
����������
�������

Citation: Fathy, C.; Saleh, S.N.

Integrating Deep Learning-Based

IoT and Fog Computing with

Software-Defined Networking for

Detecting Weapons in Video

Surveillance Systems. Sensors 2022,

22, 5075. https://doi.org/10.3390/

s22145075

Academic Editors: Gianluigi Ferrari,

Luca Davoli, Laura Belli and Marco

Martalò

Received: 25 May 2022

Accepted: 4 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Integrating Deep Learning-Based IoT and Fog Computing with
Software-Defined Networking for Detecting Weapons in Video
Surveillance Systems
Cherine Fathy * and Sherine Nagy Saleh

Computer Engineering Department, College of Engineering and Technology, Arab Academy for Science and
Technology (AAST), Alexandria 1029, Egypt; sherine_nagi@aast.edu
* Correspondence: cherine_fathy@aast.edu

Abstract: Due to the widespread proliferation of multimedia traffic resulting from Internet of Things
(IoT) applications and the increased use of remote multimedia-based applications, as a consequence
of COVID-19, there is an urgent need to develop intelligent adaptive techniques that improve the
Quality of Service (QoS) perceived by end-users. In this work, we investigate the integration of deep
learning techniques with Software-Defined Network (SDN) architecture to support delay-sensitive
applications in IoT environments. Weapon detection in real-time video surveillance applications
is deployed as our case study upon which multiple deep learning-based models are trained and
evaluated for detection using precision, recall, and mean absolute precision. The deep learning model
with the highest performance is then deployed within a proposed artificial intelligence model at
the edge to extract the first detected video frames containing weapons for quick transmission to
authorities, thus helping in the early detection and prevention of different kinds of crimes, and at the
same time decreasing the bandwidth requirements by offloading the communication network from
massive traffic transmission. Performance improvement is achieved in terms of delay, throughput,
and bandwidth requirements by dynamically programming the network to provide different QoS
based on the type of offered traffic and current traffic load, and based on the destination of the traffic.
Performance evaluation of the proposed model was carried out using the mininet emulator, which
revealed improvement of up to 75.0% in terms of average throughput, up to 14.7% in terms of mean
jitter, and up to 32.5% in terms of packet loss.

Keywords: fog/edge computing; Internet of Things (IoT); Software-Defined Network (SDN); Software-
Defined IoT; video surveillance; weapon detection; deep-learning; YOLOv5n

1. Introduction

In the last decade, specifically the past two years, the COVID-19 pandemic resulted in
a drastic increase in multimedia traffic (video and audio) transmission through networks.
According to Cisco 2021, Global Networking Trends Report [1], an average of 4.7 times
more employees are now working from home compared to before the pandemic, which
led to 62% of companies deploying video conferencing applications. As a result, Infor-
mation Technology (IT) is facing a new set of challenges for supporting remote workers,
which include security across a more distributed computing landscape, end-user behavior,
application performance, and IT operations.

Moreover, Cisco Annual Internet Report (2018–2023) [2] anticipates that the Machine-
To-Machine (M2M) connections’ share will increase from 33% to 50% from 2018 to 2023.
This is due to an increasing number of M2M applications, which impacts the growth of
devices and connections. Within the M2M connections category (which is also referred to
as the Internet of Things (IoT)), connected home applications will represent nearly 50% of
the total M2M connections by 2023, which implies a significant demand for bandwidth in
the future connected home applications.

Sensors 2022, 22, 5075. https://doi.org/10.3390/s22145075 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145075
https://doi.org/10.3390/s22145075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2489-8359
https://orcid.org/0000-0002-1289-0501
https://doi.org/10.3390/s22145075
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145075?type=check_update&version=1

Sensors 2022, 22, 5075 2 of 22

According to a recent report published by Allied Market Research [3], the global
video surveillance market was valued at $42.94 billion in 2019 and was expected to reach
$144.85 billion by 2027, registering a Compound Annual Growth Rate (CAGR) of 14.6%
from 2020 to 2027. This will result from the increasing demand for safety in high-risk areas,
the integration of IoT in surveillance cameras, and the increasing demand to monitor the
COVID-19 cluster in high-risk areas. Moreover, in the Internet of Multimedia Things (IoMT),
smart surveillance systems play a significant role in smart cities due to their capabilities
in automated human and object recognition; tracking and taking account of risk factors;
in enhancing Intelligent Transportation Systems (ITS); and in supporting smart health,
with real-time video monitoring of patients [4].

Several articles [5–7] have discussed the problem of weapon detection in surveillance
videos and how it is very important to automate such a process, since it will reduce the huge
efforts needed to manually review the video streaming, reduce the violation of privacy, and
most importantly provide a very fast response that may lead to crime prevention. Finding
important scenes in video surveillance is a very important aspect when aiming to trigger
certain events according to the content of such frames. The severity of an action detected
by a surveillance camera could result in the need for immediate intervention from one or
more services such as the police or a hospital.

Detecting hidden weapons has been previously addressed in [8] by the use of active
electromagnetic signals detected using a walk-through metal detector and a sensor array.
Previous to their research, weapon detection systems based on metal detectors mainly
detected the presence of large metal objects, required setting an adjustable threshold to
identify elements of threat, and were affected by the human body. Article [8] managed to
reconstruct an image from the measured electromagnetic signals and use it for weapon
detection. The advantage of this system when compared to ours is the ability to detect
concealed weapons, yet it is limited by the existence of expensive hardware. Our pro-
posed system is based on camera-based systems which are more commonly used now, as
mentioned by [3], as they are a crucial component of smart surveillance.

Article [9] provided a comprehensive review of automatic pistol and knife detection
in different computer vision-based systems. The article discussed the benefits of creating
automatic weapon detection systems and mentioned some of its challenges. For instance,
the lengths of the detected weapons differ according to the parameters of the imaging
systems, since the position of the camera to the target weapon is not fixed. Furthermore,
the high variation in the types, colors, and shapes of the weapons needs to be addressed by
all systems and mainly are dependent on the variation of weapons available in the training
datasets. Finally, the viewing angle of the weapon could greatly affect the recognition
ability of any system.

Object detection and recognition is a domain that is being tackled in deep learning
research for the past few years [10]. Several challenges have been presented when trying
to detect objects in an image, for instance, the huge difference in the appearance of each
target object class from one scene to another. Another challenge is the balance between the
speed and accuracy of a detection algorithm, especially on edge devices. In surveillance
applications, it is very important to have a fast detection rate and, since the application is
critical, the accuracy of such a system is very important.

YOLO [11] is an object detection algorithm that was initially presented in 2016 and, since
then, YOLO’s first version along with its successors have been employed in a variety of applica-
tions such as vehicle recognition [12] and face recognition [13] for its fast and accurate detection.
The latest release of YOLO, namely YOLOv5, has been proposed by [14] and presented as
several models of different sizes. YOLOv5 architecture comprises three stages: backbone, neck,
and head. The backbone is the feature extraction stage which utilizes the CSPDarknet model,
the neck stage fuses the extracted features using the PANet model, and finally, the head which
comprises a YOLO layer that generates the detection parameters [15].

Article [6] has compared different object detection techniques based on both sliding-
window and region-based methods. Experiments were conducted on a dataset collected by

Sensors 2022, 22, 5075 3 of 22

the researchers and not provided for public use. The results of the analysis have shown
that YOLOv4 has produced the highest mean average precision and F1-Score. The authors
discussed that real-time detection analysis required the existence of a real-time dataset
which is currently still not available.

Video surveillance, as explained before, plays a significant role in smart cities, whether
in safety or tracking of COVID-19 cases. However, it is a bandwidth-hungry application.
Video surveillance systems generate multimedia traffic that is considered delay-sensitive
traffic, especially in the case of early detection of crime and the attempt to prevent the
crime or in the case of the fast rescue of victims. Network support for this type of traffic is
required to ensure the QoS requirements of the application in terms of bandwidth, delay,
and jitter.

Once a weapon is detected in surveillance videos, there is a need for dynamic multi-
media traffic management techniques that support the requirements of this type of traffic
in terms of delay and bandwidth. Moreover, to cope with the highly dynamic nature of
networks, whether the Internet or the IoT, it is required to adopt architectures/paradigms
that can be reprogrammed to match current network conditions. The Software-defined Net-
working (SDN) paradigm has been referred to as a promising technique in recent network
management research studies.

SDN is a network paradigm that separates the network’s control logic (control plane)
from the traffic-forwarding routers and switches (the data plane). As a result of this
separation, network switches become simple forwarding devices, and control logic is im-
plemented in a logically-centralized controller, simplifying policy enforcement, network
(re)configuration, and evolution [16]. The centralized global network view, programmabil-
ity, flexible management, and separation of the data plane and control plane are the key
benefits of using SDN [17]. Deploying SDN for decentralized IoT network provisioning
and management is critical. The OpenFlow protocol is a standard Controller-Data Plane
Interface (C-DPI) that allows controllers and data plane devices to communicate.

Several articles [4,18–20] present different proposals to deploy SDN in video surveil-
lance systems; however, performance evaluation results of their proposed platforms either
were not provided or insufficient.

Table 1 reviews SDN-based surveillance systems highlighting the artificial intelligence (AI)
and SDN roles in these systems. In [21], filtering videos at the back-end server already consumes
bandwidth as the filtering module takes in n input video streams and outputs a subset of k
streams to be displayed to the monitoring person. Moreover, the authors did not provide any
details about computer vision techniques used in filtering videos at the back-end server and did
not provide any performance evaluation results, especially regarding delays.

Table 1. Literature Review of SDN-based Video Surveillance Systems.

Proposed Model Role Of SDN Performance Gain Role of AI Techniques Used

SmartArgos [21]
SDN controller informs switches

of the chosen k streams to throttle
the remaining n-k stream

Conserve wireless
bandwidth

At the back-end server to select video
streams subset of k streams to display

to the monitoring person

Intelligent system for
video surveillance

in IoT networks [22]

Network core to manage different IoT
networks. SDN Controller collects statistics
from OpenFlow switches and passes them to
the AI module to decide the best action that

is propagated back by the controller to
switches in case of multimedia traffic

lower jitter and
loss rate

AI module for error control in multimedia
transmission. Evaluates the resources

required and the best action to
provide an adequate level of QoE.

Our proposed model

Network core and QoS: adaptive allocation
of bandwidth among different traffic flows

based on the type of traffic and reassignment
of free bandwidth to bandwidth-hungry

traffic with priority to video traffic flow class

Higher average
throughput, lower jitter,
and lower packet loss

AI module available at the edge to filter
video file generated by IP-surveillance

camera to detect weapons for early detection
of crime and to decrease bandwidth

requirements by sending crime scenes only

Moreover, edge computing solves resource-constrained problems by getting compu-
tation near the edge of IoT devices. The distribution of edge nodes across the network
overcomes the delay and the centralized computation challenges found in the IoT. New

Sensors 2022, 22, 5075 4 of 22

edge technologies classify and filter IoT big data generated from an increased number
of connected devices before transmitting it to the central cloud data center, which allevi-
ates the challenge of traffic overload and privacy concerns [23]. Article [24] highlights
the challenges for edge computing and proposes SDN as a solution for these challenges.
Since the SDN paradigm depends on a centralized software-based controller, it will relieve
simpler edge devices from executing complex networking activities. Moreover, Ref. [24]
explains the reasons behind the emergence of edge computing, namely: real-time QoS,
delay sensitiveness, battery lifetime, the regulation of core network traffic, and scalabil-
ity. Also, Ref. [25] review the fog computing and SDN solutions to overcome the IoT’s
main challenges.

QoS is typically defined as an ability of a network to provide the required services
for selected network traffic. The main aim of QoS is to give priority with respect to
QoS parameters including, but not limited to: bandwidth, delay, jitter, and loss [17].
The integrated service (IntServ) model and the differentiated service (DiffServ) model are
considered to be the conventional methods for QoS. In the case of SDN, QoS models are
implemented by queues and meters in OpenFlow switches.

Article [17] provided a review of the QoS capabilities of the OpenFlow protocol
through its different versions. Moreover, they introduced seven categories in which QoS
can benefit from the concept of SDN, namely: multimedia flows routing mechanisms, inter-
domain routing mechanisms, resource reservation mechanisms, queue management and
scheduling mechanisms, Quality of Experience (QoE)-aware mechanisms, network moni-
toring mechanisms, and other QoS-centric mechanisms. Furthermore, they highlighted the
benefits of using the SDN paradigm in ensuring QoS. These benefits can be summarized
as follows:

1. SDN controller has a global view of the whole network.
2. Set of flow policies and classes are unrestricted while it is limited in conventional

networks because of many vendor-specific firmware at use.
3. Through the use of an SDN controller, network statistics can be monitored on dif-

ferent levels with respect to per-flow, per-port, and per-device while overcoming
conventional network’s limited global view and QoS possibilities, and per-hop deci-
sion making.

Motivated by the increase of IoT multimedia traffic generated from surveillance
systems, our objective in this research is to develop an intelligent adaptive architecture
that ensures QoS over the best-effort network by deploying AI techniques at the edge to
decrease the bandwidth requirement of these systems and by leveraging the SDN paradigm
to reprogram the allocation of available bandwidth among traffic flows based on the global
view of network conditions (made available at the SDN controller through communication
with forwarding devices over OpenFlow protocol).

The contribution of this article is as follows:

1. The article investigates the deployment of different paradigms to support real-time
video surveillance application that is considered one of the key applications in smart
cities. It proposes the application of deep learning models at the edge, as an explo-
ration of the edge computing paradigm. The proposed deep learning model employs
the most recent lightweight version of YOLO to manage real-time surveillance and
detection of weapons. This YOLO version was chosen after extensive experiments
over several YOLO versions with different parameters.

2. Moreover, network support for video surveillance applications was introduced by
deploying a software-defined networking paradigm (SDN) to play the role of the
network core, to control bandwidth allocation among different traffic flows to speed up
crime prevention upon weapon detection achieved through AI models implemented
at the edge.

3. In addition, an investigation is carried out through simulation to justify that the
integration of AI techniques with software-defined networking paradigms fulfills
IoT-based multimedia application constraints in terms of delay and bandwidth.

Sensors 2022, 22, 5075 5 of 22

4. Finally, it provides recommendations and directions for future work in the domain of
using AI and SDN in the IoT-based surveillance systems in smart cities.

The rest of the article is organized as follows: Section 2 presents a detailed explanation
of our intelligent and adaptive QoS framework after giving a brief background on Open-
Flow protocol. Section 3 highlights the simulation results of our proposed framework. We
summarize the findings of the article in the concluding section.

2. Materials and Methods

In this section, our proposed model architecture is described. First, a background
on specific related points of OpenFlow protocol is explained. Then, the proposed model
architecture which includes the IoT device layer, edge computing device layer including
the proposed deep learning model, SDN core network, and the adaptive QoS algorithm
is presented.

2.1. OpenFlow Required Background

An OpenFlow Switch, such as Open vSwitch (OVS), consists of one or more flow
tables and a group table, which conduct packet lookups and forwarding, and an OpenFlow
channel to connect with an external controller. Each flow table in the switch comprises
a collection of flow entries, each of which consists of match fields, counters, and a set of
instructions to be implemented on matching packets. The received packet on the input port
is filtered based on packet header fields in a flow table, and a set of actions is executed on the
matching packets. These actions include rate-limiting using a meter table, forwarding using
a group table, forwarding to the relevant output port, or dropping the packet. For non-
matching packets, the packets can be passed to the controller over the OpenFlow channel,
or they can be dropped.

The controller deploys the OpenFlow protocol (the south-bound interface of the SDN
controller) to add, update, and delete flow, group, and meter entries from flow, group, and meter
tables, respectively. Same-tables manipulation can be carried out using applications running on
the north-bound interface of an SDN controller. The controller uses three flow-rule installation
modes, namely: proactive mode, reactive mode, and hybrid mode [23].

A meter table is made up of meter entries that define per-flow meters. In its instruction
set, a flow entry can define a meter that monitors and controls the rate of the aggregate
of all flow entries to which it is connected. Arriving packets are forwarded to a meter as
specified by a matching flow table entry as explained in [19].

2.2. Proposed Model Architecture

The general architecture of Software-Defined Internet of Things-Edge (SDIoT-Edge)
comprises three planes including SDN data, control, and an application plane. The data
plane is made up of resource-constrained IoT devices that use edge cloudlets to offload
heavy compute operations. The OpenFlow protocol is used to communicate with the
control plane. Furthermore, the control plane communicates with the application plane
using REST APIs as presented in [23].

Our proposed model is depicted in Figure 1. Our proposed model is composed of
four main components: IoT device layer, edge computing device layer, SDN core network,
and QoS application. The IP surveillance cameras (IoT Device Layer) generate a continuous
video stream of the monitored area which is then fed into a raspberry PI implementing
the deep learning AI models (edge computing device). The output of the raspberry PI is a
small video file which is a group of frames containing the weapon detected. This video file
is routed through SDN OpenFlow switches that implement the proposed adaptive QoS
algorithm. The OpenFlow switch classifies the traffic based on the destination port number
and allocates bandwidth to different classes of traffic based on the meter table installed
by the RYU controller in each switch. The meter table settings give priority to video files
containing weapons to ensure fast delivery through the OpenFlow switches to authorities
to help in the fast rescue of victims and to help in the prevention of crimes. The proposed

Sensors 2022, 22, 5075 6 of 22

QoS module is adaptive as it collects free bandwidth available in each class and reassigns
it to the hungry class with priority to video traffic that ensures lower packet drop and
lower jitter. The small video file represented a very small percentage of the original video
file collected continuously from IP surveillance cameras. This filtration process at the
edge reduces the massive bandwidth requirement in case of sending the whole video to a
monitoring person or authorities.

The IoT device layer and edge computing device layer together form the IoT smart
node. The proposed architecture supports a different level of QoS requirements for traffic
classes by applying classification and prioritization of flows. The architecture depends
on the use of OpenFlow meters to manage bandwidth allocation for individual flows
where meter rates are dynamic and adaptive to match current network conditions in terms
of available bandwidth and offered type of traffic. Our target is supporting multimedia
streaming applications. We assume that all switches are OpenFlow switches and are
connected to a centralized controller through OpenFlow protocol. Flows are classified into
several classes of QoS and Best-effort (BE). Initially, each class is allocated a bandwidth share.
The following subsection explains the several components of our proposed architecture
and gives justification for our design choices.

Figure 1. Proposed model architecture.

2.2.1. IoT Device Layer

The IoT device layer consists of IP surveillance cameras that continuously generate a
video stream of the monitored area which is then fed into the edge computing device layer
that implements the AI models.

2.2.2. Edge Computing Device Layer

The edge computing device layer is responsible for applying the proposed AI deep
learning models, thus assuring a fast, responsive system. The proposed AI model is
presented in Figure 2, which aims at detecting the threat in the video surveillance stream
and sending a small portion of the video over to the OpenFlow switch. The video stream
captured by the surveillance camera is continuously input to the frame selection module.
The chosen frames are then input to the detection phase to check them for the presence of
weapons. Once a weapon is detected, a signal is sent to the AI control such that the frame
with the detected weapon and a subsequent set of frames are then sent to the OpenFlow

Sensors 2022, 22, 5075 7 of 22

switch. The details of each block of the proposed model will be further explained in the
upcoming paragraphs.

Figure 2. Proposed deep learning based weapon detection model.

Dataset

Article [7] discussed the problem of discriminating between small objects appearing
in surveillance videos and claimed that, when analyzing results produced in previous
research, high precision resulted from detecting larger-sized objects than those small-sized
ones given the same dataset and model.

To address this problem, they built an image dataset, namely the Sohas_weapon
dataset, including six of the most common small object classes: pistol, knife, smartphone,
bill, purse, and card. The dataset included images collected from previous datasets along
with ones taken by cameras of different qualities and resolutions. The images have a variety
of scenes, some of a close appearance to the camera and others from a faraway angle.
The dataset has the multiclass distribution shown in Figure 3a. It can be deduced from
the figure that the six classes do not have an equal distribution, thus making the learning
process challenging, especially for the smaller classes. Samples from the training dataset
are shown in Figure 3b. The Sohas_weapon training dataset is used to train different
YOLOv5 object detection models, each for 200 epochs, and tested using the preset test data.
A comparison between the models and the results will be presented in the following section
and, accordingly, the choice of the best model for detection in our real-time surveillance
system will be deduced.

Frame Selection and Object Detection

Since the proposed model is based on a real-time surveillance application that detects
the presence of weapons, it is critical to choose an object detection model that has both high
accuracy and detection rate. Most object detection methods are known to be computation-
ally expensive, therefore the proposed AI model had to be built using a lightweight detector
to best accommodate the real-time system. In the proposed model, several experiments
were conducted to assess versions of YOLOv5, as will be shown in the upcoming section,
that was designed by [14] to suit the needs of edge computing, namely, the YOLOv5n.
Benchmark comparisons of YOLOv5 versions have shown that it outperformed its prede-
cessors and other famous object detectors. Furthermore, our experiments included two
more lightweight updates to YOLOv5 that were presented by [26] as YOLOv5-lite e and
YOLOv5-lite s. Both lightweight versions were proposed as updates to the YOLOv5 by
adding a shuffle channel and removing the focus layer and some of the slice operations,
thus resulting in a faster, easy-to-deploy model with an acceptable accuracy.

When analyzing the proposed deep learning model, the time taken by the detection
phase to analyze a single frame is the aspect upon which the keyframes to be converted are
chosen. Therefore, the speed of the detection phase has a direct influence on the number of

Sensors 2022, 22, 5075 8 of 22

keyframes that could be extracted every second from the video stream. Further analysis
will be illustrated in the following section of the models addressed, and the suitable number
of keyframes selected per second will be deducted.

(a)

(b)

Figure 3. SOHAs_weapons dataset. (a) Class distribution of training dataset. (b) Sample images
from the dataset.

Control

Each chosen frame is assessed as to whether or not a weapon is detected. If no
weapons exist then the frame selection from the video stream and weapon detection
process continues. On the other hand, in case a weapon is detected, the current frame is
sent to the AI control with a bounding box of the detected weapon, and the current frame,
along with a subsequent number of frames retrieved from the video stream, is then sent to
the OpenFlow switch.

2.2.3. SDN Core Network

The SDN network is composed of a set of interconnected OpenFlow switches. The switches
communicate with the RYU controller with the OpenFlow protocol. The RYU controller was
chosen for the following reasons [27]:

• It contains a separate module for QoS.
• RYU extensively supports OVSDB protocol through a library using which REST

applications could be built to configure the database of OVS.
• RYU was implemented in Python programming language, which facilitated quick

prototyping to design our intelligent QoS framework.
• Since RYU supports the OVSDB configuration protocol, it is suitable for our open-

source software switch i.e., Open vSwitch (OVS) used within our framework.

Sensors 2022, 22, 5075 9 of 22

Our developed application explores the meters entity defined in the OpenFlow proto-
col, starting from version 1.3, to dynamically control the allocation of available bandwidth
between different traffic flows. In our work, we define three classes: class 1 for video traffic,
class 2 for VoIP traffic, and class 3 is best-effort traffic. Initially, we define the minimum
required bandwidth for each class as a percentage of the available bandwidth, so that the
total bandwidth required of the three classes equals the defined bandwidth of links, giving
initially higher weight to class 1 (video traffic flow). However, we proved through simula-
tion, that even in the case that class 1 was not given higher weight in the initial bandwidth
allocation phase of the algorithm, it will soon collect the free bandwidth available from the
remaining classes, as class 1 has higher priority in a collection of free bandwidth. The incom-
ing flow is classified into one of the three predefined classes based on the destination port
number. Once the topology starts, OpenFlow switches communicate with the controller
and get registered. At that time, the controller sends a message to install the meter table for
each OpenFlow switch as instructed by the QoS application. Upon the arrival of a packet,
the packet is classified based on the destination port number and is assigned the meter
id corresponding to its class. Then, the flow is inserted in the flow table with the meter
id added to the action field. Traffic exceeding the meter-configured bandwidth will be
dropped. The operation of the QoS application is explained in Algorithms 1–3.

Algorithm 1 Adaptive Quality of Service Algorithm: Initialization Phase
i← Number of traffic flow classes
For each class of traffic flow i do
Allocate bandwidth ABWi = wi · bw : ∑k=i

k=1 wk · bw= bw
∀ OpenFlow Switches do Install meter table
Start S seconds countdown timer (Mtimer) for meter table monitoring module

Algorithm 2 Adaptive Quality of Service Algorithm: Operation Phase
For each Packet In do
Classify traffic flow & assign meter-id for that flow based on Destination Port Number
Insert flow in flowtable with meter id in the action field

Algorithm 3 Adaptive Quality of Service Algorithm: Adaptation Phase
if Mtimer expires then
∀ switches do
Collects meter table statistics (used bandwidth, free bandwidth, dropped)
if adaptation timer expires then ∀meter m ∈ {meters}
if Required bandwidth > allocated bandwidth + safety margin
then add m to set of hungry meters
if Required bandwidth < allocated bandwidth + safety margin
then calculate free bandwidth for this meter
Reconfigure meter table by reassigning free bandwidth to hungry meters based on traffic
class priority

3. Results and Discussion
3.1. Evaluation of Proposed AI Model

The evaluation of the proposed AI model is crucial to the assessment of the proposed
system as it will directly affect its applicability to real-time video surveillance. This subsec-
tion will first discuss the evaluation metrics of the deep learning-based models then the
results obtained will be presented and discussed.

3.1.1. Object Detection Evaluation Metrics

To evaluate the performance of the object detection model, several metrics were
applied namely: precision (P), recall (R), and mean average precision (mAP) [28]. Precision

Sensors 2022, 22, 5075 10 of 22

indicates the percentage of the true positive (TP) predictions from all the labels predicted
as positive (whether True (TP) or False (FP)). The equation is given by

P =
TP

TP + FP
. (1)

Recall measures the model’s capability of predicting the positive label. Thus, it
calculates the percentage of the TP from all those images actually labeled as positive
(whether True (TP) or False (FN)) following the equation:

R =
TP

TP + FN
. (2)

Furthermore, the mAP metric is one of the most important metrics when assessing
object detection models. The mAP is the mean of the average precisions calculated for each
class given a specific threshold. The threshold sets the value for the intersection over union
(IoU) for the prediction. If the IoU is higher than the threshold then the classification is
counted as a true positive. Otherwise it is classified as a false positive. If an object is not
detected, then it is counted as a false negative.

3.1.2. Object Detection Results

Using the SOHAs weapon training dataset, three lightweight versions of YOLOv5
were trained each for 200 epochs, to assess their performance. The three trained models
were then tested using the 857 test images and the results are as shown in Table 2. For each
model, the precision, recall, and mAP at a threshold value of 0.5 are reported and it
can be seen that the YOLOv5n model has resulted in the highest mAP in almost all the
classes, specifically the pistol and knife classes which represent the critical classes for
our application.

Table 2. Testing results of object detection algorithms.

YOLOv5n YOLOv5-lite e YOLOv5-lite s
Class Labels P R mAP P R mAP P R mAP

@0.5 @0.5 @0.5

all 857 0.88 0.80 0.88 0.78 0.79 0.83 0.79 0.83 0.84
pistol 85 0.79 0.95 0.95 0.74 0.88 0.87 0.70 0.92 0.88
smartphone 140 0.95 0.79 0.90 0.94 0.73 0.90 0.91 0.82 0.92
knife 452 0.97 0.86 0.96 0.89 0.87 0.93 0.93 0.90 0.95
purse 71 0.79 0.73 0.77 0.68 0.70 0.75 0.69 0.77 0.70
bill 52 0.85 0.85 0.93 0.85 0.88 0.90 0.85 0.89 0.93
card 57 0.95 0.60 0.76 0.59 0.67 0.61 0.67 0.70 0.66

Table 3 shows the number of parameters of the three lightweight models and shows
that YOLOv5-lite s and YOLOv5n are of almost similar size. Article [10] presented a com-
parison of different lightweight object detectors and has shown that the most recent models
such as MobileNetv3, OFA, and MobileViT-S need to train 5.4, 7.7, and 5.6 million parame-
ters respectively. Since the application is real-time surveillance, therefore the number of
parameters will have a direct effect on the inference time. Article [26] has reported that the
YOLOv5-lite s were tested on the Raspberrypi 4B and resulted in an average of 84ms per
frame. Accordingly, the frame rate processed in this application could not exceed 10 frames
per second when applying the selected model on the Raspberrypi 4B.

Table 3. Charactersitics of different edge suitable yolo models.

Model Number of Parameters

YOLOv5-lite e 0.72 M
YOLOv5-lite s 1.55 M

YOLOv5n 1.77 M

Sensors 2022, 22, 5075 11 of 22

Figure 4 shows a sample of the output of the testing results. The image on the left
shows a true positive detection of a knife with a confidence of 0.8, and the image on the
right shows a true positive detection of a pistol with a confidence of 0.9. The centered
image shows a false negative detection of the edge of the table as a knife and a true positive
detection of a smartphone. The confusion matrix of the test results is also presented in
Figure 5, showing the diagonal as all the correct classifications and the other cells presenting
the misclassified samples either as other classes, or false detections, or not discovered.

Figure 4. Sample of objects detected by YOLOv5n with their confidence.

Figure 5. Confusion matrix showing the results distribution among all class when employing
YOLOv5n model.

3.2. Adaptive QoS Framework Evaluation

In this subsection, we present and discuss the experimental results of our adaptive
SDN-based QoS framework. Our adaptive QoS framework was evaluated using Mininet
software [29]. Mininet is an open-source network emulator that permits users to build
virtual software-defined networks composed of an OpenFlow controller, a network of mul-
tiple OpenFlow-based Ethernet switches, and multiple hosts connected to those switches.
The SDN controller involved in the emulated platform is the open-source RYU for the
reasons discussed previously. In addition, the iPerf tool is deployed. For UDP traffic, using
iPerf, a client can create UDP streams of specified bandwidth and can measure packet loss,
delay, and jitter. The VLC software is deployed to perform the video streaming. Wireshark
software is running in the background to capture packets of different traffic flows for
performance metric calculation and analysis.

Sensors 2022, 22, 5075 12 of 22

3.2.1. Performance Metrics

Three performance metrics were used to evaluate our proposed SDN-based adaptive
QoS framework, namely: mean jitter, packet loss, and average throughput.

Jitter

Jitter is defined as a variation in the delay of received packets as shown in
Equation (3), where Dj represents the delay experienced by the j-th packet. The difference
in transit time between two consecutive packets of the tagged flow can be written as

J(j) = Dj+1 − Dj, (3)

The average end-to-end delay jitter is then given by the expected absolute value of
this random variable as in Equation (4)

J = E[|Dj+1 − Dj|], (4)

3.2.2. Scenario 1

The set of experimental results was conducted over the network setup illustrated in
Figure 6, and using software packages presented in Table 4. The first set of experiments
compares two cases, namely: the case of applying an adaptive QoS framework, and the case
of not applying any QoS techniques. In this scenario, a topology consisting of ten hosts and
six OpenFlow switches was built, and the initialization phase is carried out as illustrated
in Table 5. In Table 5, the initial bandwidth allocated to each traffic class is carried out by
configuring three meters with three different bands on each OpenFlow switch. As explained
before, each meter is allocated a percentage of the available bandwidth. Afterward, four
traffic flows were generated as follows:

1. A VoIP server runs on port 6000 on H7, and best-effort (BE) server runs on port
7000 on H10 using iperf commands as follows: h7.cmd(’iperf -u -s -p 6000 -i 10 >
h7cls2_Server.log &’); h10.cmd(’iperf -u -s -p 7000 -i 10 > h10be_server.log &’)

2. A four-parallel VoIP client streams run on H4 and BE client runs on H3 using iperf
commands as follows: h4.cmd(’iperf -u -c 10.0.1.7 -p 6000 -P 4 -b 3M -i 10 -t 120 >
h4_iperf_cls2_client.log &’); h3 cmd(’iperf -u -c 10.0.1.10 -p 7000 -b 5M -i 10 -t 120 >
h3_iperf_be_client.log &’)

3. Start two parallel video streaming clients over RTP on H2 and H1 each required BW 1
Mbps using VLC commands

4. Start RTP servers on H8 and H9 which listen on Port 5004 using VLC commands

Figure 6. Network setup used in evaluation.

Sensors 2022, 22, 5075 13 of 22

Table 4. Software versions used in framework evaluation.

Software Description

Python 2.7.18 Programming Language
Linux Host OS

VLC 3.0.11.1 Media Player
Open vSwitch 2.13.3 Virtual multilayer switch with OpenFlow support

ubuntu 20.1 Virtual Machine
RYU Controller SDN Controller

Mininet 2.3.1 Network Emulator
Wireshark 3.2.7 Packet Capture Tool

iperf 2.0.13 Network testing tool

Table 5. Scenario 1 Initialization Phase.

Destination Port
Number Used for

Classification
Defined Classes Meter-ID Meter-Band

Dest. Port number 5004 Class 1 Video Streaming
Traffic Flow 1 0.5 · BW = 5 Mbps

Dest. Port number 6000 Class 2 VoIP Traffic Flow 2 0.25 · BW = 2.5 Mbps

Dest. Port number 7000 Class 3 Best-Effort
Traffic Flow 3 0.25 · BW = 2.5 Mbps

Table 6 shows sample calculations for the adaptation phase for Scenario 1. The free
bandwidth of meter 1 is reassigned to meter 2 even if meter 2 and meter 3 are both hungry
for bandwidth. However, meter 2 has a priority according to our priority strategy that gives
priority to class 2 traffic over class 3 traffic. Later on in the simulation, when class 2 is not
in the hungry-for-bandwidth list, free bandwidth can be allocated to class 3, i.e., BE traffic
flow. In Table 7, a comparison of the results of the mean jitter and number of lost packets
for video streaming traffic flows in both cases, with and without applying the proposed
adaptive QoS framework, is displayed. As depicted in Table 7, our proposed adaptive
QoS framework decreases the number of lost packets by an average of 7.85% for video
streaming traffic flows and improves the mean jitter for video streaming traffic flows by
8.4%. Figure 7 presents the jitter results for video streaming traffic flow. Improvement of
22% in average throughput for VoIP traffic and 75% in average throughput for BE traffic is
illustrated in Table 8. In addition, as illustrated in Figure 8, throughput reaches a maximum
of 3 Mbps for video streaming traffic flow in the case of applying the proposed adaptive
QoS framework versus a maximum of 2 Mbps without the proposed framework. Moreover,
the throughput of VoIP improved to reach 10 Mbps in the case of applying the proposed
adaptive QoS framework versus a maximum of 8 Mbps without the proposed framework
as depicted in Figure 9. Finally, in case of BE traffic, there is improvement in the throughput
as shown in Figure 10. It should be noted that improvement of performance metrics for
VoIP traffic and BE traffic occurs even before termination of video streaming sessions at
time 30, as video streaming requirements in terms of bandwidth was lower than allocated
bandwidth in this scenario.

Table 6. Scenario 1 Adaptation Phase.

Class-ID Allocated Bandwidth
(ABW)

Required Bandwidth
(RBW) Free Bandwidth

1 5 Mbps Each video stream
requires 1 Mbps 3 Mbps

2 2.5 Mbps Each VoIP client stream
requires 3 Mbps 0 Mbps

3 2.5 Mbps 5 Mbps 0 Mbps

Sensors 2022, 22, 5075 14 of 22

(a)

(b)

Figure 7. Jitter obtained in Scenario 1 in case of applying and without applying the proposed adaptive
QoS model for 30-seconds video streaming traffic flow (a) Jitter obtained in Scenario 1 in case of
applying the proposed adaptive QoS model, (b) Jitter obtained in Scenario 1 without applying the
proposed adaptive QoS model.

(a)

(b)

Figure 8. Throughput obtained in Scenario 1 in case of applying and without applying the proposed
adaptive QoS model for 30-seconds video streaming traffic flow (a) Throughput obtained in Scenario
1 in case of applying proposed model, (b) Throughput obtained in Scenario 1 without applying the
proposed adaptive QoS model.

Sensors 2022, 22, 5075 15 of 22

(a)

(b)

Figure 9. Throughput obtained in Scenario 1 in case of applying and without applying proposed
adaptive QoS model for 120-seconds VoIP traffic flow (a) Throughput obtained in Scenario 1 in case of
applying the proposed adaptive QoS model, (b) Throughput obtained in Scenario 1 without applying
the proposed adaptive QoS model.

(a)

(b)

Figure 10. Throughput obtained in Scenario 1 in case of applying and without applying the proposed
adaptive QoS model for 120-s BE traffic flow (a) Throughput obtained in Scenario 1 in case of applying
the proposed adaptive QoS model, (b) Throughput obtained in Scenario 1 without applying the
proposed adaptive QoS model.

Sensors 2022, 22, 5075 16 of 22

Table 7. Scenario 1 Video Streaming Performance Results.

Traffic Flow Mean Jitter in
Case of AQoS

Mean Jitter in
Case QoS Not

Applied

% of Lost Packets
in Case of AQoS

% of Lost Packets
in Case of AQoS

not Applied

Class 1 Video
Streaming 3.6 ms 3.8 ms 0.3% 8.4%

Class 1 Video
Streaming 3.5 ms 3.9 ms 0.4% 8.0%

Table 8. Scenario 1 Throughtput Results.

Average Throughput In Case of Adaptive QoS In Case QoS Not Applied

In case of VoIP 9.2 Mbps 7.1 Mbps
In case of BE 7.4 Mbps 1.8 Mbps

3.2.3. Scenario 2

In this scenario, we deploy the same topology tested in Scenario 1 with a different
initialization phase as defined in Table 9. This scenario aims to investigate the impact of
the initial allocation of bandwidth on performance in case it was not in favor of video
streaming traffic flow. Table 10 shows sample calculation for the adaptation phase for
Scenario 2. In Table 11, a comparison of the results of the jitter and number of lost packets
for video streaming traffic flows in both cases, with and without the proposed adaptive
QoS framework, is given. As illustrated in Table 11, our proposed adaptive QoS framework
decreases the number of lost packets by an average of 7% for video streaming traffic flows
and improves the mean jitter for video streaming traffic flows by 14.7% even if the initial
allocation was not in favor of the video streaming traffic. This results in reassignment
of free bandwidth to the video traffic as it has the highest priority when reassigning free
bandwidth. Figure 11 shows the jitter result for video streaming traffic flow. In addition,
improvement in throughput for VoIP and BE traffic can be deduced from Figures 12 and 13
respectively. In the case of VoIP average throughput of 9.6 Mbps and 5.2 Mbps in case of
BE traffic compared to 7.1 Mbps and 1.8 Mbps with a 26% improvement in the case of VoIP
and 64% in case of BE as depicted in Table 12.

Table 9. Scenario 2 Initialization Phase.

Destination Port
Number Used for

Classification
Defined Classes Meter-ID Meter-Band

Dest. Port number 5004 Class 1 Video Streaming
Traffic Flow 1 0.1 · BW = 1 Mbps

Dest. Port number 6000 Class 2 VoIP Traffic Flow 2 0.1 · BW =1 Mbps

Dest. Port number 7000 Class 3 Best-Effort
Traffic Flow 3 0.8 · BW = 8 Mbps

Table 10. Scenario 2 Adaptation Phase.

Class-ID Configured Bandwidth
(CBW)

Required Bandwidth
(RBW) Free Bandwidth

1 1 Mbps 2 Mbps 0 Mbps

2 1 Mbps Each VoIP client stream
requires 3 Mbps 0 Mbps

3 8 Mbps 5 Mbps 3 Mbps

Sensors 2022, 22, 5075 17 of 22

(a)

(b)

Figure 11. Jitter obtained in Scenario 2 in case of applying and without applying proposed adaptive QoS
model for 30-s video streaming traffic flow, (a) jitter obtained in Scenario 2 in case of applying proposed
model, (b) Jitter obtained in Scenario 2 without applying proposed adaptive QoS model.

(a)

(b)

Figure 12. Throughput obtained in Scenario 2 in case of applying and without applying proposed
adaptive QoS model for 120-s VoIP traffic flow, (a) Throughput obtained in Scenario 2 in case
of applying proposed model, (b) Throughput obtained in Scenario 2 without applying proposed
adaptive QoS model.

Sensors 2022, 22, 5075 18 of 22

(a)

(b)

Figure 13. Throughput obtained in Scenario 2 in case of applying and without applying proposed
adaptive QoS model for 120-s BE traffic flow, (a) Throughput obtained in Scenario 2 in case of applying
proposed model, (b) Throughput obtained in Scenario 2 without applying proposed adaptive QoS
model for 120-seconds BE traffic flow.

Table 11. Scenario 2 Video Streaming Performance Results.

Traffic Flow Mean Jitter in
Case of AQoS

Mean Jitter in
Case QoS Not

applied

% of Lost Packets
in Case of AQoS

% of Lost Packets
in Case of AQoS

not Applied

Class 1 Video
Streaming 3.2 ms 3.9 0 7.2%

Class 1 Video
Streaming 3.4 ms 3.8 0 6.9%

Table 12. Scenario 2 Throughtput Results.

Average Throughput In Case of Adaptive QoS In Case QoS Not Applied

In case of VoIP 9.6 Mbps 7.1 Mbps
In case of BE 5.2 Mbps 1.8 Mbps

3.2.4. Scenario 3

In this scenario, we investigate the impact of increasing the number of parallel video
streaming sessions on the performance of our proposed adaptive QoS framework. In this
scenario, we increased the number of parallel video streaming to four. Results revealed
an improvement in packet loss, by 32.5% compared to the case without applying the
proposed QoS model. Although in this scenario the mean jitter is in favor of the case of not
applying the QoS model as shown in Table 13, the higher packet loss percentage makes
our proposed model performance higher because the mean jitter, in this case, is calculated
on a 32.5% lower number of packets due to this percentage of packet loss. In addition,
improvement in throughput for VoIP and BE traffic can be deduced from Figure 14 and
Figure 15, respectively. In the case of VoIP, an average throughput of 9.4 Mbps, and
4.6 Mbps in the case of BE traffic was observed, compared to 7 Mbps and 2 Mbps with a
25.5% improvement in the case of VoIP and 56.5%, respectively, in case of BE as depicted in
Table 14.

Sensors 2022, 22, 5075 19 of 22

(a)

(b)

Figure 14. Throughput obtained in Scenario 3 in case of applying and without applying proposed
adaptive QoS model for 120-seconds VoIP traffic flow, (a) Throughput obtained in Scenario 3 in case
of applying proposed model, (b) Throughput obtained in Scenario 3 without applying proposed
adaptive QoS model.

(a)

(b)

Figure 15. Throughput obtained in Scenario 3 in case of applying and without applying proposed
adaptive QoS model for 120-seconds BE traffic flow (a) Throughput obtained in Scenario 3 in case
of applying proposed model, (b) Throughput obtained in Scenario 3 without applying proposed
adaptive QoS model.

Table 13. Scenario 3 Performance Results in case of 4-parallel video streaming session.

Mean Jitter in Case of
Adaptive QoS

% of Lost Packets in
Case of AQoS

Mean Jitter In Case
QoS Not Applied

% of Lost Packets in
Case of AQoS Not

Applied

7.7 ms 12.8% 7.0ms 18.9%

Sensors 2022, 22, 5075 20 of 22

Table 14. Scenario 3 Performance Results.

Average Throughput In Case of Adaptive QoS In Case QoS Not Applied

In case of VoIP 9.4 Mbps 7.0 Mbps
In case of BE 4.6 Mbps 2.0 Mbps

4. Conclusions

In this work, we proposed an intelligent adaptive QoS framework to support video
streaming in IoT environments. We deployed detecting weapons in video surveillance
systems as our case study. The proposed framework integrates deep-learning AI models
deployed at the edge with the SDN paradigm to support multimedia traffic constraints.
A deep learning-based weapon detection model was presented and evaluated using preci-
sion, recall, and mean average precision to detect any keyframes including weapons and,
accordingly, the proposed AI model would transmit them. The results showed that the
YOLOv5n model outperformed YOLOv5-lite e and YOLOv5-lite s. Evaluation of the pro-
posed adaptive QoS model revealed improvements in performance in terms of jitter, packet
loss, and average throughput in all scenarios studied. The improvement was due to several
reasons. First, the AI model used at the edge decreases the demand for extensive bandwidth
usage due to the reduction of the size of the video surveillance file to be transmitted and
sending only the scenes containing weapons. Second, leveraging the SDN paradigm helped
the adaptation phase of the algorithm to succeed in all scenarios due to the global view of
the network the SDN paradigm offers. In the future, we will investigate the differences
between the theoretical and real-world performance of the proposed model. There is also
room for improvement of the weapon detection results achieved by the YOLOv5n model
while maintaining the real-time constraints. Moreover, in the context of SDN, we will
investigate if the placement of SDN controllers and the number of SDN controllers have
any impact on the performance.

Author Contributions: Conceptualization, C.F. and S.N.S.; methodology, C.F. and S.N.S.; software,
C.F. and S.N.S.; validation, C.F. and S.N.S.; formal analysis, C.F. and S.N.S.; investigation, C.F. and
S.N.S.; resources, C.F. and S.N.S.; writing—original draft preparation, C.F. and S.N.S.; writing—review
and editing, C.F. and S.N.S.; visualization, C.F. and S.N.S.; project administration, C.F. All authors
have read and agreed to the published version of the manuscript’, please check.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: SOHAs weapon dataset: https://github.com/ari-dasci/OD-WeaponDe
tection/tree/master/Weapons%20and%20similar%20handled%20objects, accessed on: 25 May 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
BE Best-effort (BE)
CAGR Compound Annual Growth Rate
C-DPI Controller-Data Plane Interface
DiffServ Differentiated Service
IoMT Internet of Multimedia Things
ITS Intelligent Transportation Systems
IoT Internet of Things
IP Internet Protocol
IntServ Integrated Service

https://github.com/ari-dasci/OD-WeaponDetection/tree/master/Weapons%20and%20similar%20handled%20objects
https://github.com/ari-dasci/OD-WeaponDetection/tree/master/Weapons%20and%20similar%20handled%20objects

Sensors 2022, 22, 5075 21 of 22

M2M Machine to Machine
OVSDB Open vSwitch Database
OVS Open vSwitch
QoS Quality of Service
QoE Quality of Experience
REST REpresentational State Transfer
SDN Software Defined Networks
SDIoT-Edge Software-Defined Internet of Things-Edge
SAN Smart Access Nodes

References
1. 2021 Global Networking Trends Report. 2021. Available online: https://www.lazorpoint.com/hubfs/eBooks/2021-networking%

20report.pdf (accessed on 21 December 2021).
2. Cisco Annual Internet Report (2018–2023). 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/execu

tive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 21 December 2021).
3. Research, A.M. Video Surveillance Market by System Type, Component, Application, Enterprise Size, and Customer Type:

Opportunity Analysis and Industry Forecast, 2019–2027. Available online: https://www.alliedmarketresearch.com/Video-Surve
illance-marketl (accessed on 21 December 2021).

4. Silva, H.; Neto, A. A holistic SDN-capable session-plane tailored for efficient IoMT smart surveillance applications. In Proceedings
of the 2016 IEEE Globecom Workshops, GC Wkshps, Washington, DC, USA, 4–8 December 2016. [CrossRef]

5. Narejo, S.; Pandey, B.; Rodriguez, C.; Anjum, M.R.; Esenarro Vargas, D. Weapon detection using YOLO V3 for smart surveillance
system. Math. Probl. Eng. 2021, 2021, 9975700. [CrossRef]

6. Bhatti, M.T.; Khan, M.G.; Aslam, M.; Fiaz, M.J. Weapon detection in real-time cctv videos using deep learning. IEEE Access 2021,
9, 34366–34382. [CrossRef]

7. Pérez-Hernández, F.; Tabik, S.; Lamas, A.; Olmos, R.; Fujita, H.; Herrera, F. Object detection binary classifiers methodology
based on deep learning to identify small objects handled similarly: Application in video surveillance. Knowl.-Based Syst. 2020,
194, 105590. [CrossRef]

8. Tian, G.Y.; Al-Qubaa, A.; Wilson, J. Design of an electromagnetic imaging system for weapon detection based on GMR sensor
arrays. Sens. Actuators A Phys. 2012, 174, 75–84. [CrossRef]

9. Debnath, R.; Bhowmik, M.K. A comprehensive survey on computer vision based concepts, methodologies, analysis and
applications for automatic gun/knife detection. J. Vis. Commun. Image Represent. 2021, 78, 103165. [CrossRef]

10. Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A survey of modern deep learning based object detection
models. In Digital Signal Processing; Elsevier: Amsterdam, The Netherlands, 2022; p. 103514.

11. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

12. Kasper-Eulaers, M.; Hahn, N.; Berger, S.; Sebulonsen, T.; Myrland, Ø.; Kummervold, P.E. Detecting heavy goods vehicles in rest
areas in winter conditions using YOLOv5. Algorithms 2021, 14, 114. [CrossRef]

13. Khalil, S.S.; Youssef, S.M.; Saleh, S.N. iCaps-Dfake: An integrated capsule-based model for deepfake image and video detection.
Future Internet 2021, 13, 93. [CrossRef]

14. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; TaoXie; Fang, J.; Imyhxy; Michael, K.; et al.
Ultralytics/Yolov5: v6.1—TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference; Zenodo: Geneva, Switzerland, 2022.
[CrossRef]

15. Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
Sensors 2022, 22, 464. [CrossRef] [PubMed]

16. Kreutz, D.; Ramos, F.M.V.; Veríssimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking: A
Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]

17. Karakus, M.; Durresi, A. Quality of Service (QoS) in Software Defined Networking (SDN): A survey.ppl. J. Netw. Comput. A017
2017, 80, 200–218. [CrossRef]

18. Baldoni, G.; Melita, M.; Micalizzi, S.; Rametta, C.; Schembra, G.; Vassallo, A. A dynamic, plug-and-play and efficient video
surveillance platform for smart cities. In Proceedings of the 2017 14th IEEE Annual Consumer Communications and Networking
Conference, CCNC 2017, Las Vegas, NV, USA, 8–11 January 2017; pp. 611–612. [CrossRef]

19. Boley, J.M.; Jung, E.S.; Kettimuthu, R. Adaptive QoS for data transfers using software-defined networking. In Proceedings of the
2016 IEEE International Conference on Advanced Networks and Telecommunications Systems, ANTS 2016, Brussels, Belgium,
7–9 September 2016. [CrossRef]

20. Rametta, C.; Baldoni, G.; Lombardo, A.; Micalizzi, S.; Vassallo, A. S6: A Smart, Social and SDN-based Surveillance System for
Smart-cities. Procedia Comput. Sci. 2017, 110, 361–368. [CrossRef]

21. Latif, W.A.; Tan, C.C. SmartArgos: Improving mobile surveillance systems with software defined networks. In Proceedings of the
2015 IEEE Conference on Communications and NetworkSecurity, CNS 2015, Florence, Italy, 28–30 September 2015; pp. 763–764.
[CrossRef]

https://www.lazorpoint.com/hubfs/eBooks/2021-networking%20report.pdf
https://www.lazorpoint.com/hubfs/eBooks/2021-networking%20report.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.alliedmarketresearch.com/Video-Surveillance-marketl
https://www.alliedmarketresearch.com/Video-Surveillance-marketl
http://doi.org/10.1109/GLOCOMW.2016.7848814
http://dx.doi.org/10.1155/2021/9975700
http://dx.doi.org/10.1109/ACCESS.2021.3059170
http://dx.doi.org/10.1016/j.knosys.2020.105590
http://dx.doi.org/10.1016/j.sna.2011.11.034
http://dx.doi.org/10.1016/j.jvcir.2021.103165
http://dx.doi.org/10.3390/a14040114
http://dx.doi.org/10.3390/fi13040093
http://dx.doi.org/10.5281/zenodo.6222936
http://dx.doi.org/10.3390/s22020464
http://www.ncbi.nlm.nih.gov/pubmed/35062425
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1016/j.jnca.2016.12.019
http://dx.doi.org/10.1109/CCNC.2017.7983190
http://dx.doi.org/10.1109/ANTS.2016.7947874
http://dx.doi.org/10.1016/j.procs.2017.06.078
http://dx.doi.org/10.1109/CNS.2015.7346924

Sensors 2022, 22, 5075 22 of 22

22. Rego, A.; Canovas, A.; Jimenez, J.M.; Lloret, J. An Intelligent System for Video Surveillance in IoT Environments. IEEE Access
2018, 6, 31580–31598. [CrossRef]

23. Rafique, W.; Qi, L.; Yaqoob, I.; Imran, M.; Rasool, R.U.; Dou, W. Complementing IoT Services through Software Defined
Networking and Edge Computing: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 1761–1804. [CrossRef]

24. Baktir, A.C.; Ozgovde, A.; Ersoy, C. How Can Edge Computing Benefit From Software-Defined Networking: A Survey, Use
Cases, and Future Directions. IEEE Commun. Surv. Tutor. 2017, 19, 2359–2391. [CrossRef]

25. Salman, O.; Elhajj, I.; Chehab, A.; Kayssi, A. IoT survey: An SDN and fog computing perspective. Comput. Netw. 2018,
143, 221–246. [CrossRef]

26. Chen, X.; Gong, Z. YOLOv 5-Lite: Lighter, Faster and Easier to Deploy. 2021. Available online: https://pythonawesome.com/yo
lov5-lite-lighter-faster-and-easier-to-deploy/ (accessed on 25 May 2022).

27. Ryu. Ryu Documentation 2016. p. 490. Available online: https://ryu.readthedocs.io/en/latest/ (accessed on 25 May 2022).
28. Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to Data Mining; Pearson Education: Bengaluru, India, 2016.
29. Kaur, K.; Singh, J.; Ghumman, N. Mininet as Software Defined Networking Testing Platform. In Proceedings of the International

Conference on Communication, Computing & Systems (ICCCS), Punjab, India, 8–9 August 2014.

http://dx.doi.org/10.1109/ACCESS.2018.2842034
http://dx.doi.org/10.1109/COMST.2020.2997475
http://dx.doi.org/10.1109/COMST.2017.2717482
http://dx.doi.org/10.1016/j.comnet.2018.07.020
https://pythonawesome.com/yolov5-lite-lighter-faster-and-easier-to-deploy/
https://pythonawesome.com/yolov5-lite-lighter-faster-and-easier-to-deploy/
https://ryu.readthedocs.io/en/latest/

	Introduction
	Materials and Methods
	OpenFlow Required Background
	Proposed Model Architecture
	IoT Device Layer
	Edge Computing Device Layer
	SDN Core Network

	Results and Discussion
	Evaluation of Proposed AI Model
	Object Detection Evaluation Metrics
	Object Detection Results

	Adaptive QoS Framework Evaluation
	Performance Metrics
	Scenario 1
	Scenario 2
	Scenario 3

	Conclusions
	References

