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Abstract: We present a multi-sensor data fusion model based on a reconfigurable module (RM) with
three fusion layers. In the data layer, raw data are refined with respect to the sensor characteristics
and then converted into logical values. In the feature layer, a fusion tree is configured, and the
values of the intermediate nodes are calculated by applying predefined logical operations, which are
adjustable. In the decision layer, a final decision is made by computing the value of the root according
to predetermined equations. In this way, with given threshold values or sensor characteristics for
data refinement and logic expressions for feature extraction and decision making, we reconstruct an
RM that performs multi-sensor fusion and is adaptable for a dedicated application. We attempted to
verify its feasibility by applying the proposed RM to an actual application. Considering the spread
of the COVID-19 pandemic, an unmanned storage box was selected as our application target. Four
types of sensors were used to determine the state of the door and the status of the existence of an
item inside it. We implemented a prototype system that monitored the unmanned storage boxes by
configuring the RM according to the proposed method. It was confirmed that a system built with
only low-cost sensors can identify the states more reliably through multi-sensor data fusion.

Keywords: an unmanned storage box; multi-sensor fusion; data refinement; reconfigurable module;
threshold

1. Introduction

Sensors can continuously observe external conditions. Internal and external changes
related to system operation can be tracked in real time through integrated analysis of the
sensed data. Therefore, in order to make an existing system an intelligent system, it is
necessary to deploy various types of sensors and effectively combine them. One of the
advantages of multi-sensor data fusion is redundancy. While the same type of sensors
may have different fidelities, the measured values of multiple sensors can be combined
to improve accuracy and reliability. In other words, combining several low-cost and low-
performance sensors may be better than one high-cost and high-performance sensor. A
combination of heterogeneous multi-sensors can collect various data that are difficult to
collect with only a single type of multi-sensor. In summary, an intelligent system built
with a combination of several low-cost and low-performance sensors has the advantage of
having a similar performance and lower cost compared to those built with high-cost and
high-performance sensors.

The first step in building an intelligent system is sensor registration. This is the process
of determining what kind of sensors are needed and where to place them. This registration
process associates the problem to be processed using the intelligent system and the data
to be sensed by the sensors. That is, it is necessary to consider whether the raw data to be
sensed by each sensor will be used to extract which features.

Before sensor fusion, we need to match the raw data sensed from the sensors. That is,
it is necessary to check whether the raw data are acquired under the same conditions such
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as the same time and the same location. A multi-sensor fusion of the same type can have a
mutual effect if the value of one sensor is different from that of another under the same
condition, and there may be mutual influence. In the case of heterogeneous sensor fusion,
there is the problem of how to combine different information. However, in such a fusion,
one sensor may directly affect the operation of another sensor. For example, in autonomous
robots, vision sensors will affect the determination of the moving direction of the robot. We
call this method of processing sensed data guidance (guiding) or hint (cueing).

When building an entire system, it is necessary to configure a multi-sensor fusion
system for the application purpose. It is easy to expand when designed in units of modules.
Each module operates independently. The modular design can increase in flexibility while
reducing complexity in the system integration. A layered architecture design is also needed.
Sequential processing and parallel processing are possible for each layer. Although the
internal representations of each layer are different from each other, it is possible to exchange
information between neighboring layers. Adaptability means that a new binding model
can be readily applicable to the fusion process. In this paper, we intended to implement
a reconfigurable module (RM) that can be utilized for a general purpose, as shown in
Figure 1, in accordance with the above-mentioned implementation purpose.
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Henderson and Shilcrat [1] proposed a logic sensor model, and applied this concept to
robot arm control. The existing model proposed an integrated single bonding method, but
in this study, it was subdivided into a three-layer binding layer (Figure 1). In the proposed
model, the task of examining outliers in individual sensor measurements was conducted in
the data fusion layer, which was the lowest layer. In the upper fusion layer, we focused only
on improving the accuracy of the decision making. In this paper, the term reconfigurable
module (RM) is used to clearly define the meaning of the aforementioned logic sensor.

Data combination in an RM processes the raw data of the data layer into decision
information of the decision layer through layer-specific fusion steps (Figure 1). The logic
sensor accepts the measured value and data format of the sensor as input regardless
of the type of physical sensor. It can process data regardless of the type or location of
the physical sensor. Inside the logic sensor, the fusion method can be freely changed,
enabling reconfiguration.

An RM’s input is either raw data or output transferred from another RM. To deal with
data inconsistency, an appropriate data imputation algorithm is applied according to the
random nature of the missing values in the raw data. The parameters required for setting
the internal structure of the RM include data normalization, data fusion architecture, a
fusion algorithm, and the internal representation and output characteristics of each fusion
layer. RM reconfiguration means to create a new RM instance by setting these parameters.

An internal representation generated in the process of each fusion layer is recorded
in a local database. The representation generated in the previous layer is used as input
into the next layer. Notice that its format continues to change whenever layer-by-layer
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fusion proceeds. The state of an RM instance consists of processed data and an internal
representation for each layer.

In this paper, we attempted to verify the feasibility by applying the proposed RM to
an actual application. Considering the recent COVID-19 pandemic situation, we chose
an unmanned storage box as our application target. Four different types of sensors were
attached to it to determine the door’s status or the presence or absence of an item. In the
data layer, raw data sensed by each sensor were refined based on threshold values and
then converted into their corresponding logical values. In the feature layer, a tree suitable
for data fusion was configured, and the logical values of the intermediate nodes were
calculated by applying predefined logical operations. In the decision layer, a final decision
was made by computing the logical value of the root node according to predetermined
logical equations.

While integrating and fusing data from multiple sensors using the RM, data represen-
tation at each layer is important. This is because not only are the processed results through
sensor fusion of each layer reflected in the data representation, but they must have data
association with the adjacent upper layer to reflect them to the upper layer. That is, the
reconfigurable fusion model is possible only when it has the form x → f (x)→ g( f (x)) ,
where x is the representation at the data layer. In other words, each layer behaves inde-
pendently of the others, but the behavior of a higher layer depends on the representation
of a lower layer through internal representation sharing. It is also possible to change only
the fusion algorithm of the upper layer without changing the result of the lower layer.
Therefore, the goal of the RM model is to provide a search space to find the best one by
testing various fusion methods in each layer.

To verify this proposed approach, we will apply it to the unmanned storage box. This
is because it can effectively limit the research scope, as well as being suitable for modeling
the association between data representations of the layers.

The paper is organized as follows: Section 2 describes related works on multi-sensor
data fusion. In Section 3, we describe sensor registration and its deployment and the
multi-sensor data fusion process for the implementation of a smart unmanned storage
box. Section 4 describes the fusion process applied to each layer. Section 5 gives the
concluding remarks.

2. Related Works

The multi-sensor data fusion model [2–6] varies depending on the sensor type and
application purpose. The fusion process model is a framework for combining data. Early
related studies presented the results from application points of view. Since then, research
results from theoretical points of view have been presented, which reflect data uncertainty
in the model or pursue a model that can predict combined performance. In the JDL four-
level model for military use [2], it was divided into level 1: object assessment, level 2:
situation assessment, level 3: impact assessment, and level 4: process refinement. However,
the most common data fusion model is the one proposed by Luo and Kay [3]. Dasarathy [4]
subdivided it into five levels based on data input/output rather than data processing from
a software engineering perspective. Goodman [5] attempted to reflect uncertainty in the
decision-making process using random sets. Kokar [6] proposed an abstract framework
that can model Luo and Kay’s four-level data fusion at once. The data fusion model [7]
suitable for an ad hoc environment consisting of mobile devices or an environment in
which various types of small heterogeneous sensors are deployed has also been proposed.

There was a case where a distributed matching model [8] was applied to create a tree
structure for vertical combination of the data layer and the feature layer, and to score each
path through a tree search. There was another case where a tree search was applied to the
vertical combination of the feature layer and the decision layer. The leaf of the tree contained
features extracted during the fusion process. There was also a case of applying a parameter-
based cluster analysis method [9] that evaluated the similarity between decision-making
results and the feature vectors stored in the leaf.
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In a study related to multi-sensor fusion application, Rahman et al. [10] used a space-
geometric approach to detect indoor objects by combining data from an infrared (IR) camera
sensor and an acceleration sensor of a mobile device (cell phone) instead of an RFID-based
method. Personalized intelligent systems are also using location-based information in
more depth. Kalasapur and Kunjithapatham [11] presented a framework for personal-
ized, context-aware applications that can dynamically fuse physical data such as from
accelerometers and GIS and social network service data.

In addition, Zhao et al. [12] proposed a collaborative sensing map framework through
an opportunistic network. This is because mobile devices can configure data fusion models
more effectively if they can recognize their surroundings through periodic/non-periodic
communication with their neighboring nodes.

Depending on the degree of randomness of the occurrence of missing values in the data
imputation process, it can be classified into three categories: completely random, partially
random, and non-random. According to these data characteristics, clustering, a proximity
matrix using iterative partitioning [13], and FCMimpute [14] have been proposed.

Park et al. [15] developed an unmanned home-delivery box system with a weight
sensor and a shock sensor. It provides a warning alarm when an external shock is detected
and sends a text message to the recipient’s smartphone.

The method of extracting features from raw data can be divided into threshold value
and window sampling depending on the application purpose. In multi-modal learning [16],
window sampling is applied to divide stream data into segments.

A typical application of using threshold value to extract features from raw data is gait
partitioning [17]. In particular, in the study of gait analysis using foot pressure insoles [18],
two algorithms were proposed for phase discrimination. The first algorithm, described as
force detection, discriminated between the stance phase and the swing phase, imposing a
weighted threshold value obtained from the evaluation of the maximum and minimum
of the force acquired during the entire cycle. The stance phase occurred when the sum of
the outputs of all pressure sensors was above the threshold value. The second algorithm,
described as area detection, was based on the information of which insole area was loaded.
In other words, it can be seen that the features extracted from the raw data influence the
final decisions. Suppose that a single pressure sensor is changed to an array of pressure
sensors during the sensor deployment in a prototype system to be built. In the data layer,
we will still find the sensors that measure pressure above the threshold value. However,
the feature layer will extract the pressure distribution as a new feature, instead of whether
there is pressure or not. In the decision layer, we will make decisions based on the area in
which the pressure has occurred.

Another comparative related work is multi-modal learning [16]. This model consists
of two layers. The lower layer extracts a feature vector that is an abstract representation of
single modal data through learning. The upper layer learns in the direction of efficiently
combining the feature vectors of each modal. It is known that the hierarchical fusion
method performs better than the one that combines modal data as they are [19]. Multi-
modal learning is mostly applied to information fusion [20].

In fact, the work [21] applying the multi-modal learning to the analysis of daily activity
patterns can be directly compared with our proposed approach. The authors attempted to
combine the data acquired from the sensors (accelerometer, blood flow sensor, electrical
conductivity sensor) of a smart watch with the video data acquired from a glass-type
eye tracker. They proposed a method of combining sensor data with different weights
depending on the situation by placing a gate module that determines the weight of each
sensor data. In summary, they proposed a method to reduce computational complexity and
reduce the influence of unrelated or noisy signals through selective gate module coupling.

For our proposed approach, the results of data fusion at the feature layer can be
sequentially applied to the decision layer by separating the feature layer and the decision
layer through tree-based modeling. The feature layer can also provide additional infor-
mation needed for decision making. During the data fusion process, some sensors are
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excluded in [6], but none of the sensors are excluded in the proposed approach. This is
because the purpose of applying data fusion in the proposed method is to compensate for
the shortcomings while maintaining the unique characteristics of the sensor data.

3. An Unmanned Smart Storage Box System

In Korea, as the number of single-person households continues to increase, an un-
manned storage box has been recognized as a tool for receiving goods in a non-contact
manner. In particular, for the case of single-female households, they are being used as a
means of safely receiving ordered items without face-to-face contact with outsiders. With
the prolonged COVID-19 pandemic, the demand for them has also risen along with the
increased demand for parcel delivery services. Thus, it was chosen as our application target
to verify the feasibility of the proposed RM.

A study of the conventional unmanned parcel delivery locker [22] focused on the
opening and closing function. One can open or close its door by scanning the QR code on a
recipient’s mobile phone or entering the verification digits. We attempted to implement
a smart storage box by attaching specific sensors to this locker. We call it smart storage
for short.

The structure of the smart storage is shown in Figure 2. An Arduino Mega board
(Model 2560) was used for sensor control. It receives raw data from up to 16 individual
sensors. Thus, it can manage four smart storages at the same time. We used a Raspberry
Pi 4 (Model B) board for processing and storing the raw data collected by the sensors. It
was connected to the Arduino board by serial communication (USB 2.0). It can manage
up to 16 Arduino boards. That is, it can manage 64 smart storages at the same time. Raw
data temporarily stored in it were transmitted to the smart storage monitoring server via
wireless LAN (IEEE 802.11a/c) and then saved in the database.
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For implementation of the smart storage, four types of sensors were used: an ultrasonic
sensor, a Hall effect sensor (abbreviated as Hall sensor), a light sensor, and a pressure sensor.
Each sensor operated independently, but the status of the smart storage would be more
accurately discriminated through multi-sensor data fusion. The functions and specifications
of the four sensors used in the smart storage are summarized in Table 1. Considering the
function of each sensor, they were deployed as shown in Figure 3.
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Table 1. The functions and specifications of the sensors used in the smart storage.

Sensor Type (Model) Functions Specification

Ultrasonic Sensor
(HC-SR04)

Measures the distance of a
target object by emitting
ultrasonic sound waves

Ranging distance: 2~400 (cm)
Size: 2.0 × 4.5 × 1.5 (cm)

Pressure Sensor
(FSR-406)

Detects forces when pressure
is applied

Sensing range: 0.1 to 20 (N)
Size: 38.1 × 38.1 (mm)

Light Sensor
(SEN030101)

Detects the ambient
brightness

Sensing range: 0~1023
Size: 23 × 21 (mm)

Hall Sensor
(TS0215)

Detects the strength of the
magnetic field

Sensing range: logical values
(0 or 1)

Size: 2.0 × 2.0 (cm)
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An ultrasonic sensor was attached to the ceiling of the smart storage. It was used for
determining the presence or absence of an item. As it will detect the presence of an item
through collaboration with a pressure sensor, there was no need to use a high-end sensor.
This is one of the advantages of multi-sensor data fusion. In this study, the HC-SR04 [23]
with a maximum measurement range of four meters was used.

When a magnetic field is applied to a conductor through which a current flows, the
Hall effect occurs in which voltage is generated in a direction perpendicular to the current
and magnetic field. The voltage is proportional to both the current intensity and the
magnetic field strength. When the current is constant, the output voltage generated is
proportional to the magnetic field strength. This Hall effect allows us to know the direction
and the strength of the magnetic field. We used a Hall sensor and a magnet to determine
whether the door was open or closed. As shown in Figure 3, the magnet was attached to
the upper left of the door, and the Hall sensor was installed on the upper left of the smart
storage. That is, when the door was closed, the Hall sensor and the magnet were arranged
so that they would contact each other at a close distance. The model TS0215 [24] was used
as the Hall sensor.

A light sensor (SEN030101) (also called a photoresistor) [25] detected the ambient
brightness. It was characterized by changes in conductivity when it received light, which
is photoenergy. It was used together with the Hall sensor to determine the status of the
door. It was attached to the ceiling near the door as shown in Figure 3. Since it detects
the brightness inside the storage, there was no need to restrict where it was installed. In
addition, the collaboration of the light sensor and the Hall sensor allowed us to check
whether the door was fully closed.

When pressure is applied, a pressure sensor returns a resistance value corresponding
to it. If there is no pressure, its value is infinite. Thus, it was used to check whether an item
was placed in the smart storage. Eventually, it determined the presence of an item through
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collaboration with the ultrasonic sensor. The force-sensing resistor (FSR-406) [26], which
can measure from a minimum of 0.1 N to a maximum of 100 N, was used as a pressure
sensor. It was installed in the center of the floor of the smart storage. Due to its small size
(38 × 38 mm), a special plate was manufactured, and it was installed on the bottom of this
plate as shown in Figure 3.

Multiple FSR sensors can be arranged in an array structure to detect changes in
pressure regardless of where an object is placed. However, in this study, only one FSR
sensor was used to determine out how its measured value varied depending on the location
of an item and the vibration generated while it was placed. We considered the case in
which an item was placed away from the position where it was installed.

Notice that a different kind of sensor with a similar function can replace the existing
sensor. For example, for the prototype system, an ultrasonic sensor will be used to measure
the distance to an item, but it can be replaced by an infrared sensor that does the same
thing. This is one of the objectives of our work.

While implementing the prototype system, sensors with a price of USD 10 or less
were chosen. Thus, for this work the price standard for a low-cost sensor was set at USD
10 or less. Although the price standard of a high-cost sensor is slightly different, its price
is at least 5 times higher than that of the low-cost sensors. In terms of functions, their
measurement ranges are wider and they have durability such as waterproofing. The
standards for low-cost sensors and high-end sensors are expected to vary depending on
the application purpose.

The purpose of this study is to achieve similar effects to a single high-performance
sensor through data fusion of several low-cost sensors. To this end, the low-cost sensors
were used in the prototype system. However, the first thing to consider is whether these
sensors can compensate each other. This is because the purpose of applying data fusion in
the proposed method is to compensate for the shortcomings while maintaining the unique
characteristics of sensor data.

4. Multi-Sensor Data Fusion with Multi-Layered Architecture

For multi-sensor data fusion of the smart storage, we adopted a three-layer structure:
a data layer, feature layer, and decision layer as shown in the left graph of Figure 4. In the
data layer, it removes noises that are randomly changing and finds a significant point of
data change for each sensor. This remarkable change can be inferred as a state change. A
threshold, which is a reference value for judging a state change for each sensor, is obtained
through multiple measurements. Based on the threshold, we can distinguish whether a
state change has occurred for each sensor. That is, the threshold obtained in the data layer
is applied to the measured values (rawsensor) of each sensor and they are converted into the
corresponding logical values (valsensor), 0 and 1, as shown in the right graph of Figure 4. In
the feature layer, features are extracted by combining the raw data of two different sensors
that are related in terms of functionality.

The valsensor of each sensor in the feature layer is defined as follows.

1. valFSR: Logical value of the FSR sensor (1: pressure detected, 0: no pressure detected).
2. valultrasonic: Logical value of the ultrasonic sensor (1: item detected, 0: no item detected).
3. valhall : Logical value of the Hall sensor (1: door open, 0: door closed).
4. vallight: Logic value of the light sensor (1: light detected, 0: no light detected).

In the feature layer, the state of the smart storage door can be determined by fusing
the two logical values: valhall and vallight. The logical values extracted in the feature layer
are transferred to the decision layer as parameters of a predefined logical expression for
decision making.
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In the decision layer, a final decision is made by combining the previous decision
(i.e., the door status) and the features extracted from the data fusion of the two logical
values: valFSR and valultrasonic. The decision layer requires the following two decisions:

1. Has an item been placed in the smart storage?
2. Has the recipient taken the item?

An important aspect of the fusion process of the smart storage is that the current
decision is affected by the previous decision. That is, if it was determined that an item was
placed inside it at time t− ∆t, the decision at time t will be made whether it was taken or
not. In addition, although the event of opening the door and the event of taking out an item
are independent events that occur in sequence, they can be regarded as concurrent events.

4.1. Sensed Data Characteristics of Each Sensor in the Data Layer

To determine the state of the smart storage, a pair consisting of an FSR sensor and an
ultrasonic sensor and a pair consisting of a light sensor and a Hall sensor were combined,
respectively. An FSR sensor and an ultrasonic sensor were fused together to discriminate
whether an item was placed in the smart storage. Notice that when an item is placed, the
distance to it measured by an ultrasonic sensor decreases. A light sensor and a Hall sensor
were combined to determine the door’s state. When the door is opened, the illuminance
sensed by a light sensor increases. The sensed value of the Hall sensor was 1 when the door
was open and 0 when it was closed.

The purposes of multi-sensor data fusion for the above two pairs were quite different.
The coupling between an FSR sensor and an ultrasonic sensor is intended to compensate
for the instability of raw data. On the other hand, the coupling between a Hall sensor and a
light sensor is to compensate for the functional shortcomings of each sensor.

4.1.1. Sensed Data Characteristics of an FSR Sensor and an Ultrasonic Sensor

Figure 5 shows the results of smoothing by applying a Kalman filter [27] to the sensed
values of the ultrasonic sensor and the FSR sensor. Compared to those of the ultrasonic
sensor, the sensed values of the FSR sensor were relatively unstable.
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Figure 5. Results of applying a Kalman filter to the ultrasonic sensor (left) and the FSR sensor (right).

At the top of Figure 6, the changes in the raw data of the FSR sensor and of the
ultrasonic sensor are compared by changing the location where an item was placed in the
smart storage. In addition, at the bottom of Figure 6, the variance for each of 10 measured
values was obtained sequentially to show how it changed. Notice that the FSR sensor also
had a larger variance than the ultrasonic sensor. In addition, it took more time to converge
to a stable value as the variance decreased.
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Figure 6. Comparison of the raw data (top) and the variance (bottom) between the ultrasonic sensor
(left) and the FSR sensor (right).

As shown in Figure 7, when an item was put into the smart storage, the ultrasonic
sensor detected it or human arms first, generating noise until it was completely placed.
On the other hand, when placing it, vibration occurred in the plate, resulting in a drastic
change in the sensed values of the FSR sensor. We intentionally installed only one FSR
sensor in the center of the plate, so its measured value changed depending on where an
item was placed. In addition, the time when its sensed value converged to a stable one
varied depending on the location of the item.

As shown in Figure 8, when an event occurs, the sensed values of each sensor change,
but the time it takes to stabilize is shorter for the ultrasonic sensor. The FSR sensor requires
a longer time to stabilize. Therefore, the reference time for determining the state of the
smart storage is not the time when it detects the weight (or pressure) of an item but the
time when the values of both sensors are stabilized. In addition, the one that detects an
event first when putting an item in is the ultrasonic sensor. In Figure 8, the green rectangle
indicates the section where the event occurred. However, the values sensed in this section
are useless for state determination.
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Figure 8. The sections for the FSR sensor and the ultrasonic sensor when putting in an item.

As shown in Figure 9, the change in the sensed values of the FSR sensor occurred first
when an item was taken out of the smart storage. The time at which the sensed values of
these two sensors stabilized was almost the same. Unlike when putting in an item, the
vibration generated from the plate did not continue for a long time; therefore, the sensed
value of the FSR sensor converged to a stable one quickly.
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As shown in Figure 10, when an event occurs, the FSR sensor detects it first. In addition,
like the event of putting in an item, it converges to a stable value with a long delay.
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smart storage.

4.1.2. Sensed Data Characteristics of a Light Sensor and a Hall Sensor

As shown in Figure 11, the peak values of the light sensor and the Hall sensor were
different, but they were combined together to accurately determine the opening and closing
status of the door. The correlation between the light sensor and the door’s status and the
correlation between the Hall sensor and the door’s status were 0.97 and 0.98, respectively,
which are close to 1.
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Figure 11. Changes in the measured values of the light sensor and the Hall sensor with respect to the
opening and closing status of the door (the unit of the x-axis is in seconds).

In order to analyze the sensed values of the light sensor and Hall sensor more accu-
rately, the results of sampling 15 times per second are shown in Figure 12. Notice that
typical sampling occurred once per second. The sensed values of the light sensor (i.e., or-
ange curve) did not change rapidly and were more stable compared to the FSR sensor and
the ultrasonic sensor. Thus, it is possible to determine the status of the door using only
this value.

When the door is opened to put an item in or take it out of the storage, a sudden
change in the sensed values of the light sensor may occur, because light is blocked by
the item or arms. This can easily be identified as shown in the left of Figure 13 when the
sampling interval was shortened to 15 times per second. However, if the sampling interval
was set to once per second, as shown on the right of Figure 13, the changes in its sensed
values exactly matched the status of the door.
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Figure 12. Determination of the opening and closing status of the door by combining the light sensor
and the Hall sensor.
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Figure 13. The sensed values of the light sensor: sampling 15 times per second (left) and sampling
once per second (right).

As shown in Figure 14, when the door was not fully closed, it was difficult to accurately
determine the status of the door with only the light sensor. This is because its value was
close to the one when the door was fully closed. On the other hand, the Hall sensor
maintained the measured value 1 when the door was even slightly open; thus, it could
compensate for the misjudgment by the light sensor. That is, when the measured value
of the Hall sensor was 1, and the measured value of the light sensor was greater than the
minimum value, min(vlight), it was determined that the door was not fully closed.
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Figure 14. Determination of the status of the door with combination of the light sensor and the
Hall sensor.

Conversely, as shown in Figure 15, the sensed value of the Hall sensor changed
drastically (‘0′→′1′ or ′1′→′0′) due to the external impacts, especially when the door was
closed. This sometimes happened when the door was opened. On the other hand, since
the sensing values of the light sensor did not change in response to such an impact, it can
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sufficiently compensate for this phenomenon. For example, if the sensing value of the light
sensor is maintained below min(vlight), it can be determined whether the door is closed
regardless of the changes in the Hall sensor.
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4.1.3. Multi-Sensor Data Fusion for the Smart Storage

As explained earlier, the ultrasonic sensor can sense a person’s arms in the process of
placing an item on the plate; therefore, its measured value cannot be trusted until the item
is fully placed. A similar case may happen when taking an item out of the smart storage.
Compared to the ultrasonic sensor, the FSR sensor had a wider range of measurement
values, so even minor changes could be detected. Conversely, the ultrasonic sensor had
a smaller variance compared to the FSR sensor, so the time to converge to a stable value
was short. Therefore, combining the FSR sensor and the ultrasonic sensor was effective for
determining the presence of an item.

Typically, either the light sensor or the Hall sensor could identify the status of the door.
However, the light sensor could not properly detect a state in which the door was not fully
closed. In addition, the Hall sensor sometimes presented the phenomenon in which its
measured values changed abruptly due to the external impacts when the door was closed.
Therefore, identifying the door’s status was effective by combining the light sensor and the
Hall sensor.

In some cases, multi-sensor fusion has been attempted using non-linear Kalman
filters [27]. However, in the case of the smart storage, it is difficult to induce a physical
relationship between the sensors to be combined. The proposed method of multi-sensor
data fusion for the smart storage is to convert the raw data of each sensor into their logical
values based on a threshold or operational characteristics in the data layer. Then, these
logical values will be transferred to the upper layers, the feature layer and the decision layer,
to obtain a reliable decision by performing predefined logical expressions. In addition, in
order to perform multi-sensor data fusion using the proposed reconfigurable module, the
hierarchical coupling scheme is effective.

4.1.4. Analysis of Sensor Characteristics in the Data Layer Using Various Items

Experiments were conducted using various items to analyze the characteristics of each
sensor. The light sensor and the Hall sensor were excluded from this analysis, because
the door’s status was not affected by the type of item. Thus, we conducted experiments
focusing on items that could compare changes in the raw data between the FSR sensor and
the ultrasonic sensor. Among the items used in these experiments, the actual photos and
the dimensions for two representative items are shown in Figure 16. Note that the Korean
notation on the board game box means cartographer.
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The changes in the sensed values of the FSR sensor and the ultrasonic sensor when
items 1 and 2 were put in and taken out of the smart storage are shown in Figures 17 and 18,
respectively. Notice that tFSR

detect and tFSR
stable denote the time at which the FSR sensor detected

an event and the time at which it began to converge to a stable value, respectively. Similarly,
tultra
detect and tultra

stable denote the time at which the ultrasonic sensor detected an event and the
time at which it began to converge to a stable value, respectively. In general, the condition
tultra
detect < tFSR

detect was satisfied in the event of putting in an item and tFSR
detect < tultra

detect in the
event of taking out an item. In Figures 17 and 18, the sampling period was 1/15 of a second,
and the time in seconds is also indicated for comparison.
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A basic error compensation scheme for the proposed approach is based on a sensor
whose sensed value stabilized later when combining two sensors. Although this scheme is
easy to implement, it is not suitable for situations where real time is emphasized due to
delayed data fusion.

Another error compensation scheme is to reduce the possibility of error propagation
by first combining the noisy sensor pair in the feature layer in the tree structure. This
model is intended to reflect sequential fusion or concurrent fusion. In the prototype system,
sequential data fusion was applied because the sequence of the events is more important
than the possibility of error propagation.

4.2. Data Refinement at the Data Layer

Data refinement is the process of removing noise in order to extract meaningful
features from raw data measured by sensors. Data refinement at the data layer is important
to effectively perform multi-sensor data fusion in the upper layers. As each sensor has
a different data acquisition process and sensing method, it varies from sensor to sensor.
The best refinement method is to observe changes in the measurement values over a long
period of time to find the threshold for refinement when an event occurs. We analyzed
such changes in the measured values by intentionally generating events for each sensor.
Measurements were repeated at least 20 times for each sensor, and based on this, the
threshold for data refinement was determined.

4.2.1. Data Refinement for the Light Sensor

The measured values of the light sensor were 70 to 130 when the door was closed. Its
minimum value, min(vlight), was set to 130. As light entered from the outside when the
door was opened, its measured value became at least 500, which was remarkably different
from the one when the door was closed. Since the difference in its measured value was
large depending on the open and closed state of the door, an average value of 250 was used
as the threshold for determining the state change. Notice that it is determined that the door
was not fully closed when the measured value of the Hall sensor was 1, and the value of
the light sensor was greater than min(vlight).

4.2.2. Data Refinement for the Hall Sensor

The measured value of the Hall sensor was 1 when the door was closed and 0 when
the door was open. Thus, there was no need to specify a threshold for it. Remember that
when the door was closed or opened, its values sometimes changed abruptly, repeating
0 and 1, due to the external impacts. Notice that it was determined that the door was
closed regardless of its changes when the values of the light sensor were maintained below
min(vlight). Similarly, it was determined that the door was open regardless of its changes
when the values of the light sensor were maintained above the threshold of 250.

4.2.3. Data Refinement for the Ultrasonic Sensor

An ultrasonic sensor measures the distance to an item. When there was no item, the
distance that could be measured by it was the maximum, 250 mm, which was almost the
same as the height of the smart storage. When an item was placed, the measured distance
became shorter. The measured distance increased when an item was taken that was placed
in the storage. The threshold of it was the difference between the distance measured before
and after the event. In addition, depending on whether the threshold was positive or
negative, it was possible to know whether an item was placed or taken. This value varied
depending on the height of the item as shown in Figure 16. To determine the existence of
an item based on the threshold, a delay time was required to converge to a stable value.

4.2.4. Data Refinement for the Pressure Sensor

As explained in Section 3, an FSR-406 sensor measures pressure. The range of its
measured value was 0 (0 N) to 1023 (100 N). Since only one FSR sensor is used to measure
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pressure, the measured values vary greatly depending on the where an item is placed
as shown in Figures 17 and 18. Compared to the ultrasonic sensor, it takes more time
to converge to a stable value. However, it is effective in recognizing the occurrence of
events because of its wide range of measurement. Like the ultrasonic sensor, the threshold
of it is the difference between the pressure value measured before and after an item is
placed. Similar to the ultrasonic sensor, a delay time is required until the measured value
converges to a stable one. It depends on the characteristics of the FSR sensor,

∣∣tFSR
stable − tFSR

detect

∣∣.
Empirically, it took about 1~1.2 s to take out an item, but about 1.4~1.6 s to put it in. In
actual implementation, the longest time was applied as the delay. Notice that this delay is
equally applied to sample the value of the ultrasonic sensor.

4.2.5. Data Refinement Results by the Sensors

In the data layer, the measurement values of each sensor were refined based on the
threshold and converted into corresponding logical values as shown in Figure 19. These
logical values of each sensor were used for multi-sensor data fusion in the feature layer
and decision layer. Notice from Figures 19–24 that the sensed values of each sensor were
sampled at an interval of once per second. Thus, the unit of the x-axis in the figures
is seconds.
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Figure 24. Changes in the sensed value measured by all of the sensors.

It takes about 66 ms to transmit the sensor values collected from the Arduino board
to the Raspberry Pi board. It depends on the measurement time to sense values by the
ultrasonic sensor. In addition, it takes about 11 ms to save the measured data from the
Raspberry Pi board to the database of the monitoring server. That is, it takes a total of 77 ms
to save the measured data to the database. The time it takes to retrieve the stored value
from the database is about 68 ms. Finally, the time it takes to see the sensed value in the
monitoring server is 145 ms, and the total latency is within 0.2 s. Notice that the data size
of 24 bytes has little impact on latency.

4.3. Feature Extraction at Feature Layer

As described earlier, the goal of the feature layer is to determine the door status. This
is because, when the door is open, it moves to the state of determining whether an item
exists. In order to extract such a feature, the logical values of vallight and valhall must be
fused together. Through the combination of these two sensors, the accuracy of determining
the door’s status can be increased.

Let rawlight(t) and thresholdlight be the measured value at time t and the threshold of
the light sensor, respectively. Similarly, rawhall(t) can be the measured value at time t of
the Hall sensor.

1. Door open state: When valhall = 1 AND vallight = 1, where it satisfies the condition
rawlight(t) ≥ thresholdlight.

2. Determination of the state that the door is still open (because it is not fully closed):
When valhall = 1 and vallight = 1, where it satisfies the condition
min(vlight) < rawlight(t) < thresholdlight.

3. Door closed state: When valhall = 0 AND vallight = 0, where it satisfies the condition
rawlight(t) < thresholdlight.

4. Determination of the state that the door is still closed (even though the Hall sensor
changes abruptly due to the external impacts): When vallight = 0 AND valhall = 0,
where it satisfies the condition rawhall(t + ∆thall) = 0, where ∆thall is the delay of the
Hall sensor (typically one second).

The state of the door (statedoor) can be defined by the following logical AND operation
of valhall and vallight.

statedoor= AND (valhall , vallight

)
(1)

As shown in Figure 20, the change in the measured values between the Hall sensor
and the light sensor exactly coincided with the time when the door opening and door
closing event occurred. Additionally, the fusion of these two sensors could detect a state
in which the door was slightly opened. Notice that a vibration sensor was additionally
installed to confirm the occurrence of an event.
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4.4. Decision Making through Logical Operations at the Decision Layer

Figure 21 shows the changes in the measured values of the FSR sensor and the ultra-
sonic sensor when placing an item into the smart storage or taking it from the storage. We
fused these two sensors together to determine the presence or absence of an item. On the
other hand, the existence of an item was an event that occurred only when the door was
open; thus, statedoor must also be combined. Notice that in Figure 21, when an item was
placed or taken, the measured values of the vibration sensor also changed.

When an item was placed, the distance measured by the ultrasonic sensor decreased
compared to when there was no item. Based on this, in order to determine the existence of
an item, the conditions of valFSR and valultra were derived as follows:

1. The state of presence of an item after placing an item: valFSR = 1 AND valultra = 1,

where it satisfies the condition rawFSR

(
t + ∆tloading

)
− rawFSR(t) > 0 AND

rawultra

(
t + tloading

)
− rawultra(t) < 0, where ∆tloading is the delay when loading

to converge to a stable value (typically 1.4~1.6 s).
2. The state of no item after taking out an item: valFSR = 0 AND valultra = 0,

where it satisfies the condition rawFSR

(
t + ∆tunloading

)
− rawFSR(t) < 0 AND

rawultra

(
t + ∆tunloading

)
− rawultra(t) > 0, where ∆tunloading is the delay when unload-

ing to converge to a stable value (typically 1~1.2 s). Notice that ∆tunloading < ∆tloading.

Figures 22 and 23 show changes in all of the four sensors when an item was put into
the smart storage and when it was taken out, respectively. Since the door must be opened
in any situation, remarkable changes occurred in the light sensor and the Hall sensor before
the event occurred.

Let us define two states as follows:

1. statecurrent: The state of the current decision to be determined;
2. stateprevious: The state of the previous decision already determined.

Each state had a value of 1 (there is an item) or 0 (there is no item). In the decision layer,
the final state statecurrent was obtained through the logical operation of the three values
(i.e., statedoor, valFSR and valultra) and the previous decision state (stateprevious), which were
converted into logical values in the feature layer.

In order to place an item in the storage or take it out from the storage, the door must be
open. Therefore, the condition statedoor = 1 must be satisfied first. There is no state change
when it is closed, that is, statedoor = 0. The decision-making condition varies depending
on the previous state, stateprevious. Therefore, the statecurrent can be determined by the
following logical operations:

1. statecurrent = (statecurrent(0→ 1) OR statecurrent(1→ 0) ) with statedoor = 1;
2. statecurrent(0→ 1) = (valFSR AND valultra) with stateprevious = 0;
3. statecurrent(1→ 0) = (statecurrent AND (valFSR OR valultra)) with stateprevious = 1.

Note that AND and OR represents a logical AND and a logical OR operation, respec-
tively. According to the logical value of the FSR sensor and of the ultrasonic sensor, the state
of determining whether an item was present was changed. When either of them changed
to the logical value of 0, the state changed to statecurrent(1→ 0) from stateprevious = 1.

Given the logical values of the stateprevious, the statedoor, the FSR sensor, and the
ultrasonic sensor, the current state will be updated by the above equations. A series of
events occurred in which an item was placed in the storage and taken from the storage, and
the values measured by all of the sensors are shown together in a single graph in Figure 24.

5. Conclusions

In this paper, we proposed the use of a multi-sensor data fusion process with a three-
layer structure to build a reconfigurable module (RM). Theoretically, the fused results at the
feature layer can be reflected in the decision layer. That is, it is possible to build a systematic
process in which the fused result at a lower layer is reflected to an adjacent upper layer.
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Even if individual sensors are replaced with different models, the entire fusion process
can be reconstructed with only partial modifications. For an efficient reconstruction of
the fusion process, the important factors (i.e., threshold values and logical equations) are
parameterized. This is the main advantage of the RM model proposed in this paper.

Our fusion process was applied to an actual application, a prototype system of moni-
toring unmanned storage boxes, to analyze problems that arise in practical situations. A
total of four heterogeneous sensors were used to implement a smart storage box. A Hall
effect sensor and a light sensor were used together to determine the state of the door, and a
pressure sensor (or FSR sensor) and an ultrasonic sensor were used together to determine
whether an item was placed in the smart storage. In addition, in order to test the feasibility
of the RM model, the feature extraction at the feature layer and the decision at the decision
layer were simplified to logical expressions. To this end, the measured values of each sensor
at the data layer were converted into corresponding logical values and then transferred
to the feature layer. Since the Hall sensor only had values of 0 and 1, there was no need
for conversion. The light sensor had a stable measured value; therefore, it was possible to
convert it into a logical value based on the threshold, which was set through a series of
experiments. On the other hand, the measured values of the FSR sensor and the ultrasonic
sensor, which were unstable, were converted into logical values based on the difference
between the value at the time of the event and the value after a predetermined delay.

In the actual implementation, the light sensor could not properly distinguish the state
in which the door was not fully closed, whereas the Hall sensor was unstable due to the
vibration caused by external impacts, especially when the door was closed. Compared
to the ultrasonic sensor, the FSR sensor had a wider range of measurement values; thus,
even minor changes could be detected. Conversely, the ultrasonic sensor had a smaller
variance compared to the FSR sensor; therefore, the time to converge to a stable value was
short. It was confirmed that the state could be determined more stably by compensating
for the shortcomings of each sensor through multi-sensor data fusion. If the condition
of the state determination is changed according to the application’s purpose, the logical
expression at the feature layer and at the decision layer must also be changed accordingly.
The representation of data acquired or processed at each layer changes, indicating that
deriving a data correlation between layers plays an important role in the fusion process.

The RM presented in this work was configured based on logical expressions. However,
if the representation of the lower layer is changed, the fusion method of the upper layer
can be changed in various ways. In addition, even if the data layer has not changed, the
RM can be reconfigured by changing the fusion method in the upper layer. The tree-based
RM implementation proposed can be more efficient in combining heterogeneous sensors
than homogeneous sensors.

The threshold-based feature extraction proposed in this paper has the advantage of
simplifying features and expressing data fusion in the feature layer and decision layer with
logical expressions. However, it does not reflect various characteristics of raw data in the
abstraction process for high-performance sensors. In future research, we will consider a
method to extract triple values by applying two distinct threshold values. In this case, a
formula that reflects weights on the feature of each sensor depending on its characteristic
will be effective.

We primarily used stream data. We also considered extracting segments of raw data
by applying window sampling. Segment-by-segment analysis allows us to characterize
variance, maximum, minimum, and means of raw data. Since the prototype system imple-
mented in this study was a simplified model, the segment extraction focused on variance
to determine the stability of the raw data. For more complex models, this segmentation
technique is fully applicable.
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