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Abstract: Cholesterol is a waxy substance found in blood lipids. Its role in the human body is helpful
in the process of producing new cells as long as it is at a healthy level. When cholesterol exceeds the
permissible limits, it works the opposite, causing serious heart health problems. When a person has
high cholesterol (hypercholesterolemia), the blood vessels are blocked by fats, and thus, circulation
through the arteries becomes difficult. The heart does not receive the oxygen it needs, and the risk of
heart attack increases. Nowadays, machine learning (ML) has gained special interest from physicians,
medical centers and healthcare providers due to its key capabilities in health-related issues, such
as risk prediction, prognosis, treatment and management of various conditions. In this article, a
supervised ML methodology is outlined whose main objective is to create risk prediction tools with
high efficiency for hypercholesterolemia occurrence. Specifically, a data understanding analysis is
conducted to explore the features association and importance to hypercholesterolemia. These factors
are utilized to train and test several ML models to find the most efficient for our purpose. For the
evaluation of the ML models, precision, recall, accuracy, F-measure, and AUC metrics have been
taken into consideration. The derived results highlighted Soft Voting with Rotation and Random
Forest trees as base models, which achieved better performance in comparison to the other models
with an AUC of 94.5%, precision of 92%, recall of 91.8%, F-measure of 91.7% and an accuracy equal
to 91.75%.

Keywords: cholesterol; hypercholesterolemia; long-term prediction; machine learning; data analysis

1. Introduction

Cholesterol is a form of fat and a key component of cells. It plays a very important
role in health as it participates in the synthesis of hormones, in the production of vitamin D
and in the digestion and assimilation of fats. The molecules that result from the binding
of cholesterol to proteins are called lipoproteins and are categorized into “bad” LDL
cholesterol and “good” HDL cholesterol. LDL cholesterol is responsible for transporting
cholesterol molecules from the liver to tissues and organs, while HDL cholesterol transports
cholesterol molecules from tissues back to the liver [1,2].

Cholesterol is calculated in milligrams (mg) of cholesterol per deciliter (dL) of blood.
An effect below 200 mg/dL (5.2 mmol/L) is ideal. A level somewhere between 200 and
239 mg/dL (5.2–6.2 mmol/L) is marginally below the high-risk number. A value above
240 mg/dL (6.3 mmol/L) is the high-risk limit. Total cholesterol results from the sum of
HDL and LDL values [3].

In HDL, a value below 40 mg/dL (1 mmol/L) for men and 50 mg/dL (1.3 mmol /L)
for women is low. This increases the risk of cardiovascular problems. A normal HDL
cholesterol level is between 40 and 49 mg/dL (1–1.3 mmol/L) for men. For women, it is
between 50 and 59 mg/dL (1.3–1.5 mmol/L). When this level is higher than 60 mg/dL
(1.6 mmol/L), there is increased defense against coronary heart disease [4].
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In LDL cholesterol, a value below 100 mg/dL (2.6 mmol/L) is ideal. The value between
100 and 129 mg/dL (2.6 and 3.3 mmol/L) is close to ideal, while between 130 and 159 mg/dL
(3.4 and 4.1 mmol/L) it is marginally increased. LDL between 160 and 189 mg/dL (4.1 and
4.9 mmol/L) is considered high. When it exceeds 190 mg/dL (4.9 mmol/L) it is very high.
It is recommended that LDL cholesterol be below 70 mg/dL (1.8 mmol/L) [4].

Although cholesterol is essential for the human body, high levels in the blood are asso-
ciated with vascular damage and cardiovascular disease. Sometimes, our body produces
more cholesterol than it needs, and this excess circulates in the blood. High blood choles-
terol levels can cause blood vessels to clot and increase the risk of atherosclerotic plaque,
coronary heart disease, angina, heart attack, peripheral arterial disease and stroke [5–7].

It should be noted that a high level of cholesterol is estimated to cause 2.6 million
deaths (4.5% of total) and 29.7 million disability-adjusted life years (DALYS), or 2% of total
DALYS. Raised total cholesterol is a major cause of disease burden in both the developed
and developing world [8].

High cholesterol levels (hypercholesterolemia) may be due to lifestyle, genes (heredity)
or, secondarily, to health conditions such as kidney disease. Factors responsible for the
increase in cholesterol are poor diet, lack of physical activity, smoking, certain medications
as well as pathological conditions such as diabetes, obesity, chronic kidney disease, HIV,
hypothyroidism and polycystic ovary syndrome [9,10].

Diet plays an important role in improving cholesterol levels. High blood cholesterol
levels are significantly reduced with lower consumption of fatty foods (meat, dairy, cold
cuts), increased fibre intake (fruits, legumes) and frequent consumption of fatty fish rich
in omega-3 fatty acids (sardines, mackerel). In addition, daily physical exercise will have
beneficial effects in lowering cholesterol [11].

Information and communication technologies (ICTs), and especially the fields of
artificial intelligence (AI) and machine learning (ML), are moving in this direction. ML
techniques now play an important role in the early diagnosis of various diseases, such as
diabetes (as classification [12] or regression task for continuous glucose prediction [13,14]),
hypertension [15], COPD [16], COVID-19 [17], CVDs [18], stroke [19], CKD [20], ALF [21],
hepatitis [22], sleep disorders [23], cancer [24], etc.

Especially, in this study, ML models are explored to estimate the long-term risk of
hypercholesterolemia occurrence with the aid of various risk factors. The main contribution
of this article is a comparative evaluation of several supervised learning classifiers to find
the one with the highest sensitivity and separability, which means that it is the most appro-
priate to correctly identify those at high risk. An essential aspect of the data mining process
is data pre-processing in the context of which data cleaning, features selection and class
balancing were applied. Several performance metrics are utilized to evaluate the classifiers’
performance, such as precision, recall, F-measure, accuracy and AUC. Performance analysis
showed that data quality has a significant impact on the training of efficient models. Finally,
the quantitative analysis demonstrated that the soft voting is the most competent model,
and thus it constitutes the main suggestion of this study.

The rest of the paper is organized as follows. Section 2 describes the relevant works
with the subject under consideration. In Section 3, a dataset description and analysis of the
methodology followed is made. In addition, in Section 4, we discuss the acquired research
results. Finally, conclusions and future directions are outlined in Section 5.

2. Related Work

The estimation of individual risk for the development of a chronic condition has gained
high popularity in the medical field. Therefore, in predictive analytics and, especially
machine learning, numerous studies have been conducted to estimate personal risk using
various data related to socioeconomic features (age group, gender and race), behavioural
data and, recently, clinical risk factors. In this direction, we will present some recent studies’
outcomes that use machine learning techniques to predict hypercholesterolemia.
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Familial hypercholesterolemia (FH) is a dominant genetic condition with an increased
risk of coronary artery disease (in untreated cases) [25]. Machine learning-based strategies
can lead to the effective identification of high-risk patients to enhance FH management.

First, the authors in [26] selected three machine learning algorithms including a
classification tree, a gradient boosting machine and a neural network to predict the presence
of FH in two different cohorts. The evaluation was based on the area under the ROC curve.
The findings have shown the superiority of machine learning models against the clinical
Dutch Lipid Score in predicting carriers of FH-causative mutations.

In [27], a Random Forest classifier was developed to identify potential FH patients
using electronic health record (EHR) data. The model was trained on 197 known patients
and 6590 without FH, achieving a positive predictive value (PPV) of 0.88 and a sensitivity of
0.75 on a hold-out test set. The accuracy of the classifier’s predictions was further evaluated
by a chart review of patients at risk of FH not included in the original dataset. The classifier
correctly categorized 84% of patients at the highest probability threshold. Finally, the same
classifier was validated on an external dataset from the Geisinger Healthcare System and
achieved a PPV of 0.85.

Moreover, in [28], the authors developed a model for predicting hypercholesterolemia
using a comprehensive set of body fat mass variables based on machine learning techniques,
in addition to studying the correlation between body fat mass and hypercholesterolemia.
They obtained the area under the receiver operating characteristic curve value of 0.739 and
the Matthews correlation coefficient value of 0.36 in the model using the correlation-based
feature subset selection and the Naive Bayes algorithm.

A machine learning approach for the prediction of cholesterol levels via regression
using non-invasive and easy-to-collect data (clinical and anthropometric) is presented
in [29]. In addition, clustering analysis is carried out to identify different groups of patients
sharing some characteristics and give valuable information to clinical experts for diagnosis
or prognosis.

Moreover, the authors in [30] aimed to compare the performance of various machine
learning models to predict the prevalence of hypercholesterolemia associated with exposure
to lead, mercury and cadmium. Five machine learning models, such as Logistic Regression,
K-Nearest Neighbors, Decision Trees, Random Forest, and Support Vector Machines were
constructed, and their predictive performance were compared. Finally, the Support Vector
Machine model was the most accurate, and the logistic regression model had the highest
area under the ROC curve of 0.718 (95% CI: 0.688–0.748).

In [31], the authors developed a high accuracy (97.45%) convolutional neural network-
based Android application that determines cholesterol levels in a person’s body by captur-
ing the image of the iris. A user with high cholesterol levels has a white–greyish circle on
the outer circle of the iris.

Finally, the authors in [32] constructed a dataset based on the ELSA database, aiming
at the prognosis of high cholesterol (hypercholesterolemia), targeting the elderly office
workers. Naive Bayes, Support Vector Machines, Artificial Neural Network using two
hidden layers, 5-Nearest Neighbors, Rotation Forest, Decision Trees, Logistic Model Trees
and Random Forest were applied on the constructed dataset using a 10-fold cross-validation
experimentation setup. The best overall performance was obtained with the Logistic Model
Trees model, which performed best both concerning accuracy and recall metrics.

3. Materials and Methods

This section describes the dataset under consideration and the methodology adopted
for determining the risk of being diagnosed with hypercholesterolemia.

3.1. Dataset Description

Our experimental results were based on the dataset of research work [32], which is
derived from the English Longitudinal Study of Aging (ELSA) [33]. The initial features
set included 106 variables, with 61 being nominal and 45 numerical attributes, and all the
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participants were over 50 years old. From the features list, we excluded socioeconomic data,
including the type of employment, education, income, residence type, marital status, the
number of children and insurance type. Moreover, after data cleaning and feature selection,
the final list of features was reduced to 13, the number of participants to 350, and all the
attributes (13 as input to ML models and 1 for target class) are described as follows:

• Age (years) [34]: This feature refers to the age of a person who is over 50 years old. It
is numerical data.

• Gender [34]: This feature refers to a person’s gender. The number of men is 172
(49.15%), while the number of women is 178 (50.85%) It is nominal data.

• BMI (Kg/m2) [35]: This feature captures the participant’s body mass index. It is
numerical data.

• Waist (cm) [36]: It is the measurement taken around the abdomen at the level of the
umbilicus. It is numerical data.

• SBP (mmHg) [37]: This feature captures the participant’s systolic blood pressure. It is
numerical data.

• DBP (mmHg) [37]: This feature captures the participant’s diastolic blood pressure. It
is numerical data.

• Hypertension [38]: This feature refers to whether a participant is hypertensive or not.
The percentage of participants who have hypertension is 58.9%. It is nominal data.

• HDL (mg/dL) [2]: This feature captures the participant’s high-density lipoprotein . It
is numerical data.

• LDL (mg/dL) [2]: This feature captures the participant’s low-density lipoprotein . It
is numerical data.

• TotChol (mg/dL) [2]: This feature captures the participant’s total cholesterol. It is
numerical data.

• Physical Activity [39]: This feature captures the participant’s physical activity and
has 4 categories (high 2.6%, medium 11.2%, low 55.4% and very low 30.8%). It is
nominal data.

• Alcohol Consumption [40]: This feature refers to whether this participant consumes
alcohol or not. The percentage of participants who consume alcohol more than normal
is 44.1%. It is nominal data.

• Diabetes [41]: This feature refers to whether the participant has been diagnosed with
diabetes or not. The percentage of participants who suffer from diabetes is 20.6%. It is
nominal data.

• Hypercholesterolemia: This feature stands for whether the participant has been
diagnosed with hypercholesterolemia. The percentage of participants who have been
diagnosed with hypercholesterolemia is 44.6%. It is nominal data.

3.2. Hypercholesterolemia Risk Prediction

Supervised machine learning models have become an important asset for clinicians
and healthcare providers as they allow them to evaluate the long-term risk of a condition
occurrence based on several risk factors. More specifically, here, our purpose is to formulate
a binary classification problem with target class c = “HyperChol” (hypercholesterolemia
occurrence) or c = “Non-HyperChol” (non-occurrence of the hypercholesterolemia) and
design models which will achieve high recall and area under curve (AUC) to ensure that
instances with hypercholesterolemia can be accurately classified.

Assuming an instance with an unknown class label (HyperChol, Non-HyperChol),
the trained ML models will predict its class based on the features’ values and thus the risk
of occurring hypercholesterolemia in the long term.

The proposed methodology includes some specific steps, namely, data preprocessing,
feature ranking, classification models training and performance evaluation.
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3.2.1. Data Preprocessing

Data quality is a prerequisite for the development of efficient models suitable for the
correct identification of healthy and with hypercholesterolemia instances. Hence, to ensure
data validity, several preprocessing steps are usually applied. Data quality is ensured via
the application of data cleaning methods, selecting the most appropriate for the data under
consideration, such as excluding unnecessary or duplicate values, avoiding typos, handling
missing values, data imputation, etc. [42]. As for the current dataset, we selected to remove
instances whose feature values are missing and not valid (namely, out of the normal limits).

Moreover, the skewed class distribution constitutes a factor that can create ML mod-
els of poor performance. For this purpose, the imbalanced distribution of participants
among the HyperChol and Non-HyperChol classes was tackled by employing SMOTE [43].
SMOTE uses a 5-NN classifier to create synthetic data on a minority class, i.e., HyperChol,
which is oversampled such that the instances in two classes are equally distributed (i.e.,
50%–50%). In Table 1, we present the minimum, maximum, mean and standard deviation
of the numerical features in the balanced data.

Table 1. Statistical Description of the Numerical Features in the Balanced Dataset.

Min Max Mean ± stdv

Age 50 85 66.4 ± 9.5

BMI 18.3 53.1 28.61 ± 5.02

Waist 70 148.6 101.76 ± 13.18

SysBP 90 201 136.6 ± 20.5

DiasBP 13 108 70.27 ± 12.22

HDL 19 114 50.94 ± 16.42

LDL 51 328 157.6 ± 40.1

TotalChol 75 360 208.49 ± 39.69

3.2.2. Features Ranking

We employed four ranking methods to understand the importance of a feature in the
target class. First, we applied the Pearson correlation coefficient [44] to evaluate the strength
of association between all features and especially the worth of a feature in predicting the
hypercholesterolemia class. Figure 1 demonstrates the outcomes of the correlation analysis.
In the correlation matrix, we observe that the highest linear correlation of 0.92 is captured
between total cholesterol levels and HDL, and total cholesterol levels and LDL. The next
but still high linear relationship of rank 0.80 is noted between waist and BMI features, a
high association of 0.75 is shown between hypertension and systolic blood pressure, while
hypertension has a low association of 0.18 with the diastolic blood pressure. A moderate
positive association of 0.3 is shown between age and systolic blood pressure. However,
diastolic blood pressure has a moderate negative relationship with age. Finally, the target
class records a moderate association of 0.68 and 0.62 with the total cholesterol and HDL,
respectively, while a low relationship seems to exist with the other features.

Then, we applied the Information Gain method (InfoGain) [45] which evaluates the
worth of a feature by measuring the information gain with respect to the class, according to
the formula

In f oGain(c, yij) = H(c)− H(cyij), j ∈ 1, 2, . . . , n (1)

where H(c) and H(cyij) are the entropy of the hypercholesterolemia class and the condi-
tional entropy of the class given the feature j yij of an instance i. From (1), we see that this
measure captures the difference in entropy before and after the split of a feature set based
on a specific yij. Alternatively, it shows the uncertainty reduction after splitting the set on a
feature. The best feature for splitting is the one with the highest information gain.
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Figure 1. Pearson correlation analysis.

Furthermore, we employed the Gain Ratio (GR) method [46] which is calculated as

GR(yij) =
H(c)−H(cyij)

H(yij)
, where H(yij) = −pyij log2(pyij) is the entropy of an instance with

feature yij (with pyij denoting the probability of selecting feature yij), H(c) = −pclog2(pc)
is the entropy of class c (with pc be the probability of selecting an instance in class c) and
H(cyij) being the conditional entropy of feature yij given class c. Gain ratio indicates the
relevance of a feature and selects the ones that maximize gain ratio based on the probability
of each feature value.

Finally, the Random Forest classifier was selected to measure the importance of the
features. Random Forest creates a forest of trees and per tree measures the discrimination
ability of a potential feature to create the optimal split, namely the one that separates the
instances of the two classes, using the Gini impurity.

In Table 2, we summarize features’ importance in the balanced dataset concerning the
hypercholesterolemia class. All considered methods show that TotChol and HDL features
are of the highest importance for the prediction of hypercholesterolemia. In addition,
we observe that DiasBP is the next most important for the three out of four methods.
Moreover, InfoGain and Gain ratio, due to their relationship, assign the features in the
same order except for physical activity and hypertension. Since all features are among
the risk factors that are utilized by the clinicians for the diagnosis and management of
hypercholesterolemia, the models’ training and validation will be based on all of them.
Finally, given that ML models can be retrained with more data, their importance will
be re-investigated.
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Table 2. Features’ order of importance in the balanced data.

Feature Pearson
Rank

Feature Gain
Ratio

Feature InfoGain
Ratio Feature

Random
Forest

(AUPRC)

TotChol 0.6777 TotChol 0.3061 TotChol 0.5633 TotChol 0.3790

LDL 0.6152 LDL 0.2171 LDL 0.3963 LDL 0.3165

HDL 0.1366 DiasBP 0.1142 DiasBP 0.0283 DiasBP 0.0788

DiasBP 0.1148 Gender 0.0085 Gender 0.0085 Age 0.0512

BMI 0.1106 Alcohol
Consumption 0.0079 Alcohol

Consumption 0.0079 BMI 0.0262

Gender 0.1038 Hypertension 0.0034 Physical
Activity 0.0043 Alcohol

Consumption 0.0242

Alcohol
Consumption 0.1042 Physical

Activity 0.0029 Hypertension 0.0034 HDL 0.0182

Age 0.0711 Diabetes 0.0027 Diabetes 0.0019 SysBP 0.0154

Hypertension 0.0681 SysBP 0 SysBP 0 Waist 0.0151

Physical
Activity

0.0586 HDL 0 HDL 0 Gender 0.0145

Diabetes 0.0520 BMI 0 BMI 0 Hypertension 0.0124

SysBP 0.0502 Waist 0 Waist 0 Diabetes 0.0000

Waist 0.0192 Age 0 Age 0 Physical
Activity

−0.0021

3.3. Data Exploration

In this subsection, after data preprocessing and features ranking, we will analyze the
association between features and the HyperChol class.

Initially, in Figure 2, we present the participants’ distribution according to their age
group and their gender. Most of them who have HyperChol belong to the age group 60–64,
where men’s and women’s percentages are approximately similar. In addition, from this
figure, we observe that HyperChol prevails in women who are between 50 and 59 and men
who are older than 65 years old.

Figure 2. Participants’ distribution per age group and gender type in the balanced dataset.

In Figure 3, we present the participants’ distribution in terms of the BMI and waist
categories. To define the BMI categories, we used the following rules [13]:
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1. BMI < 18.5: underweight
2. 18.5 ≤ BMI < 25: healthy
3. 25 ≤ BMI < 30: overweight
4. BMI ≥ 30.0: obesity

(a) Class I: 30 ≤ BMI < 35
(b) Class II: 35 ≤ BMI < 40
(c) Class III: BMI ≥ 40 (severe obesity).

Cut-off points for the waist size were considered 88 cm for women and 102 cm for
men [47]. Based on these points, the labels F88 and M102 capture women and men with
waist circumference higher than 88 and 102 cm, respectively. The label “normal” refers to
men and women with waist sizes lower than 88 and 102 cm, correspondingly. From this
figure, we see that most of the participants with HyperChol are distributed in healthy and
overweight and obese I categories of BMI. Moreover, when HyperChol and overweight
classes coexist, the women with waists higher than the cut-off point are much more than
men. In addition, some instances have HyperChol and are overweight, but they have
normal waist size.

Figure 3. Participants’ distribution in terms of BMI and waist categories in the balanced dataset.

Furthermore, in Figure 4, we capture the coexistence of hypertension and diabetes
diseases in relation to HyperChol. We see that 25% of the participants have HyperChol, are
hypertensive and have not been diagnosed with diabetes. A small percentage of 6% fulfills
all criteria; 16% of the participants who have HyperChol do not suffer from hypertension
and diabetes.

Figure 4. Participants’ distribution for both diabetes and hypertension in the balanced dataset.
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Figures 5 and 6 show the association of HyperChol with participants’ habits in terms
of alcohol consumption and physical activity. It is shown that the HyperChol participants
are roughly the same distributed among the two possible values of the alcohol consumption
feature. Finally, as for Figure 6, it should be noted that most of the HyperChol participants
are very low or low physically active.

Figure 5. Participants’ distribution in terms of alcohol consumption in the balanced dataset.

Figure 6. Participants’ distribution in terms of physical activity in the balanced dataset.

3.4. Machine Learning Models

Several models have been selected to evaluate their prediction performance. More
specifically, Naive Bayes, Support Vector Machine, Artificial Neural Network, K-NN, Rota-
tion Forests, Decision Trees, Logistic Model Trees, Random Forest, and Ensemble Learning
(Stacking and Soft Voting) classification methods will be presented. We assume that each

instance i in the dataset is represented by a features vector yi =
[
yi1, yi2, yi3, . . . , yin

]T
,

where n is the number of the features.

3.4.1. Naive Bayes

Naive Bayes(NB) classifies an instance yi at that class c for which P(c|yi1, . . . , yin) is
maximized (under the assumption that the features are highly independent [48]). The condi-

tional probability is defined as P(c|yi1, . . . , yin) =
P(yi1,...,yin |c)P(c)

P(yi1,...,yin)
, where P

(
yi1, . . . , yin|c

)
=

∏n
j=1 P

(
yij|c

)
is the features probability given class and P

(
yi1, . . . , yin

)
, P(c) are the prior
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probability of features and class, respectively. The estimated class is derived by maximizing
P(c)∏n

j=1 P
(

yij|c
)

, where c ∈ {HyperChol, Non− HyperChol}.

3.4.2. K-Nearest Neighbors

K-Nearest Neighbors (K-NN) is a non-parametric lazy learning classifier which mea-
sures the distance (i.e., via Euclidean, Manhattan methods) between the test instance and
every other instance in the training dataset [49]. Then it determines the K instances that
are closest to the test instance which are finally categorized into the class that most of its K
neighbors stem from.

3.4.3. Logistic Regression

Logistic Regression (LR) [50] is a supervised classifier for binary and multinomial
tasks. It uses a logistic or a sigmoid function to model the dependent output variable. The
model output is dichotomous in nature, i.e., with two possible classes, in which p captures
the probability of an instance to belong in the HyperChol class; thus, 1− p is the probability
of an instance belonging to the Non-HyperChol class. The relationship of log-odds with
base b and model parameters βi is written as:

logb

( p
1− p

)
= β0 + β1yi1 + . . . + βnyin (2)

3.4.4. Rotation Forest

The Rotation Forest (RotF) [51] applies a rotation transformation matrix to the training
before the training of each decision tree to increase the diversity of individual decision
trees. A feature reduction technique creates a new feature set for every classifier in the
ensemble. It randomly splits the feature set into subsets and applies principal component
analysis (PCA) to every created subset separately. Then, a new feature set is acquired by
combining principle components of each subset. In this study, the base classifier for the
RotF is a J48 [52] decision tree.

3.4.5. Artificial Neural Network

Multilayer Perceptron (MLP) is the simplest fully connected feed-forward Neural
Network. It consists of input and output layers and at least one hidden layer. Its neurons
are trained by employing back-propagation learning which allows for classification into
multiple labels. The MLP is able to learn non-linear models and execute online learning.
Finally, it can use any arbitrary activation function [53].

3.4.6. Support Vector Machine

Support Vector Machine (SVM) [54] finds the hyperplane that can optimally separate
instances into two classes. The most characteristic kernel functions are linear, polynomial,
radial basis and quadratic. An instance xi can be optimally classified based on function:

f (y
′
) = Sgn

[
M

∑
i=1

αiciK(yi, y
′
) + b

]
0 ≤ αi ≤ C, ∑ αici = 0, αi ≥ 0, i = 1, 2, · · · , M

(3)

where M is the size of training instances, yi, ci are the training instance feature vector and
its class label, respectively, b is a bias, ci ∈ {1, −1}, K(yi, y

′
) is the kernel function which

corresponds the input vectors into an expanded feature space and f (y
′
) ∈ {−1,+1} is the

kernelized binary classifier’s predicted class for the unlabeled instance y
′
.
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3.4.7. Decision Tree

From the available Decision Trees, we considered the Reduced Error Pruning Tree
(RepTree) [55]. It is a simple and fast decision learner which builds a decision/regression
tree using information gain as an impurity measure and prunes it using reduced-error
pruning. RepTree is even more accurate when dealing with a large volume of data.

3.4.8. Logistic Model Tree

A Logistic Model Tree (LMT) [56] consists of a standard decision tree structure with
logistic regression functions f (yi) = β0 + ∑n

j=1(βiyij) at the leaves. LMTree constructs the
tree growing process using the LogitBoost algorithm and the tree pruning is performed
using Classification And Regression Tree (CART).

3.4.9. Random Forest

Random Forest (RF) is a bootstrapping technique based on a decision tree with high-
performance outcomes, in both regression and classification tasks. It considers the Infor-
mation Gain or Gini index to find the optimal subset of features, trains multiple decision
trees and then classifies an instance by applying majority voting on the results of multiple
Decision Trees [57].

3.4.10. Ensemble Learning

Ensemble Learning is a machine learning method that combines the outcomes of sev-
eral single classifiers called base models. Voting and Stacking are two common approaches
which are utilized to acquire more accurate predictions than the single models’. Concerning
Voting, there are two types, Soft and Hard. Soft Voting, which is exploited in this study,
averages the corresponding probabilities of the considered base classifiers and assigns a
test instance to the class with the highest probability [58]. On the other hand, Stacking
uses the predicted class labels of the base models as input features to train a meta-classifier
which undertakes to find the class label [59]. Figure 7 illustrates the two schemes as they
will be evaluated in the experiments.

3.5. Evaluation Metrics

To assess the ML models’ performance, accuracy, precision, recall, F-measure, and
AUC metrics were considered [60].

Precision (or positive predicted value) shows the ratio of positive instances in relation
to true and false positive instances. We also considered recall which captures the true posi-
tive rate or a model’s sensitivity to identify the participants who actually had HyperChol
and correctly considered as positive, concerning all positive participants. Precision is a
measure of quality, while recall is a measure of quantity. F-measure is the harmonic mean
of precision and recall and allows the evaluation of a model using a single score. Moreover,
we computed accuracy, which shows a model’s ability to correctly identify both HyperChol
(positive) and Non-HyperChol (negative) instances. Taking into account the confusion
matrix, TP, TN, FP and FN denote the number of true positive, true negative, false positive
and false negative instances. Based on these quantities, the performance metrics are written
as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (4)

F−Measure = 2× Precision · Recall
Precision + Recall

, Accuracy =
TN + TP

TN + TP + FN + FP
(5)

Another important metric which will be taken into consideration for the models’
evaluation is area under curve (AUC) which takes values in the range [0, 1]. AUC is a
measure of separability. The ML models’ performance in distinguishing HyperChol from
Non-HyperChol instances is captured by AUC. If AUC attains one, it means that the models
have the perfect discrimination ability of the two classes distributions.
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Figure 7. Ensemble Learners: Soft Voting and Stacking.

4. Results and Discussion
4.1. Experiments Setup

In this section, the ML models performance is evaluated in the WEKA 3.8.6 environ-
ment [61]. WEKA is a free JAVA-based data mining tool created and distributed under the
GNU General Public License. It provides a library of various models for data preprocessing,
classification, clustering, forecasting, visualization, etc. The computing system in which the
experiments were conducted has the following characteristics: Intel(R) Core(TM) i7-9750H
CPU @ 2.60 GHz 2.59 GHz 16 GB Memory, Windows 10 Home, 64-bit Operating System,
x64-based processor. For our experiments, 10-fold cross-validation was applied to measure
the models’ efficiency in the balanced dataset of 388 instances. In Table 3, the settings of the
considered ML models are shown.

Table 3. Machine Learning Models’ Settings.

Model Parameters

NB useKernerEstimator = false

LR ridge = 10−8, useConjugateGradientDescent = false

LMT
LR modesl at leaves

errorOnProbabilities = false, fastRegression = false,
numInstances = 15, useAIC = false

DT noPruning: false, MinVarianceProp = 0.001
numfolds = 3

RotF (using J48) confidence_factor: 0.25, unpruned: false
minimum_instances per_leaf_node default binary split: false
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Table 3. Cont.

Model Parameters

RF max_depth = 0, numIterations = 100 numFeatures = 0

ANN hidden layers: ‘a’, learning rate: 0.3 momentum factor 0.2,
training time 500

SVM kernel type: linear

K-NN K = 3, 5
Search Algorithm: LinearNNSearch with Euclidean

Stacking Base Models:RF, RotF Meta-model:LR

Soft Voting Base Models:RF, RotF Average Probabilities

4.2. Evaluation

To fully evaluate the effectiveness of models, we should examine both precision and
recall since the improvement of precision typically reduces recall and vice versa. However,
if the classes’ distribution is uniform, these metrics may achieve the same outcomes.

In Table 4, we show the performance of various models, which were obtained after the
application of data cleaning and class balancing. Selecting the two best-performing single
classifiers, we combined them under two schemes, Soft Voting and Stacking. All models’
accuracy is higher than 86% except for the 3-NN model, which still achieved an acceptable
accuracy of 70.62%. In addition, precision, AUC, recall and F-measure demonstrate the
same promising outcomes as the accuracy.

Table 4. Performance Evaluation of ML Models.

Accuracy Precision Recall F-Measure AUC

NB 87.37% 0.877 0.874 0.873 0.931

SVM 88.40% 0.884 0.884 0.884 0.884

LR 87.63% 0.876 0.876 0.876 0.927

ANN 82.73% 0.828 0.827 0.827 0.912

3-NN 70.62% 0.707 0.706 0.706 0.758

RotF 90.98% 0.911 0.910 0.910 0.939

LMT 86.85% 0.869 0.869 0.869 0.928

RF 89.69% 0.900 0.897 0.897 0.943

DT 88.92% 0.892 0.889 0.889 0.902

Stacking 91.24% 0.915 0.912 0.912 0.937

Soft Voting 91.75% 0.920 0.918 0.917 0.945

Soft Voting (SoV) is the model with consistently high efficiency in all metrics. Focusing
on AUC, which aggregates the classification performance of a model, the SoV model is able
to distinguish between HyperChol class and Non-HyperChol class with a chance of 94.5%.
In addition, we see that the combination of rotation with the random forest improved the
performance of individual models and especially achieved a higher upgrade in the case of
RF than in the RotF. Stacking is the second model with excellent separation performance,
although its AUC is 8%, 6% and 2% lower than the ones of SoV, RF and RotF, respectively.
SoV’s performance superiority lies in the fact that the base-models have been configured to
predict probabilities instead of class labels. In the case of Stacking, class labels may add
higher uncertainty to the predictions which are provided in the meta-model to learn how
to find the best combination of them.
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In Table 5, we capture recall and accuracy metrics comparing only single classifiers
before [32] and after data cleaning and further restricting features number. A significant
performance improvement is observed revealing the role of data quality, class balancing
and dimensionality in the classifiers’ performance.

In addition, we observe that our proposed models are superior to the work [32] in
terms of recall and accuracy of at least 10%. The only case where we can see similar
performance is in the recall of the 5-NN. It should be mentioned that the 3-NN (Table 4)
showed better accuracy and recall than the 5-NN with a percentage gap of about 3%.

In conclusion, the performance of Stacking outperforms the prediction performance of
each individual model and is closer to the best single model RotF. Soft Voting, which is a
probabilistic scheme, achieves higher performance than Stacking since in the meta-level
of the latter, the predicted classes are combined using a logistic regression classifier to
achieve an output that is a simple linear combination of the predictions of the sub-models.
In either case, ensemble schemes indicated promising efficiency compared to the rest of
the classifiers.

Table 5. Performance Comparison of ML Models.

Recall Accuracy

Proposed models [32] Proposed models [32]

NB 87.40% 68.90% 87.37% 62.69%

SVM 88.40% 72.70% 88.40% 59.51%

ANN 82.70% 66.70% 82.73% 61.42%

5-NN 67.30% 67.70% 67.27% 56.56%

RotF 91% 69.60% 90.98% 61.86%

DT 88.90% 72.20% 88.92% 61.39%

LMT 86.90% 73.50% 86.85% 62.99%

RF 89.70% 68.80% 89.69% 61.36%

5. Conclusions

In this study, we exploited supervised learning to develop models for the identification
of individuals at risk for hypercholesterolemia manifestation based on several risk factors.
Healthcare professionals and clinical experts can benefit from such models to prevent
the severe consequences of hypercholesterolemia, such as cardiovascular disease. Data
exploration through risk factors analysis can help identify associations among the features
and HyperChol. A critical aspect of ML models is that they allow medical experts to
regularly reassess the associated risk and give proper guidelines and interventions for its
management and treatment or prevent its occurrence.

Performance analysis revealed that data preprocessing is an important step for the
design of efficient and accurate models for hypercholesterolemia occurrence. The experi-
mental results showed that Soft Voting having as base classifiers the Random and Rotation
Forest prevailed with an AUC of 94.5%, precision of 92%, recall of 91.8%, F-measure of
91.7% and an accuracy equal to 91.75%. Hence, it constitutes a candidate HyperChol risk
prediction model.

The future purpose of this study is to extend the ML framework via the employment
of deep learning methods by applying the Long Short-Term-Memory (LSTM) algorithm
and Convolutional Neural Networks (CNN) in the same data comparing the results in
terms of accuracy.
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