.431 ± 0.097 0.274 No

Table 5. Results of the univariate analysis on the LUNGx dataset. Units of measure: maximum 3D
diameter [mm], surface area [mm2], and volume [mm3]; all other features are in dimensionless units
(range 0–1).

Feature Benign Malignant p-Value Significant

Max 3D diameter 23.5 ± 15.1 26.1 ± 10.4 0.029 No
Surface area 1457.2 ± 1882.1 1698.9 ± 1252.6 0.012 Yes
Voxel volume 2782.5 ± 4550.9 3436.0 ± 3432.3 0.011 Yes
Angelidakis elongation 0.070 ± 0.078 0.069 ± 0.059 0.334 No
Angelidakis flatness 0.201 ± 0.139 0.132 ± 0.096 0.015 Yes
Angelidakis compactness 0.730 ± 0.152 0.799 ± 0.110 0.017 Yes
Kong elongation 0.127 ± 0.126 0.126 ± 0.103 0.382 No
Kong flatness 0.315 ± 0.198 0.224 ± 0.139 0.014 Yes
Maximum projection sphericity 0.734 ± 0.148 0.803 ± 0.105 0.019 Yes
Sphericity 0.662 ± 0.129 0.625 ± 0.087 0.036 No
Volume density 0.359 ± 0.096 0.339 ± 0.071 0.047 No

Table 6. Performance of the classification models. Accuracy columns report the percentage (fraction)
of the samples of the test set classified correctly; the gain is the difference between the base and
extended feature sets.

Training Set Test Set Accuracy (Base) Accuracy (Extended) Gain
[% (Fraction)] [% (Fraction)] [pp (Fraction)]

SSR-1 SSR-1 65.1 (71/109) 66.1 (72/109) 0.9 (1/109)
LUNGx LUNGx 54.2 (45/83) 62.7 (52/83) 8.4 (7/83)
SSR-1 LUNGx 49.4 (41/83) 63.8 (53/83) 14.5 (12/83)
LUNGx SSR-1 57.8 (63/109) 63.9 (71/109) 7.3 (8/109)

2.6. Estimation of the Cutoff Thresholds

To facilitate the interpretation of the form factors and further demonstrate their poten-
tial use on a practical level, we computed the optimal cutoff thresholds that maximised the
overall classification accuracy over the two datasets considered separately and together.
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In Table 7, we provide the cutoff values for each of the form factors that were significantly
different between the benign and malignant group.

Table 7. Estimated cutoff values for malignancy. The range for all parameters is 0–1.

Feature Dataset Avg. over DatasetsSSR-1 LUNGx SSR-1 + LUNGx

ACO >0.746 >0.765 >0.769 >0.760
AFL <0.245 <0.248 <0.248 <0.246
KFL <0.368 <0.415 <0.396 <0.393
MPS >0.697 >0.701 >0.706 >0.701

3. Results

The results of the univariate analysis are summarised in Tables 4 and 5; a visual repre-
sentation of the data in the form of boxplots/stripplots is also available in Figures 4 and 5.
As can be seen, the malignant lesions were on average larger in both datasets, which is
logical and consistent with the literature [40,68–71]. Regarding the form factors, four of
them (AFL, ACO, KFL, and MPS) were significantly different between the two groups in
both datasets. Specifically, AFL and KFL were higher in the benign group, whereas ACO
and MPS were higher in the malignant group. In other words, the benign lesions were,
on average, flatter than the malignant ones; conversely, the malignant ones were more
isotropic (equant) than the benign ones. The other two shape features considered in this
study (sphericity and volume density) did not show statistically significant differences
between the two groups in either dataset.

Table 6 shows the accuracy of the multivariate prediction models built upon the base
and extended feature sets as described in Section 2.5. We would like to emphasize that it
is not the absolute accuracy value that matters here (ideally, this could be increased by
adding more clinical and/or radiomics features) but the gain that could be obtained by
adding the form factors to the base features. This ranged between 0.9 pp and 14.5 pp
and was particularly pronounced when the LUNGx dataset was used as a training set.
This is interesting, as this dataset was specifically designed for a competition (‘LUNGx
Challenge for Computerized Lung Nodule Classification’) and is considered particularly
difficult [62,72].

Figure 4. Cont.
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Figure 4. Boxplots/stripplots of the features that were significantly different between the benign and
malignant tumours in the SSR-1 dataset.

Figure 5. Cont.
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Figure 5. Boxplots/stripplots of the features that were significantly different between the benign and
malignant tumours in the LUNGx dataset.

4. Discussion

In recent years the use of quantitative imaging features coupled with automatic
classifiers has gained considerable attention as a means to assist the clinician in the diagnosis
and management of suspicious lung lesions. In this context, shape descriptors have
been investigated as potential imaging biomarkers to differentiate benign vs. malignant
lung lesions on CT scans, since morphological features such as irregular borders and
spiculation are known to be associated with malignancy [6,7,73]. Consequently, most
previous studies have focused on how to quantify these features by suitable mathematical
parameters [44,46,48].

Our results suggest a potential link between overall lesion shape and
benignity/malignancy. Specifically, we found that lesion flatness was associated with
benignity and compactness (equancy) with malignancy. This is congruent with the findings
reported by Takashima et al. [74], where the manually-assessed three-dimensional shape
ratio was significantly different between benign and malignant lesions, with the latter
again leaning towards equancy. Our result for flatness also confirmed the one reported
by Peikert et al. [75], although the authors did not discuss this finding further, as their
work focused on a multiparametric classification model and not on the individual features.
Regarding the KEL and KFL, a comparison with the literature indicates that our findings
were again in good agreement with those presented by Peikert et al. [75]. No comparison
was possible for the other form factors of AEL, ACO, AFL, and MPS, as we are not aware of
any previous study investigating these parameters. Finally, sphericity and volume density
were not statistically significant in our study. The result for sphericity contrasted with
Dhara et al. [55], where this parameter was significantly different between the benign and
malignant group, although in [55] it is not indicated which group had the higher values.

From a clinical standpoint, the most relevant finding of this work is that the benign
lesions had on average a tendency to be flatter than the malignant ones; conversely, the ma-
lignant ones leaned toward a more isotropic (equant) morphology. We demonstrated that
four form factors among those investigated here were significantly different between the
benign and malignant group in both datasets, suggesting that they could be used in clinical
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decision making. To clarify the potential use of these parameters, we have reported the
optimal cutoff values for benignity/malignancy for each of the form factors that were
significantly different between the benign and malignant lesions. However, further studies,
ideally prospective and on larger cohorts of patients, are needed to confirm these findings
before translation into clinical practice.

5. Conclusions

The diagnostic evaluation of suspicious lung nodules detected on CT scans represents
a significant challenge for the clinician. The traditional radiographic approach involves
manual assessment of specific features such as size, contour, margins, internal characteris-
tics, spiculation, and lobulation. In recent years, the quantitative analysis of imaging data
coupled with machine learning algorithms (radiomics) has opened up new perspectives in
the field. In this scenario, the objective of this work was to investigate one specific subset
of morphological features (form factors) as potential imaging biomarkers to discriminate
between benign and malignant lung lesions on CT scans.

We found that four form factors (ACO, AFL, KFL, and MPS) were significantly different
between the benign and malignant groups in both datasets. Furthermore, we demonstrated
that these parameters could improve the accuracy of automated classification models for
discriminating benign vs. malignant lesions. Our findings lead to the speculation that
malignant lesions have a tendency to grow more isotropically than the benign ones. This
hypothesis, however, needs to be validated in future studies. Future work should also
address potential links between tumour microenvironment and overall shape.

6. Limitations and Future Work

This work was not exempt from limitations; two of the limitations were the retro-
spective nature and the relatively contained sample size. The results should be validated
in larger and, ideally, prospective studies. The biological links between overall shape
as quantified by the form factors (particularly in terms of flatness vs. equancy) and the
potentially different spatial growth patterns for malignant and benign lesions also remain
unclear and should be investigated in future studies.
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Abbreviations
The following abbreviations are used in this manuscript:

ACO Angelidakis compactness
AEL Angelidakis elongation
AFL Angelidakis flatness
CT Computed Tomography
FDR False discovery ratio
KEL Kong elongation
KFL Kong flatness
MPS Maximum projection sphericity
NSCLC Non-Small Cell Lung Cancer
PET Positron Emission Tomography
ROI Region(s) of interest
SCLC Small Cell Lung Cancer
lSVM Linear Support Vector Machines
TCIA The Cancer Imaging Archive

Appendix A. Shape Features

Appendix A.1. Conventional

Appendix A.1.1. Voxel Volume

The total volume defined as the sum of the volume of each voxel in the region of
interest. This is indicated as V in the remainder of this Appendix A.

Appendix A.1.2. Surface Area

The total area of the triangular mesh that approximates the boundary of the region of
interest. This is indicated as A in the remainder of this Appendix A.

Appendix A.1.3. Maximum 3D Diameter

The Euclidean distance between the centroids of the two most apart voxels in the
region of interest.

Appendix A.2. Form Factors

Let l, b, and t denote the side lengths of the axis-aligned bounding box enclosing the
region of interest sorted in descending order (l ≥ b ≥ t).

Angelidakis compactness, elongation, and flatness (ACO, AEL, and AFL)

ACO =
2t

l + t
(A1)

AEL =
lt

lt + b2 −
t

l + t
(A2)

AFL =
b2

lt + b2 −
t

l + t
(A3)

By definition AEL, AFL, and ACO have all values in (0, 1] and add up to unity [61].
Larger values of AEL, AFL, and ACO, respectively, indicate higher elongation, flatness,
and compactness. The main advantage of these parameters is that they can be seen as
percentages of an overall form, respectively, rod-like, platy, and equant.
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Kong elongation and flatness

KEL = 1− b
l

(A4)

KFL = 1− t
b

(A5)

Kong elongation and flatness [76] are a variation of the classic breadth-to-length and
thickness-to-breadth form factors [77]. The advantage of KEL and KFL is that a flat particle
has a high value of KEL, and an elongated one has a high value of KFL.

Maximum projection sphericity

MPS =
3

√
t2

bl
(A6)

The ratio between the maximum projection area of the region of interest and that of a
sphere with the same volume. It reflects the difference of forces (drag and gravitational) of
a body immersed in a fluid [78]. It is a measure of equancy.

Appendix A.3. Others

Sphericity
3√36πV2

A
(A7)

The ratio between the surface area of a sphere with the same volume as the region of
interest and the surface area of the region of interest.

Volume density
V

Vaabb
(A8)

The ratio between the volume of the region of interest and that of the axis-aligned
bounding box (Vaabb).
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