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Abstract: Underwater fish monitoring is the one of the most challenging problems for efficiently
feeding and harvesting fish, while still being environmentally friendly. The proposed 2D computer
vision method is aimed at non-intrusively estimating the weight of Tilapia fish in turbid water
environments. Additionally, the proposed method avoids the issue of using high-cost stereo cameras
and instead uses only a low-cost video camera to observe the underwater life through a single
channel recording. An in-house curated Tilapia-image dataset and Tilapia-file dataset with various
ages of Tilapia are used. The proposed method consists of a Tilapia detection step and Tilapia weight-
estimation step. A Mask Recurrent-Convolutional Neural Network model is first trained for detecting
and extracting the image dimensions (i.e., in terms of image pixels) of the fish. Secondly, is the Tilapia
weight-estimation step, wherein the proposed method estimates the depth of the fish in the tanks
and then converts the Tilapia’s extracted image dimensions from pixels to centimeters. Subsequently,
the Tilapia’s weight is estimated by a trained model based on regression learning. Linear regression,
random forest regression, and support vector regression have been developed to determine the
best models for weight estimation. The achieved experimental results have demonstrated that the
proposed method yields a Mean Absolute Error of 42.54 g, R2 of 0.70, and an average weight error of
30.30 (±23.09) grams in a turbid water environment, respectively, which show the practicality of the
proposed framework.

Keywords: non-intrusive methods; aquaculture; weight estimation; deep learning; machine vision

1. Introduction

Thailand’s economy has been generally based on agriculture production, with the
sector employing around one-third of the country’s labour force. Aquaculture production
in Thailand has continuously increased since 1995 [1]. Fish are a healthy food that are
an excellent source of protein, minerals, and essential nutrients. This leads to enormous
demand that exceeds the production capacity. Therefore, the development of fish farming
with modern technology will improve fish monitoring operations to efficiently feed and
harvest fish, while also being environmentally friendly. In addition, non-contact measure-
ments of fish body size and weight will reduce stress and injury to the fish. This research is
the first step of modern fish farming in Thailand to measure fish weight by non-intrusive
methods. Modern aquaculture has rapidly developed in recent years. Extensive expansion
of traditional aquaculture has resulted in it being transformed into modern 5G aquacul-
ture by automatic and precise task-based machines. The machines perform classification,
prediction, and estimation, and have many benefits, including reducing operational time.
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Fish weight estimation is one of the most challenging problems in aquacultural applica-
tions. Recent methods of fish weight estimation have been proposed, as in Ref. [2], which is
comprised of three components: the simplified VGG module, the multi-dilated convolution
module, and the squeeze-excitation module (SE). In Ref. [3], the fish biomass estimation
has employed an Arduino board to measure live-fish weights for in-land facilities or off-
shore cages. Fish size is a crucially essential parameter for estimating fish weight through
different growth stages. Machine vision provides an automatic and effective approach for
measuring size where special cameras are required for capturing free-swimming fishes. For
example, stereovision system [4] stereo cameras have been used for distance measurements
and the capture of fish in a tank, which the CNNs method use for fish detection and a
regression method predicts the fish’s weight. Stereo cameras were set for capturing images
of fish. The Nile Tilapia weight prediction method performs fish detection via image
processing techniques and depth calculation, which is given by stereo frames through
disparity values. The length estimation was estimated from the contour of the fish, then it
is converted into pixel length in metric units by using disparity information. Polynomial
regression was used for computing the weight of fish given by the estimated length of
the fish. The strength of the regression principle is the simplicity of development and
low computational complexity. Six cameras were set at a fixed distance—with three being
near-infrared cameras and three being general cameras [5]—where a deep convolutional
neural network (DCNN) estimated fish weight from the length, weight, and girth of the
fish. The residual neural network (ResNet) and LinkNet for segmenting fish images then
estimate the weight from the area of the detected fish [6]. Machine learning approaches for
predicting animal weight can be categorized into two groups, which are regression learning
and deep learning. The regression approach has been broadly used to develop models for
the prediction of body weight. Regression learning for weight prediction requires animal
features that are significantly related to weight to be used for learning. Thus, animal feature
identification is essential to a model for learning and accurately predicting the animal’s
weight. For example, thirty attributes of sheep are used from images, i.e., shape, size, and
angles with k-curvature, in Ref. [7]. Eight regression models were used and extracted for
the regression models. These are linear regression (LR), support vector regression (SVR),
K-neighbors regression (KNR), multi-layer perceptron regression (MLPR), light Gradient
boosting machine (GBM), extreme gradient boost regression (XGBR), Gradient boosting
regression (GBR), and random forest regression (RFR). The research found that RFR yields
the best result with an R2 at 0.687. In Ref. [8], the weight-prediction-method-based classifi-
cation and regression tree for goats was proposed and given by seven morphometric traits,
i.e., body length, heart grith, rump height, rump width, ear length, cannon circumference,
and head width—and including age and sex. The results indicated that sex, heart girth,
and age are highly correlated with variations in the body weight of goats. In Ref. [9], the
state-of-the-art regression models from SciKit-Learn were employed to predict the body
weight of Hereford cows and were given by 12 body size measurements (withers height, hip
height, chest dept, chest width, width in maclocks, sciatic hill width, oblique length of the
body, oblique rear length, chest girth, metacarpus girth, and backside half-girth) and age
(full years). The paper found that RFR yields the best weight prediction of Hereford cows
at a 0.644 regression score (R2). In Refs. [10,11], only three attributes of sheep—body length,
body height, and chest girth—were provided for predicting sheep. The weight-prediction
methods were computed by a multiple linear regression analysis and generalized linear
model. The accuracy performance of the model has an R2 score of 0.62.

A deep learning approach is currently the favored method for handling complex data,
such as that in an underwater environment. Deep learning is a non-linear approach for
unsupervised or supervised learning. A deep learning framework [12] is composed of two
sections where the first section is convolutional neural networks (CNNs) and the second
section is a full-connected multi-layer perceptron (MLP). The CNNs transform input data
into multiple levels of representation to extract significant spatial information from the input
data by performing convolution functions, pooling functions, and activation functions,
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respectively. The significant features of input data will automatically be discovered by
the CNNs section. A pooling function is used to reduce the number of parameters by
using masking and mathematical operations, i.e., the maximum, the average, the weighted
average, and the L2 norm, which is used to select the represented parameter from the
masking. A sparsity vector will be obtained as the results of the CNNs then pass through
the fully-connected MLP. The MLP process consists of two dense layers that estimate
event activity probabilities for each frame. A softmax function is last and is used as an
activation function to classify the sound into its corresponding class. The softmax function
is considered the generalization of the logistic function, which aims to avoid overfitting.
An advantage of deep learning methods is that they do not require feature extraction
for an input sound. Deep learning has been extensively employed in aquaculture for
example detection, classification, counting, monitoring behavior, or defect detection. Real-
time object detection methods such as YOLO (You Only Look Once) [13,14] and COCO
(Common Objects in COntext) [15] were introduced to detect aquatics, for example, the
DeepFish method in Ref. [16], which analyzed remote underwater fish habitats. The YOLO
algorithm is formulated as a regression problem and provides the class probabilities for
image detection. The YOLO framework is based on convolutional neural networks (CNN),
which requires only a single forward propagation through a neural network to detect
objects. The YOLO algorithm works using the following three techniques: Residual blocks,
Bounding box regression, and Intersection Over Union (IOU). YOLO yields superior
performance over the other object-detection techniques. Deep learning has also been
integrated with traditional methods into a myriad of applications that can be used for a
variety of purposes. For example, DeepFish with a support vector machine (SVM) method
in Ref. [17] is used for the recognition of fish from 23 fish species from a video captured by
underwater cameras in the open sea. The deep learning architectures of DeepFish-SVM
are constructed by two convolution layers, a non-linear layer, a feature pooling layer, a
spatial pyramid pooling, and an SVM classifier. Image augmentation was used to enlarge
the training set for the species whose image number is less than 300. The accuracy results of
DeepFish-SVM are compared to DeepFish-Softmax and Deep-CNN. DeepFish-SVM yields
slightly better results than the rest. In Ref. [18], the proposed method based on SVM and
CNNs is applied for classifying regional areas of four crops (paddy rice, potatoes, cabbages,
and peanuts), roads, and buildings from remote-sensing images. The SVM process handles
pixel-based classification while the CNN process performs block segmentation to enhance
the classification results. The proposed method yields the high accuracy performance of
regional area classification. In Ref. [19], the weighing of heifers is introduced by using
the Mask-RCNN segmentation algorithm with a proposed CNN-based mass prediction
model. In addition, a pig contactless weight system is presented in Ref. [20] which uses
the pig-detection-based CNNs and the weight regression model. Three-dimensional (3D)
cameras were used for capturing posture images. The weight of pigs is estimated from
the back of pigs in top-view depth images. Other methods of weight-estimation-based
2D and 3D reconstruction have recently been proposed. Furthermore, deep learning was
used for predicting the weight of cattle in Ref. [21]. Deep learning extends to perform
the regression task with automatic feature extraction given by 2-dimensional images.
Individual cattle were captured through the water trough platform that provides a cattle’s
ID, images, time, and weight. Three types of convolutional neural networks (CNN) with
various regularization functions were established to determine the best methods, which are
combination recurrent neural networks (RNN)/CNN with and without attention, recurrent
attention model without CNN, RestNet 8, and EfficientNetB1. The Adam optimizer with
a learning rate of 0.005 was set for training the models for 10 epochs and at a batch size
of 32 to 256. The experimental results showed that the RNN/CNN model achieved the
highest performance among the rest models at a Mean Absolute Error (MAE) of 23.19 kg.
The volume and weight estimation of an apple was proposed in Refs. [22,23] by simulating
3D images using a single multispectral camera and near-infrared linear-array structured
light. Height features were mapped via 2D and 3D reconstruction images. The PLS and
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LS-SVM were employed to estimate the volume and weight of apples. A 3D image can
be directly obtained via special cameras, for example, binocular stereo cameras, a laser-
based camera, or an RGB-depth camera that generates the spatial information of the X-Y
dimension with the height information of Z represented.

Machine learning approaches for weight prediction can be categorized into two groups,
where the first group is based on the regression approach and the second one relies on a
deep learning approach. The regression approach takes advantage of the simplicity and fast
performance but requires the feature extraction process. The selected features are vital and
significantly affect the prediction performance. Generally, the regression approach needs
more than five features. Therefore, feature acquisition is still a challenging issue, and is
time- and cost-consuming. On the other hand, deep learning approaches deliver a compact
algorithm given by input images and then return a result. However, deep learning approaches
usually require special cameras with high computational complexity for weight estimation.
A captured image by an underwater camera is influenced by complex non-linear factors
due to luminosity change, turbidity, various backgrounds, and moving aquatic animals.
Underwater monitoring is one of the most challenging problems due to uncertain envi-
ronments caused by changes in illumination and shadow, turbidity, underwater–aquatic
confusion, camera limitations, and moving aquatics. These result in the low quality of
image capture. Therefore, the practicality of a fish weight-prediction method for turbid
water that can be used in real fish-farming applications is still an open problem.

The present paper proposes a novel low-cost practical single sensor imaging system
with deep and regression learning algorithms for the non-intrusive estimation of Tilapia
weight in turbid water environments. The proposed method brings new contributions.
Firstly, only a low-cost single camera is required for observing the underwater fish (no
other special equipment or sensor is used for monitoring fish). Thus, the fish are not injured
during the weighing process, which is beneficial to the health of the fish. Secondly, the
proposed method can determine the fish’s weight in the turbid underwater environment.
For turbid water, the proposed method can process the video frames with or without
an image-enhancement process. This flexibility favors practicality in real fish-farming
applications. Only as little as three attributes are required for predicting the fish’s weight:
(i) fish’s age, (ii) the length and width of the fish, and (iii) the depth between the fish and the
camera. These attributes are automatically computed by the proposed algorithm in one-go.
Finally, the proposed method is computationally simple and comprises two major steps,
i.e., Tilapia detection-based deep transfer learning and Tilapia weight estimation-based
regression learning. This augments the proposed method with low computational time
and thus results in faster execution. The proposed machine learning models are amenable
to interpretability by the users. For example, once the fish is detected, the estimated length
and height of the fish, as well as the depth information from the camera, are made known
to the user. By manually inputting the age of the fish by the user, the user will be able to
determine the weight of the intended fish.

This paper is organized as follows: Section 2 presents the machine vision algorithm to
estimate the weight of Tilapia in an underwater environment. Next, Section 3 evaluates and
elucidates the performance of the proposed Tilapia weight estimating algorithm. Finally,
Section 4 summarizes the proposed estimation method and future research prospects.

2. Methodology

The proposed method combines two steps: a Tilapia detection step and Tilapia weight-
estimation step. The proposed method was started by training the models and then using
the trained models in an evaluation phase. The training phase performs data preparation
for Tilapia Detection Training and then generates a Tilapia detection (TDet) model that
is based on deep transfer learning. In the Tilapia weight-estimation step, three models
are trained by using regression learning. These models are are Tilapia depth estimation
(TDepE), Tilapia pixel-to-centimeter estimation (TP2CME), and tilapia weight estimation
(TWE). Therefore, the proposed algorithm is named Tilapia weight estimation—i.e., the
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deep regression learning “TWE-DRL” algorithm. The algorithm of the proposed method is
illustrated in Figure 1.
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Figure 1. Proposed TWE-DRL algorithm.

The input parameters of the TDepE model consist of the age of the fish and the fish’s
length and width in pixel units. In the process of data acquisition, the ages of the fish
were recorded along with the fish-image capture every two weeks during the feeding
process. The actual length and width of the fish were obtained by manually extracting this
information from the image-annotated labels of the fish. Therefore, the training dataset of
the TDepE model contains the actual values of the fish’s age, length, and width. In practice,
the age of the fish will be obtained from a fish farmer with prior knowledge. The input
parameters of the TP2CME model use the same parameter set as TDepE and add the
distance between the fish and the camera with regards for the depth parameter. The depth
dataset contains three independent attributes, which are the age, the fish’s length and
width in pixel units, and the depth. Firstly, depth information acquisition was manually
determined by humans. There are stripes on the ground and indicated sides from the front
of the camera to the end of the tank. Each strip is 10 cm apart from one another. Strips are
used as a reference distance from the camera. Hence, the fish’s distances were estimated
in response to the nearest band where the fish was located. The depth of the fish affects
the size of the fish, i.e., when a fish is close to a camera then the depth is small, and the
length and the width of the fish are larger when it is further away. The input parameters
of the TWE model follow the same steps as the TP2CME model where the output of the
TP2CME model is an independent parameter of the TWE model plus all of the independent
parameters from the TP2CME dataset. For the TWE training dataset, the actual length and
width of fish was provided from Studio photography. The details of each individual step
are elucidated in the following sections.

The proposed TWE-DRL algorithm has two major processes, which are to detect and
extract the size of an individual Tilapia in an image and to estimate the depth of the fish
from the camcorder, then convert the size of the Tilapia from pixels to centimeters given the
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estimated depth. Finally, the weight of the Tilapia is predicted from the fish’s size with the
inclusion of the fish’s age in weeks. In order to achieve these goals, four-training models
are required and named TDet, TDepE, TP2CME, and TWE. The details of each individual
step are elucidated in the following sections.

2.1. Tilapia Detection

Tilapia-detection-based deep transfer learning is used to create a model for detecting
Tilapia in digital images. Tilapia detection is established through deep learning networks as
their backbone and the detection network is used to extract features from the input images
and localization, respectively. An object detection approach can be categorized into two
types, i.e., one-stage detectors and two-state detectors. One-stage detectors use a single
network to predict object bounding boxes from images directly then classify the probability
scores from the images—for example, YOLO, SSD, and RetinaNet.

Two-stage detectors mark regions of the target instead of learning from the whole
image. Next, the proposal regions will be passed into a classifier and regressor, respectively.
Region Proposal Networks (RPNs) are used for searching possible target regions as the first
stage. The second stage extracts significant features by using a region-of-interest (RoI) pooling
operation from individual candidate regions for the following classification and bounding-
box regression. Examples of two-stage detectors are Faster R-CNN and Mask R-CNN.

RetinaNet is a one-stage object detector with focal loss as a classification. RetinaNet
utilizes ResNet as its backbone. RetinaNet inherits the fast speed of previous one-stage de-
tectors by avoiding the use of RPNs. Faster R-CNN extracts features from region proposals
and then passes the region-of-interest (RoI) pooling layer to get the various size features
as the input of the following classification and bounding-box regression fully-connected
layers. Mask R-CNN [16] is an extending work to Faster R-CNN by using RoIAlign to
extract a small feature map from each RoI and adding a parallel mask branch. The feature
pyramid network (FPN) is the backbone that extracts RoI features from different levels
of the feature pyramid according to extract features that achieve excellent accuracy and
processing speeds. Given that higher-resolution feature maps are important for detecting
small objects while lower-resolution feature maps are rich in semantic information, a feature
pyramid network extracts significant features.

Deep transfer learning comprises two steps: Firstly, the pre-training step and secondly,
the post-training step. The pre-training step loads the learned weights from the pre-trained
model as initial values for the deep learning network. For the post-training step, the deep
learning network will learn and fine-tune the weight given by the Tilapia-image dataset.
Deep transfer learning has the advantage of reducing learning time and increasing the
accuracy of the model. The COCO-pre-trained Mask region R-CNN model was employed
to determine the initial value of the deep learning architecture. Mask R-CNN is an object
detection algorithm that performs target detection, target classification, and instance seg-
mentation simultaneously in a neural network. Mask R-CNN returns two outputs that are a
class and a bounding-box offset, as illustrated in Figure 2, where FC depicts fully-connected
layers. A m × m mask representation encodes the spatial structure from an input image
by the pixel-to-pixel method that corresponds to the convolutions. The m × m mask is
generated from a region of interest (RoI) by using a fully convolutional network (FCN)
with a per-pixel sigmoid and a binary loss to semantic segmentation. This naturally leads
Mask R-CNN to maintain the 2-dimentinal spatial layout rather than transform it into a
vector representation.
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Mask R-CNN consists of two components. Firstly, the backbone network of the
proposed method is based on ResNet. ResNet consists of many stacks of residual units.
Each unit can be expressed as in Equation (1), where xl and xL indicate an input feature to
the lth Residual Unit and an output of any deeper unit L [24]:

xL = xl + ∑L−1
i=l F(xi, Wi) (1)

where F(·) is a residual function and
L−1
∑
i=l

F(·) is a residual function. The Wi = Wi,y|1≤y≤Layer

term is a set of weights (and biases) associated with the lth Residual Unit. A 3 × 3
convolution layer has been set for RPN. Secondly, RoIAlign performs per-pixel preservation
of spatial features extraction by using a fully convolutional network and RoIPool for the
feature map. Mask R-CNN applies a multi-loss function during the learning to evaluate the
model and ensure its fitting to unseen data. This loss function is computed as a weighted
total sum of various losses during the training at every phase of the model on each proposal
RoI, which is shown by Equation (2). This weighted loss is defined as [25]:

Loss = Lclass + LBB + Lmask (2)

where Lclass, LBB, and Lmask represent the classification loss, bounding-box loss, and the
average binary cross-entropy loss, respectively. The Lclass shows the convergence of the
predictions to the true class. Lclass combines the classification loss during the training of
RPN and Mask R-CNN heads. LBB shows how well the model localizes objects and it
combines the bounding-box localization loss during the training of RPN and Mask R-CNN
heads. The Lclass and LBB losses are computed by Equations (3) and (4):

Lclass(p, u) = − log pu (3)

where Lclass(p, u) is the predicted probability of ground truth class u for each positive
bounding box.

LBB(tu, v) = ∑iε{x,y,w,h}

[
Lsmooth

1 (tu
i − vi)

]
(4)

where Lsmooth
1 (x) =

{
0.5x2 i f |x| < 1
|x| − 0.5 otherwise

and Lsmooth
1

(
tu
i − vi

)
are the predicted bounding-

box for class u and ground truth bounding-box v for each input i.
The Lmask has K × m × m dimensional output for each RoI where K represents a

number of a class and m×m is a matrix representation of the class. A per-pixel sigmoid is
applied and the Lmask is computed using the average binary cross-entropy loss that the K
mask is associated with the Kth class, i.e., K = 1 = Tilapia. The Lmask can be expressed in
Equation (5) [26,27]:

Lmask =
1

m2 ∑m∗m
i=1

(
log PK

i,j

)
(5)
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where PK
i,j denotes the ith pixel of the jth generated mask. The backbone network has

used a 101-layer ResNet and a 3 × 3 convolution layer has been set for RPN. Secondly,
RoIAlign performs a per-pixel preservation of spatial features extraction by using a fully
convolutional network and RoIPool for the feature map. This network outputs a K × m × m
mask representation that is upscaled and the channels are reduced to 256 using a m × m
convolution, where K is the number of classes, i.e., K = 1, and m = 28 for the ResNet_101
network as a backbone. All training parameters use the same values, where the batch size
is 128 images, the learning rate is 2.5 × 10−4, and the maximum iterations are 300.

The TDet model delivers the bounding-box output as a set of coordinate points (x, y)
of a detected fish. The coordinate points from the bounding box were extracted to compute
the length and width of the detected fish. However, these measurements are subject to
perspective projection (pixel units). The fish size in perspective projection relies on the
depth between the fish and the camera. This results in the fish body that is closer to
the camera being wider and longer than those further away. Thus, the fish size due to
perspective projection is essentially converted into real-measurement units of the fish’s
actual size before estimating the weight of the Tilapia.

2.2. Tilapia Weight Estimation

The next step is to estimate the weight that comprises three sub-steps: First, estimating
the depth of the fish; second, converting the fish’s width and length from pixel to centimetre;
and finally, determining the fish’s weight by using all estimated data of the fish by training
the TDepE, TP2CME, and TWE models, respectively. These three models specifically
required the following independent data and delivered the dependent output as shown in
Table 1.

Table 1. Independent data and dependent output of TDepE, TP2CME, and TWE models.

Models Independent Data Dependent Output

TDepE
age of fish (weeks)

actual depth (cm)length of fish (pixel)
width of fish (pixel)

TP2CME

age of fish (weeks)
length of fish (pixel) length of fish (cm),
width of fish (pixel) width of fish (cm)

depth (cm)

TWE

age of fish (weeks)

weight of fish (g)

length of fish (pixel)
width of fish (pixel)

depth (cm)
length of fish (cm)
width of fish (cm)

The three models are sequentially related to one another, where an output of the
previous model is an input of the next model. The regression models of the TDepE
(ŷdepth), TP2CME (ŷl_cm, ŷw_cm), and TWE (ŷw) models can mathematically be expressed in
Equations (6)–(8), respectively, as:

ŷdepth = f
(

xage, xw_pix, xh_pix, aage, aw_pix, ah_pix

)
+ edepth (6)

ŷl_cm, ŷw_cm = f
(

xage, xw_pix, xh_pix, ŷdepth, aage, aw_pix, ah_pix, adepth

)
+ ecm (7)

ŷw = f
(

xage, xw_pix, xh_pix, ŷdepth, ŷl_cm, ŷw_cm, aage, aw_pix, ah_pix, adepth, aw_cm, ah_cm

)
+ ew (8)

where edepth, ecm, and ew denotes an additive error term. The closed form equation to
link all the above equations together is to be determined by the machine learning model.
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To achieve the goal, the regression models, i.e., Tilapia depth estimation, Tilapia pixel-to-
centimetre estimation, and Tilapia weight estimation, were constructed by employing three
well-known regression methods. The regression models are LR, RFR, and SVR. Linear
regression is a linear model of relationship between independent variables and a dependent
variable. The linear model is expressed in Equation (9):

y = a0 + ∑J
j=1 ajxj (9)

where xj and y denote the j-th independent variable and the dependent variable, respec-
tively. The terms

{
aj, j = 0, 1, . . . , J

}
are the coefficients of the model and J is the total

number of features used for the regression. Secondly, random forest is a decision-tree
extension by constructing a multitude of trees in a training period. Random forest is deep
learning for classification or regression tasks. In the multitude trees, individual trees ran-
domly select a subset of features. The optimal splitting point is determined by the predicted
squared error as a criterion of a regression model. RFR output (ŷ) is based on a weighted
sum of datapoints, as expressed in Equation (10):

ŷ = ∑n
i=1

(
1
m ∑m

j=1 Wj
(
xi, x′

))
yi (10)

where xi and yi denote the dataset and wi is a weight of yi. The x′ term represents the
neighbour node that shares the same leaf in a tree j with the point xi [28]. The squared error
is expressed in Equation (11):

min ∑n
i=1(yi − wixi)

2 (11)

Finally, the support vector regression is an extension of the support vector machine for
solving regression problems. The objective function of SVR is to minimize the coefficients by
using the l2-norm of the coefficient vector [29,30] instead of the squared error, as expressed
in Equation (12). The constraint called the maximum error (ε) is represented by the absolute
error in Equation (13). The ε paremeter will be tuned by the regression function to gain the
best fit line, where a hyperplane has a maximum number of points [31].

min
1
2
‖w2‖ (12)

s.t. |yi − wixi| ≤ ε (13)

The ε value determines the distance of the support-vector line (so-called decision
boundary) that deviates from the hyperplane line.

A subsequent training phase delivers the TDet, TDepE, TP2CME, and TWE models.
The evaluation phase, as shown in Figure 1, will use these models for estimating the weight
of the Tilapia given by an observed video input. An overview of the proposed Tilapia
weight-estimation evaluation phase is explained in Algorithm 1.
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Algorithm 1. Overview of the Proposed Tilapia Weight-Estimation Evaluation Phase

(1) Convert an observed video input to images:
s[n] = s(nT)

(2) Enhance images in a case of turbid water:
(2.1) Image sharpening by the convolution function g1(x, y):

g1(x, y) = ∑a
dx=−1 ∑b

dy=−b ω(dx, dy)s(x + dx, y + dy)
where −a ≤ dx ≤ a and −b ≤ dy ≤ b, s(·) denotes the original image, and ω(·) is the filter kernel,
i.e., sharpen, filter.

(2.2) Color correction matrix (CCM) [32]:
S = [SR SG SB SW ]T

CR
CG
CB

 =

CCM.


SR
SG
SB
SW

−

VR
o f f set

VG
o f f set

VB
o f f set

VW
o f f set




1/γ

where SR SG SB SW denote the red, green, blue, and white spaces; C is the color-component
vector; and Vo f f set is the offset vector.

(2.3) Exposure adjustment g2(x, y):
g2(x, y) = α · s(x, y) + β

where α > 0 is the gain and β represents the bias parameter.
(3) Detect the length and width of Tilapia:

x̂w_pix, x̂h_pix = Mask R− CNNBB(g2(x, y))
(4) Estimate the depth of each detected Tilapia:

ŷdepth = f
(

xage, x̂w_pix, x̂h_pix, aage, aw_pix, ah_pix

)
+ edepth

(5) Convert Tilapia size from pixel to centimeter:

ŷl_cm, ŷw_cm = f
(

xage, xw_pix, xh_pix, ŷdepth, aage, aw_pix, ah_pix, adepth

)
+ ecm

(6) Estimate the weight of individual detected Tilapia.

ŷw = f
(

xage, xw_pix, xh_pix, ŷdepth, ŷl_cm, ŷw_cm, aage, aw_pix, ah_pix, adepth, aw_cm, ah_cm

)
+ ew

3. Experimental Results and Analysis
3.1. Data Collection

The Tilapia were raised in 3 tanks where each tank contained 30 fish. The tanks are
round with a radius of 1.5 m and a depth of 1.8 m. A new fish cultivation method was
used for the efficient feeding of fish, which is called the biofloc culture. The biofloc tank is
a microorganism cultured fish, thus the biofloc microorganisms caused the water to turn
turbid. Bacteria are put into an aquaculture system to convert nitrogen from the water into
protein. The protein will be the food of the fish. The wastewater that contains nitrates,
nitrites, and ammonia will be treated and reused as supermolecule feed. Biofloc fish feeding
is a technology that feeds aquaculture systems with macroaggregates that decrease the fish
diet cost and improve the aquatic environment of a fish tank.

Datasets developed in this research can be categorized into the (a) Tilapia-image
datasets and (b) Tilapia-file datasets. Firstly, the Tilapia-image datasets are in-house curated
from two sources: studio-based photography of the off tanks and from video recordings of
the tanks, as shown in Figure 3.

The studio-based photography is set up by using a camera (Cannon EOS 200D II)
mounted in a fixed position that is 0.5 m from the fish and parallel to the platform with
a resolution of 1920 × 1080 pixels. The fish were weighed with an electronic scale before
photographing. The video recording (GoPro Hero 8 and waterproof case) was carried out
by sampling five fish from the tanks and putting them into the recording tanks. The videos
were recorded at a resolution of 1920 × 1080 pixels, with a frame rate of 60 fps and 8-bit
RGB. Data collection of each fish from the studio and video was performed, including
age (weeks), width and length throughout the fish in centimeters (cm), and the weight of
the fish in grams. Secondly, the Tilapia-file dataset was created for training the regression
models. The Tilapia-file dataset includes three attributes, which are the fish’s age, the
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physical dimensions of the fish in pixel and centimetre units, and the depth between the
fish and the camera. The two Tilapia datasets were employed for training the models to
estimate the Tilapia’s weight.
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3.2. Data Preparation

Data pre-processing of the videos refers to the proposed processes of converting video
to images, an image enhancing process for the biofloc tanks, and an image annotation
process. All fish images have 24-bits of a red, green, and blue channel and each channel has
256 intensity levels. Both images from the studio and videos are required in the annotation
process. In the case of videos, firstly, the video-to-image process is the diminution of a
continuous-time signal s(t) to a discrete-time signal. The original signal will be sampled at
a T period to obtain a series of discreate signals that instantaneously become the original
continuous signal. The sampling image process can be expressed in (14) as:

s[n] = s(nT) (14)

where n denotes the sequence index of the T period. The biofloc tank is a microorganism
cultured fish, thus biofloc microorganisms cause the water to turn turbid. Therefore, the
sampled images of the biofloc tanks were pre-processed and enhanced in order to be able
to identify fish by applying the image enhancement process. The image enhancement
process consists of four steps, i.e., image sharpen, color filter, color balance, and exposure
adjustment, where the values of the individual channels of an image are modified to
improve the images’ quality. Starting with image sharpening, this involves increasing
the contrast, edge detection, noise suppression, and Gaussian Blur algorithms [33,34].
Next, color filter and color balance aim to adjust the color temperature by using curve
shifting [35]. Color balance is used to manipulate any unwanted color that dominates an
image by estimating the illumination and applying correction to the image [36]. Finally,
exposure adjustment is focused on controlling the light of on an image via two parameters:
the exposure time and the light sensitivity of the image [37]. Enhanced images are presented
in Figure 4.

The image annotation is the process of describing the target objects in an image, as
shown in Figure 5. The descriptive data allow the computer to interpret the image in a
similar way as human understanding. A computer understands digital images by extracting
data from a real-world image into numerical information then interprets the information
via a deep learning algorithm. Visual images will be provided as description data of a target
object in the image, which is known as image annotation. In a similar way to a human
learning an object, image annotation is the procedure of labeling images to train a deep
learning model. The deep learning algorithm then transforms the image by disentangling
symbolic information into numerical sparse information through the convolution process.
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Finally, an objective model is then learned by using the fully-connected MLP networks
given by the information from the convolution phase. Three attributes were defined for
the explanation of a fish, which are age (weeks); distance between a fish and a camera, i.e.,
so-called depth (cm); and a coordinate-position set of a fish. The fish annotation yields a
JSON file as an output of the process. This process is performed via the Visual Geometry
Group Image Annotator website (https://www.robots.ox.ac.uk/~vgg/software/via/via_
demo.html accessed on 20 June 2022).
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as illustrated in Figure 2, is made up of two types, where images (i.e., studio) and video
signals are processed five times every two weeks. The studio-based photography is set up
by using a camera mounted in a fixed position that is 0.5 m from the fish and is parallel
to the platform, with a resolution of 1920 × 1080 pixels. The Tilapias were recorded in a
turbid water recording tank (i.e., in video) with a resolution of 1920 × 1080 pixels, with a
frame rate of 60 fps and 8-bit RGB. For the first actual weighting of 20-week-old Tilapia, the
average weight was 166.45 ± 26.38 g, while it was 482.24 ± 91.64 g at the last weighing for
28-week-old Tilapia. The Tilapia-image dataset contains 5037 images, where 750 images
were from studio and 4287 images were from video, while Tilapia-file dataset contains
2777 files. The video recording will be converted to images by every second and then
the quality of the images will be improved by the image enhancement process. Next, the
enhanced images will be used as input data for the Tilapia detection step, which is based
on deep transfer learning. All one-class training parameters use the same values, where
the backbone is a RestNet learning network, the batch size is 128 images, the learning
rate is 2.5 × 10−4, and the maximum iterations are 300. The output of the detection step
will be the input of the Tilapia weight-estimation step that is based on regression models.
The regression models are LR, RFR with 2 level maximum depth, and SVR with radial
basis function (RBF) methods. The inputs of individual TDepE, TP2CME, and TWE are
expressed in Table 1 and Equations (6)–(8). Finally, the proposed methods will deliver the
estimated weight of Tilapia in a data file.

The experimental results have been conducted in two major sections: The first sec-
tion rigorously determines the optimal models of Tilapia detection, i.e., TDet, and Tilapia
weight estimation, i.e., TDepE, TP2CME, and TWE. The second section verifies the effec-
tiveness of the proposed Tilapia weight-estimation methods. The Tilapia-images dataset
has 4287 images with various ages, which were split into 60% for training and the rest for
testing. The Tilapia-file dataset contains 2777 files, which were partitioned into 70% for
training and the rest for testing. The number of training and testing data corresponding to
each model is presented in Table 2.

Table 2. The number of training and testing data.

Models/Data
Training Phase

Testing Data
Training Data Validating Data

Tilapia Detection 2101 900 1286
Depth Estimation 1555 389 833

Pixel-to-CM estimation 1555 389 833
Tilapia weight estimation 1555 389 833

The proposed TWE algorithm is used to train the various regression models and its
effectiveness is assessed using the following measurements in Equations (15) and (16):

The mean absolute error (MAE):

MAE(y, ŷ) =
1

nsamples

nsamples−1

∑
i=0

|yi − ŷi| (15)

The coefficient of determination, R2:

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (16)

The experiments were conducted using the following hardware and software environ-
ments: hardware environment employed the AMD Ryzen 9 4900H with Radeon Graphics
3.30 GHz, Nvidia GeForce GTX 1660 Ti, 16.00 GB DDR4. Software tools are Python 3.x and
TensorFlow-GPU v2.3.0, Keras v2.4.3 in Windows 10 operating system.
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3.3. Determining the Optimal Tilapia Detection Models

The state-of-the-art deep learning networks have been used to determine the optimal
Tilapia detecting models of Mask R-CNN, Faster R-CNN, RetinaNet, and YOLO. YOLOv5
has been used as Tilapia detection experiment, where the following parameters have been
determined: scaled weight decay at 0.0005, training for 300 epochs, batch size at 128, and
a learning rate of 0.01, as well, the optimizer that is relied on is a Gradient descent with
momentum optimizer. All training parameters used the same values, where the batch size
was 128 images, the learning rate was 2.5 × 10−4, and the maximum iterations are 300.

The object-detecting performance of the three methods were averaged over multiple
Intersection-over-Union (IoU) scores, called AP, which used 10 IoU with various thresholds.
The experimental results are shown in Table 3.

Table 3. AP scores on Tilapia dataset of Faster R-CNN, Mask R-CNN, RetinaNet, and YOLO.

Deep Learning Networks AP AP50 AP75

Faster R-CNN 67.04 98.50 90.19
Mask R-CNN 75.68 99.11 92.12

RetinaNet 60.53 98.17 83.56
YOLO 62.61 90.37 78.56

AP is averaged over all categories where AP represents IoU = 0.50:0.05:0.95 (primary challenge metric), AP50
denotes IoU = 0.50 (PASCAL VOC metric), and AP75 is IoU = 0.75 (strict metric).

The detection results of the above detection networks are presented in three scenarios,
which are a single Tilapia, two Tilapia with more than 50% of a body size appearance, and
multiple Tilapia overlapping. The samples of the observed images from the three scenarios
are shown in Figure 6, and the detected results are then illustrated in Figures 7–9.
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Figure 7. Sample of a single Tilapia. (a) Faster R-CNN: model detected a Tilapia with 0.87 probability
score; (b) Mask R-CNN: model detected a Tilapia with 0.95 probability score; (c,d) RetinaNet: model
drew 19 bounding boxes with the highest, average, and standard deviation of probability scores
at 0.73, 0.11, and 0.15, respectively; (e) YOLO: model detected a Tilapia with 0.31 probability score.
YOLO can only detect a sample of a single Tilapia underwater in (a) but unsuccessful in scenarios (b,c).

The results from Figures 7–9 have shown that Mask R-CNN yields the highest AP
scores among the three thresholds. The reason is due to the RoIAlign operation of Mask
R-CNN, which is able to extract features from small objects, i.e., Tilapia in blurred, low
light, and noisy backgrounds. This leads to a higher accuracy than the Faster R-CNN
and RetinaNet models. Therefore, TDet is built based on the Mask R-CNN model for
determining the length and width of Tilapia from images. The TDet model obtained by the
YOLOv5 framework is able to detect the case of a single Tilapia. In the cases with more
complex scenarios where the fish appear to be blurry and small, as in Figure 6b, or chaotic,
as in Figure 6c, the YOLOv5 model is unable to detect the fish. On the other hand, Mask
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R-CNN outperformed TDet-based YOLOv5 for the complex scenarios. YOLO network
architecture employs convolutional neural networks (CNN) for extracting the significant
features of the fish. A regression problem is treated by a single forward propagation to
provide the class probabilities of the detected Tilapia. Therefore, it is difficult for YOLOv5
to extract key features from intricate images due to the spatial plane coordinate, as the
grid location constrains the algorithm. Mask R-CNN takes advantage of RoI and RoIAlign
processes for selecting the high-level features. This leads to a higher accuracy than all the
other comparison methods.
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0.86 and 0.85 probability scores from left to right; (b) Mask R-CNN: model detected a Tilapia with 
0.97 and 0.92 probability scores from left to right; (c,d) RetinaNet: model drew 19 bounding boxes 
with the highest, average, and standard deviation of probability scores at 0.83, 0.17, and 0.25, re-
spectively. 
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scores among the three thresholds. The reason is due to the RoIAlign operation of Mask 
R-CNN, which is able to extract features from small objects, i.e., Tilapia in blurred, low 
light, and noisy backgrounds. This leads to a higher accuracy than the Faster R-CNN and 
RetinaNet models. Therefore, TDet is built based on the Mask R-CNN model for 

Figure 8. Sample of two Tilapia with more than 50% of a body size appearance. (a) Faster R-CNN:
model detected a Tilapia with 0.88 probability score; (b) Mask R-CNN: model detected a Tilapia
with 0.96 and 0.73 probability scores from left to right; (c,d) RetinaNet: model drew 28 bounding
boxes with the highest, average, and standard deviation of probability scores at 0.79, 0.13, and
0.15, respectively.
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Figure 9. Sample of multiple Tilapia overlapping. (a) Faster R-CNN: model detected a Tilapia with
0.86 and 0.85 probability scores from left to right; (b) Mask R-CNN: model detected a Tilapia with 0.97
and 0.92 probability scores from left to right; (c,d) RetinaNet: model drew 19 bounding boxes with
the highest, average, and standard deviation of probability scores at 0.83, 0.17, and 0.25, respectively.

3.4. Determining the Regression Learning Methods for the TDepE, TP2CME, and TWE Models

The Tilapia-file dataset was used for training the TDepE, TP2CME, and TWE models
by splitting 80% of data is for training and the remaining data is for testing. The three
sub-steps of Tilapia weight estimation are sequentially performed. A grid search and
validation dataset were used to find the optimal parameter of the TDepE, TP2CME, and
TWE models by specifying every combination of the parameter settings. Grid search
passes all combinations of the hyperparameters one-by-one into the model to determine
the optimal values for a given model. Hyperparameters are the variables that are used
to evaluate the optimal parameters of the model. The hyperparameters for RFR and SVR
were determined, which are the {maximum depth, maximum features, minimum samples
leaf, minimum sample split, the number of estimators} and {regularization parameter,
kernel coefficient, kernel types} sets, respectively. Finally, grid search delivers the set of
hyperparameters that gives the best performance for the model. The validation dataset is
used to determine the hyperparameters of each of the machine learning models in TDepE,
TP2CME, and TWE. Next, TDepE model is firstly presented with the chosen regression
method and then followed by the rest of the steps in succession.

3.4.1. Tilapia Depth Estimation Performance

The TDepE model was trained by learning data consisting of the age, the length,
and the width of the fish (pixel), as well as the actual depth of the fish. In terms of the
performance, the obtained TDepE models based on LR, RFR with 2 level maximum depth,
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and SVR with radial basis function (RBF) methods [38,39] are illustrated in Table 2 and
Figure 10, respectively. The RBF kernel [40] is expressed in Equation (17) as:

K(X1, X2) = exp

(
−‖X1 − X2‖2

2σ2

)
(17)

where σ2 denotes the variance as the hyperparameter and ‖X1 − X2‖ represents the Eu-
clidean (L2-norm) Distance between two points X1 and X2. The distance between the
fish and the camera is between 5 cm and 60 cm. Depth data of Tilapia-file dataset was
collected by using a manual visual distance estimation method with reference to distance
markers every 10 cm, which were installed in the fish recording cube. The depth estimating
performance of the LR, RFR, and SVR models are explicitly presented in Figure 10, and the
actual depth values are widely spread from 5 cm to 50 cm with a 23.13 average depth and a
15.77 standard deviation (S.D.) score. The TDepE model-based SVR can estimate the depth
close to the actual depth distribution.

Sensors 2022, 22, 5161 19 of 30 
 

 

 
Figure 10. Box−plot comparison of Tilapia Depth Estimation error of LR, RFR, and SVR methods. 

The depth estimating performance is evaluated by measuring MAE along with the 
average errors and S.D. values in Table 3. The SVR model provides the best scores for 
MAE, 𝑅𝟐, and the MAE ratio over the LR and RFR models at 5.52 cm and 1.56 cm for the 
MAE values, 0.46 and 0.12 for the 𝑅𝟐 values, and 18.67 and 2.82 for the MAE ratio values, 
respectively. 

According to Table 4, the SVR method yields outstanding performance for estimating 
depth of the fish. Therefore, the TDepE-based SVR model is set for the depth estimation 
step. Next, the experiment aims to figure out the regression method for TP2CME and TWE 
by measuring weight-estimating accuracy. 

Table 4. Performance of Tilapia Depth Estimation with LR, RFR, and SVR methods. 

Regression Models Average Error S.D. Error MAE 𝑹𝟐 MAE Ratio 

LR 0.90 11.65 9.56 0.41 23.32 
RFR −0.23 7.65 5.60 0.75 7.47 
SVR −0.23 21.02 4.04 0.87 4.64 

3.4.2. Tilapia Pixel-to-Centimeter Estimation and Tilapia Weight Performance 
The three investigational cases were set as presented in Table 4 for TP2CME and 

TWE. Each case starts from the TDet and TDepE steps. The TP2CME model learned from 
the fish attributes, including age, length and width of the fish in pixel units, and depth of 
the fish. The TWE model requires the length and the width of the fish in cm units. The 
experimental cases consist of two steps of TP2CME and TWE. The TP2CME for the indi-
vidual case used a different regression learning method. Hence, we have three main cases 
of SVR, RFR, and LR, where the depth estimation is based on SVR—as shown in Table 5. 
Finally, the TWE step of the three cases is then applied for all three regression methods to 
estimate the weight of the fish. 

  

Figure 10. Box−plot comparison of Tilapia Depth Estimation error of LR, RFR, and SVR methods.

The depth estimating performance is evaluated by measuring MAE along with the
average errors and S.D. values in Table 3. The SVR model provides the best scores for MAE, R2,
and the MAE ratio over the LR and RFR models at 5.52 cm and 1.56 cm for the MAE values,
0.46 and 0.12 for the R2 values, and 18.67 and 2.82 for the MAE ratio values, respectively.

According to Table 4, the SVR method yields outstanding performance for estimating
depth of the fish. Therefore, the TDepE-based SVR model is set for the depth estimation
step. Next, the experiment aims to figure out the regression method for TP2CME and TWE
by measuring weight-estimating accuracy.

Table 4. Performance of Tilapia Depth Estimation with LR, RFR, and SVR methods.

Regression
Models Average Error S.D. Error MAE R2 MAE

Ratio
LR 0.90 11.65 9.56 0.41 23.32

RFR −0.23 7.65 5.60 0.75 7.47
SVR −0.23 21.02 4.04 0.87 4.64

3.4.2. Tilapia Pixel-to-Centimeter Estimation and Tilapia Weight Performance

The three investigational cases were set as presented in Table 4 for TP2CME and TWE.
Each case starts from the TDet and TDepE steps. The TP2CME model learned from the fish
attributes, including age, length and width of the fish in pixel units, and depth of the fish.
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The TWE model requires the length and the width of the fish in cm units. The experimental
cases consist of two steps of TP2CME and TWE. The TP2CME for the individual case used
a different regression learning method. Hence, we have three main cases of SVR, RFR,
and LR, where the depth estimation is based on SVR—as shown in Table 5. Finally, the
TWE step of the three cases is then applied for all three regression methods to estimate the
weight of the fish.

Table 5. Three experimental cases for determining the regression method to TP2CME and TWE.

Cases TP2CME TWE Abbreviations

Case 1 SVR LR, RFR, SVR SSL, SSR, SSS
Case 2 RFR LR, RFR, SVR SRL, SRR, SRS
Case 3 LR LR, RFR, SVR SLL, SLR, SLS

The box plots represent the weight-estimation errors of the three cases, as illustrated
in Figure 11. The TP2CME- and TWE-based LR models yield the minimum errors and
deviation that are obviously noticed by the smallest size of the weight-error box from SLL
with the average error at 43.80 ± 47.69 g.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 29 
 

 

Table 4. Performance of Tilapia Depth Estimation with LR, RFR, and SVR methods. 

Regression Models Average Error S.D. Error MAE 𝑹𝟐 MAE Ratio 

LR 0.90 11.65 9.56 0.41 23.32 

RFR −0.23 7.65 5.60 0.75 7.47 

SVR −0.23 21.02 4.04 0.87 4.64 

3.4.2. Tilapia Pixel-to-Centimeter Estimation and Tilapia Weight Performance 

The three investigational cases were set as presented in Table 4 for TP2CME and TWE. 

Each case starts from the TDet and TDepE steps. The TP2CME model learned from the 

fish attributes, including age, length and width of the fish in pixel units, and depth of the 

fish. The TWE model requires the length and the width of the fish in cm units. The exper-

imental cases consist of two steps of TP2CME and TWE. The TP2CME for the individual 

case used a different regression learning method. Hence, we have three main cases of SVR, 

RFR, and LR, where the depth estimation is based on SVR—as shown in Table 5. Finally, 

the TWE step of the three cases is then applied for all three regression methods to estimate 

the weight of the fish. 

Table 5. Three experimental cases for determining the regression method to TP2CME and TWE. 

Cases TP2CME TWE Abbreviations 

Case 1 SVR LR, RFR, SVR SSL, SSR, SSS 

Case 2 RFR LR, RFR, SVR SRL, SRR, SRS 

Case 3 LR LR, RFR, SVR SLL, SLR, SLS 

The box plots represent the weight-estimation errors of the three cases, as illustrated 

in Figure 11. The TP2CME- and TWE-based LR models yield the minimum errors and 

deviation that are obviously noticed by the smallest size of the weight-error box from SLL 

with the average error at 43.80 ± 47.69 g. 

 

Figure 11. Box-plot comparison of Tilapia-weight estimating errors of the nine candidates corre-

sponding to Case 1, Case 2, and Case 3 for determining the regression method to TP2CME and TWE. 

The MAE and 𝑅2 scores for all cases are presented in Table 6. The SLL method yields 

the best estimating performance among all cases with the MAE, R2, and MAE ratio values 

at 42.54 cm, 0.70, and 60.77, respectively. 

Figure 11. Box-plot comparison of Tilapia-weight estimating errors of the nine candidates corre-
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The MAE and R2 scores for all cases are presented in Table 6. The SLL method yields
the best estimating performance among all cases with the MAE, R2, and MAE ratio values
at 42.54 cm, 0.70, and 60.77, respectively.

Table 6. MAE and R2 scores of nine experimental cases for determining the regression method to
TP2CME and TWE.

Measurement SSL SSR SSS SRL SRR SRS SLL SLR SLS

MAE 81.39 109.64 99.20 47.18 51.56 97.21 42.54 52.67 99.26
R2 0.11 −0.69 −0.25 0.71 0.61 −0.076 0.70 0.61 −0.21

MAE ratio 739.91 −158.90 −396.80 66.45 84.52 −1279.08 60.77 86.34 −472.67

According to Table 6, the weight-estimating procedure can be recapped by the regression-
learning solution of the TDepE, TP2CME, and TWE steps, which are the SVR model, the
LR model, and the LR model, respectively.

The relationship of the weight and size of Tilapia with linear regression by the R2 mea-
surement is shown in Figure 12. The R2 value of LR is 0.95 for the weight–length relationship
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and 0.85 for the weight–width relationship, respectively. This result shows that the length
and width of Tilapia is significantly correlated to the weight of Tilapia.
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Figure 12. R2 scores of LR regression on relationship of actual weight with (a) actual length; (b) ac-
tual width.

According to Figure 12, the R2 values indicate the strength of the relationship between
the proposed TWE-DRL model and the dependent length and width variable at 95.17%
and 85.19%, respectively.

3.5. Tilapia Weight Estimation Performance

This section demonstrates the weight estimation performance of the proposed TWE-
DRL method against the benchmarks of seven fish weight estimation-based areas (A) of
the fish’s size in [6]. The area-based weight estimation methods with various coefficients
can be expressed through the following equations in Equations (18)–(24).

Power based: W1 = 1.70A3/2 (18)

Power based: W2 = 0.124A1.55 (19)
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Exponential: W3 = 75.505e0.008A (20)

Linear: W4= 2.6609A − 141.14 (21)

Logarithmic: W5 = 448.84ln(A) − 1984.1 (22)

Polynomial: W6 = 0.0048A2 + 0.9309A + 7.8245 (23)

Power: W7 = 0.2501A1.3821 (24)

where an area (A) of the fish’s body in cm2 have been computed from multiplying the
length and the width of that fish, which was obtained from the Tilapia detection phase with
a coefficient, i.e., A = length × width × coefficient. The coefficients in Equations (20)–(24)
were obtained by formulating lines corresponding to individual equations for representing
the relationship between the actual fish’s area and its actual weight. The plots are illustrated
in Figure 13.
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Figure 13. Cartesian coordinates of a point of the Euclidean plane for determining the coefficients of
Equations (14)–(18).

The evaluated Tilapia datasets were established for 3 months and recorded every 2
weeks, with the Tilapia being 20-week-olds. All comparison methods were provided by the
estimated length and width of the Tilapia that were obtained from the TDet and TP2CME
models of the proposed method. The estimated weight results are presented in Table 7.

Table 7. Comparison Tilapia Weight Estimation of Proposed TWE-DRL method with seven area-based
weight estimations.

Methods W1 W2 W3 W4 W5 W6 W7 Proposed Method

MAE 65.65 52.81 56.48 55.88 54.61 53.74 54.21 42.54
R2 0.52 0.65 0.42 0.44 0.43 0.48 0.45 0.70

MAE ratio 126.25 81.25 134.48 127.00 127.00 111.96 120.47 60.77

According to the results in Table 7, the proposed methods obtained the smallest MAE
score and highest R2 scores, where an average error is 42.54 g from the actual weight of fish.
The regression models of the proposed methods can predict that the weight of the Tilapia
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has a 70% fit to the actual weight. The proposed method estimates the fish weight from the
length and width of the fish, while the other methods use the area of the fish. From Figure 9,
the R2 values of length and width are 0.9517 and 0.8519, while the maximum R2 value
from Equations (14)–(18) is 0.7507. Hence, the length and width of the fish is significantly
accurate for estimating the weight of the fish. Therefore, the proposed TWE-DRL method
yields the highest accuracy over the area-based weight-estimation methods.

The average estimated weight of the proposed method for each week is illustrated in
Figure 14 against the average actual weight of the Tilapia. The results of Tilapia weight
estimation from turbid water by the proposed TWE-DRL method vary by the fish’s age and
are plotted compared to the actual weight. The proposed TWE-DRL method has estimated
the Tilapia weights consistently and is tallied with the actual Tilapia weight patterns by
using the TDet, TDepE, TP2CME, and TWE models. The obtained results show that across
the eight weeks, the proposed method has only accrued an estimated weight error of 30.30
(±23.09) grams. The proposed approach can perform at high accuracies and is able to
track the weight evolution of the fish in the tank from week to week. In addition, once the
system has completed the estimation processes, all the estimated results will be saved to a
Microsoft Excel file as an output of the system.
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Figure 14. Proposed TWE-DRL performance presents average estimated weight of Tilapia with
various age in turbid water.

Examples of the fish body and size detection results are shown in Figure 15, where fish
were recorded from underwater at various depths. The TDet model can detect multiple
fish in the image with their bodies aligned horizontally in the image. The proposed method
can precisely detect the body size of each fish even when the fish overlap, as presented in
Figure 15.

The proposed TWE-DRL method can detect fish in turbid water in a variety of dis-
tances, both near and far from the camera recorder. The proposed algorithm for the TDet
results is set at 0.8 for the probability criterion so that images with a probability equal to
or greater than 0.8 will be passed through for further processing. Subsequently, the size
of the fish in pixels was converted to cm with the TP2CME model using the fish size data
from the detecting process together with the depth information obtained from the TDepE
model. Turbid water and the depth of the fish have a major influence on fish detection—for
example, two fish that overlap with one another at a further distance from the camera. The
performance of the Tilapia size estimation from the proposed TWE-DRL method is shown
by MAE, while the box plot values are shown in Figure 16. The estimated error accrued by
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the proposed method is 2.3 cm and 0.96 cm for length and width, respectively. The actual
fish have a length and width that range from 20–30 cm and 7–12 cm, depending on the
age of the fish. The estimated-length error of the fish, as shown in Figure 16, has a wider
spread error than the estimated-width error. This is caused by a wider range of the fish’s
actual length than that of the fish’s width. This leads to the consistency for estimating the
performance of the proposed TWE method. In some cases, the proposed TWE method
may detect the overlapping fish as a single fish. The Tilapia was raised in 3 biofloc tanks
for 3 months, and the Tilapia were 20 weeks old at the start. The Tilapia were recorded
underwater every two weeks. The estimated weight of the Tilapia from 20-weeks-old to
28-weeks-old are plotted against their actual weight from the video, which is related to the
actual length of the Tilapia, as illustrated in Figure 17.
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Figure 17. Comparison of the distribution of actual weight and estimated weight by proposed
TWE-DRL method.

Note that, at 24 weeks of age, the second tank has no data due to all the fish dying and
a new set of fish from a reserve tank was supplied instead. The proposed TWE-DRL method
has estimated the Tilapia weight given by observed videos where the results show a close
resemblance to the actual weight. This is to show the correctness of the proposed method.

The next section will demonstrate the performance of the proposed TWE-DRL method,
which is given by a dataset of estimates derived from the models. All attributes in the
estimated-value dataset were obtained by the models proposed in this paper, i.e., TDepE,
TP2CME, and TWE. This dataset was used to train the TDepE, TP2CME, and TWE models
by following the same steps in Sections 3.4.1 and 3.4.2. From the experiments, it was found
that the SVR, RFR, and LR methods of the TDepE, TP2CME, and TWE models yield the
best estimation results. The fish weights predicted from the estimated-value models were
compared with the weight results obtained from the actual-value models. This is shown in
Figure 18. The estimated weight using the trained models performs with a slightly higher
error than the actual value trained model with 14.50 cm of MAE across the test dataset.
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The well-known weight estimation of fish can be categorized into two cases, in case of
off-water and underwater scenarios. Firstly, in the case of off-water, fish weight-estimation-
based CNNs are proposed in Refs. [5,41] by using ResNet-34 and LinkNet-34 for segmenting
fish images, then the weight of the fish is computed from the surface area of the fish.
The datasets from this research contain 2445 images of fish with weights in the range
of 15 g to 2500 g, where the distance between the fish and the camera is constant in all
images. Thus, the depth of the fish will be provided as a priori information. The mass
estimation performance of Ref. [42] yields the R2 value of 0.976. Another off-tank method is
presented in Ref. [5], the dataset contains 694 images of fish from the 22 species of fish from
9 tributaries where images were captured. The fish’s weight is between 500 g and 1200 g. Six
cameras were set at a fixed distance, with three being near-infrared cameras and three being
general cameras. The output of the DCNNs phase is passed into the regression phase where
the final output will be an averaged value of nine images. The performance of the weight
estimation from Ref. [5] gains an MAE of 634 g. Secondly, underwater fish-weight estimation
is presented in Ref. [7], where the fish weight-estimation methods are the weight prediction
system for Nile Tilapia. This method uses stereo cameras for distance measurements and
captured 10 Tilapia in a tank of clear water for 3 weeks. The fish’s weight is in a range of 24 g
to 41 g. CNNs are used for fish detection. Regression equations are proposed for computing
the depth of the fish, converting pixel-to-cm, and weight prediction. The correlation of the
weight and length based on linear regression has an R2 value of 0.87. The fish’s weight from
the proposed TWE method is between 155 g to 561 g and the R2 value is 0.95. Moreover,
underwater fish weight estimation was exploited in Ref. [43]. A unidirectional tunnel
controlled underwater studio was established by using a single camera. A fish is assumed
to be positioned along the x-axis. A combination of 2D saliency detection and morphological
operators are used for fish segmentation. The curve estimation for length measurement
from segmented images is estimated by using a third-degree polynomial regression on the
fish mid-point. Several regression algorithms were investigated to compute the weight
of the fish. The performance of the method from Ref. [43] obtained an R2 value of 0.97.
Based on the current state-of-the art fish weight-estimation methods, a special camera
or controlled environment are commonly required for collecting fish images. A CNNs
approach were used to identify fish in images. A regression learning approach is applied to
estimate the weight of the fish and the significant fish features related to its weight. Those
methods were used in different scenarios. For the proposed TWE method, a single camera
is required without any other controlled environment. The general CNNs and regression
learning models are formulated in a similar process as the other famous methods. However,
the TWE-DRL algorithm requires only three features, i.e., the age, length, and width of
the fish.

The limitations of the underwater fish weight-estimation methods are mostly based
on the requirement to have special cameras and/or a controlled environment for collect-
ing fish images. A fish weight-estimation-based deep learning approach consumes high
computational complexity, while the regression learning approach is mostly applied for
the case of off-water weight estimation. On the other hand, the limitation of our proposed
method is that it requires a priori information of the fish’s age. In addition, the turbidity
of the water has influences on fish detection to a certain degree. This is evident in the
obtained results presented in the experiments across the different weeks due to the biofloc.
For future work, a pseudo-stereo image will be introduced for extracting the depth of the
fish directly from a single channel image recording and this will be used to produce the
depth estimation [44,45].

The computational complexity of the proposed algorithm can be represented by a big-
O notation. The proposed method has two major components: Firstly, the Tilapia detection
based on the deep learning method and secondly, the Tilapia weight estimation based
on the regression methods. For a deep learning algorithm, the computational complexity
of the proposed method is dominated by the number of iterations and the number of
network layers corresponding to the number of input data. The computational complexity
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of a neural network [46,47] in FC is O
(
n4),O(n), O

(
n2), O(k ∗ n ∗ log(n) ∗m), k where n

denotes the number of neighbors, m is the number of training data, and represents the
number of features [48]. The complexity of the deep learning algorithm causes a large
number of model parameters, which leads to a large memory. Mask R-CNN architecture is
comprised of three major components, i.e., the Backbone, Head, and Mask Branch.

Each RoI needs to be calculated separately, which is time-consuming. In addition,
the number of feature channels after RoI pooling is large, which makes the two FC layers
consume a lot of memory and potentially affects the computational speed. The number of
ResNet-50 parameters varies based on the number of layers, which are presented in Table 8.

Table 8. Computation and parameters of ResNet-50.

Layer Name Conv. 1 Conv. 2 Conv. 3 Conv. 4 Conv. 5 Total

Computation (MFLOPs) 118.816 672.358 953.344 1389.273 732.720 3867
Params (M) 0.0009664 0.218 1.226 7.118 14.987 23.550

Therefore, in our proposed method, the fish detection using Mask R-CNN consumes
the most computational time. However, Mask RCNN yields higher accuracy. Though, given
the current GPU configuration, this computational complexity is relatively modest.

4. Conclusions

Fish monitoring in underwater environments remains a challenging task due to many
factors, such as the dynamics of fish moving, lighting conditions, the quality of water, and
background noise. The focus of the paper lies in developing a low-cost practical single
sensor imaging system with deep and regression learning algorithms for the non-intrusive
estimation of fish weight. The proposed method consists of a Tilapia detection step and
Tilapia weight-estimation step. The Tilapia datasets are curated and contain two types of
datasets, one for the estimation of the fish’s depth from the camera and another for the
estimation of the fish’s physical dimensions. A low-cost off-the-shelf camera is used for
recording the fish. The Tilapia detection model has been trained by the image datasets
using deep neural network, Mask R-CNN, with transfer learning. The Tilapia weight-
estimating models are based on regression learning that require only three features of the
fish, the fish’s length and width, depth, and age. Three regression learning methods have
been investigated for Tilapia weight estimation. The experimental results show that the
proposed algorithm has remarkable efficiency in estimating Tilapia weight with a MAE of
40.78 g, R2 of 0.74, and an average weight error of only 30.30 (±23.09) grams in a turbid
water environment, which shows the practicality of the proposed framework. The principal
strength of the proposed method is the continuous extraction of only three fish’s features
that results in less time-consuming training processes, and its ability to estimate the weight
of Tilapia in turbid water using low-cost video recording. The proposed algorithm has
been demonstrated to be highly amenable to real-world fish farms by using only low-cost
video cameras without including other special sensors.
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