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S N

Abstract: Skin cancer is a deadly disease, and its early diagnosis enhances the chances of survival.
Deep learning algorithms for skin cancer detection have become popular in recent years. A novel
framework based on deep learning is proposed in this study for the multiclassification of skin
cancer types such as Melanoma, Melanocytic Nevi, Basal Cell Carcinoma and Benign Keratosis. The
proposed model is named as SCDNet which combines Vgg16 with convolutional neural networks
(CNN) for the classification of different types of skin cancer. Moreover, the accuracy of the proposed
method is also compared with the four state-of-the-art pre-trained classifiers in the medical domain
named Resnet 50, Inception v3, AlexNet and Vggl9. The performance of the proposed SCDNet
classifier, as well as the four state-of-the-art classifiers, is evaluated using the ISIC 2019 dataset. The
accuracy rate of the proposed SDCNet is 96.91% for the multiclassification of skin cancer whereas,
the accuracy rates for Resnet 50, Alexnet, Vgg19 and Inception-v3 are 95.21%, 93.14%, 94.25% and
92.54%, respectively. The results showed that the proposed SCDNet performed better than the
competing classifiers.

Keywords: transfer learning; biomedical image; automated /computer aided diagnosis; melanoma;
skin cancer

1. Introduction

Skin cancer is caused by the uncontrolled growth of abnormal skin cells which results
in malignant tumors [1]. When these cells are exposed to ultraviolet rays, a mutation occurs
in the DNA which affects the normal growth of skin cells and eventually results in skin
cancer [2]. Skin cancer accounts for one-third of all cancer cases worldwide, according to
the World Health Organization. Skin cancer is a public health issue that affects people all
over the world [3]. Dermoscopy is a common technique to detect skin cancer. However, the
initial appearance of multiple types of skin cancers is the same so it is very challenging for
the dermatologist to identify them accurately [4]. The average accuracy of dermatologists
is between 60% and 80% for skin cancer diagnosis using dermoscopic images [5]. The
dermatologist with 3 to 5 years of experience has a claimed accuracy of above 60%. The
accuracy rate drops for a less experienced dermatologist. However, a dermatologist with
ten years of experience has an accuracy of 80% [6]. In addition, dermoscopy performed by
untrained dermatologists may impair the accuracy of skin cancer detection [7,8]. Extensive
training is the major requirement for dermoscopy [9]. Numerous forms of skin cancers can
be identified using dermoscopic images. However, melanocytic and nonmelanocytic are
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two main types of skin disease. The melanotic consists of melanoma and melanocytic nevi.
Whereas, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), vascular (VASC),
benign keratosis lesions (BKL), and dermatofibroma (df) are the type of nonmelanocytic
skin diseases [10].

Melanoma is the most common and fatal type of skin cancer which is caused by
irregular melanin production in the cells of melanocytes [11]. It is the fastest-growing
type of cancer. Melanoma is further classified as benign and malignant [12]. Melanin
is typically present in the epidermal layer in benign lesions (common nevi) [13]. In the
malignant lesion, melanin is produced at an abnormally high rate. Every year more than
5 million new cases of skin cancer are registered in the United States [14]. Melanoma is
responsible for almost 75% of all skin cancer deaths. In the United States alone every
year 10,000 deaths occur due to melanoma [15]. In 2021, 106,110 cases of melanoma were
reported in the United States while 7180 people died due to melanoma [16]. It is anticipated
that there will be a 6.5 percentage point rise in the total number of deaths caused by
melanoma in the year 2022. Moreover, it is anticipated that there will be 197,700 new cases
of melanoma diagnosed in the United States in 2022 [17]. Every year, approx. 100,000 new
instances of melanoma are detected in Europe [18]. In Australia melanoma is diagnosed in
15,229 people annually [14,19]. Skin cancer incidence rates have risen in the past decade,
and the melanoma rate has increased by 255% in the United States; in the United Kingdom
it hass increased by 120% since the 1990s [20,21]. However, melanoma is considered as a
highly treatable cancer if it is diagnosed at the initial stage. The survival rates are above
96% in the initial stage. However, the survival rates drop to 5% in the advanced stage. The
treatment of melanoma becomes difficult when it has spread throughout the body [10].
Early detection of skin cancer depends upon skin color, hair, and air bubbles. Moreover,
insufficient medical resources and the high cost of treatment in developing countries delay
the early detection of skin cancer [22]. The ABCD rule was used for the early diagnosis of
skin cancer. The ABCD rule segments the areas of skin lesions to achieve better diagnostic
accuracy. However, the segmentation is based on color channel optimization and the set
level technique is not efficient which lowers the overall accuracy [23]. Moreover, researchers
prefer a public dataset to the 7-point checklist, which was developed for non-dermatological
medical workers [24]. The development of a computer-aided diagnosis (CAD) system
resolves the problems of dermatologists. Moreover, the CAD system uses image processing
and machine learning techniques for the analysis of dermoscopic images [25]. The diagnosis
improves as more data becomes available for computer-aided systems [26]. Therefore, the
primary goal of researchers is to develop an artificial intelligent (Al) based diagnosis
system capable of identifying and classifying multiple types of skin cancer at an early stage.
Moreover, the doctors will early detect the skin lesions by using the machine and deep
learning techniques which also reduce the unnecessary surgeries and biopsies [27].

In this paper, a novel method named skin cancer detection classifier network (SCD
Net) is proposed for the multiclassification of skin cancer using dermoscopic images. As
noted, the proposed method is based on the Vgg16 and convolution neural network (CNN)
approaches, achieves exceptionally high accuracy for the detection and classification of
skin cancer. This study utilizes dermoscopic images for the automated classification of
skin cancer. When skin cancer is detected in its earliest stages, medical professionals have
a better chance of initiating treatment on time and avoiding the disease’s progression.
Additionally, the performance of SCDNet is compared with the state of the arts medical
classifiers which include AlexNet [28], Vgg19 [29] ResNet-50 [30], and Inception v3 [31].
This study classifies the dermoscopy images into the four major classes of skin cancer which
include Melanoma, Melanocytic Nevi, Basal Cell Carcinoma and Benign Keratosis.

The following is a summary of the contribution of this study:

e  The authors propose SCDNet which is based on CNN and Vggl16. SCDNet extracts
prominent features from dermoscopic images and classifies them into four major
classes of skin cancer, namely, Melanoma, Melanocytic Nevi, Basal Cell Carcinoma
and Benign Keratosis. Moreover, the performance of the proposed method in terms
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of accuracy, f1 score, AUC, specificity and sensitivity is also compared with the four
well-known classifiers in the medical domain, namely, Inception v3, Alexnet, Vgg19
and resnet50.

e  The developed SCDNet was trained on dermoscopic images collected from the ISIC
2019 dataset [32] which contains images of Melanoma, Melanocytic Nevi, Basal Cell
Carcinoma and Benign Keratosis. The proposed method was trained, tested, and
validated using images in a 70:20:10 ratio.

e  The leave one out cross validation (LOOCYV) is also used to evaluate the performance
of SCDNet.

e  The SCDNet showed an exceptional performance by achieving an accuracy of 96.91%,
92.18% sensitivity, 92.19% precision and 92.18% F1 score.

e  AAnovel deep learning framework is designed for the diagnosis of skin cancer using
dermoscopic images.

The structure of the paper is summarized as follows. The literature review is discussed
in Section 2. Section 3 contains the proposed method. The experimentation results and
discussion are provided in Sections 4 and 5. The conclusions of the research are discussed
in Section 6.

2. Literature Review

A significant amount of research has been conducted for the diagnosis of skin cancer
in order to help healthcare experts with early diagnosis of the disease. However, recent
studies focus on the automated detection of various types of skin cancers by using different
artificial intelligence techniques.

Moloud et al. [25] proposed a novel Bayesian deep learning method based on a three-
way decision theory for the binary classification of skin cancer, considering the level of
uncertainty. Moreover, the proposed method applies different uncertainty quantification
UQ methods and deep neural networks in classification phases. Two datasets are used
for the experimentation of this model. One dataset was collected from Kaggle which con-
tained 2637 images for training and 660 images for testing whereas, the second dataset was
ISIC 2019, containing 7234 images for testing and 1808 images for training. The achieved
accuracy for the Kaggle dataset was 88.95% and for the ISIC the accuracy was 90.96%.
Abbas et al. [33] introduced a custom build model for the classification of skin cancer based
on the seven-layer of deep convolution network. The proposed model was trained from
scratch. The experimentation was performed on 724 dermoscopic images containing 374 im-
ages of benign nevus (BN) and 350 images of acral melanoma (AN) which were collected
from the Yonsei University Health System, South Korea. Transfer learning was also used
to compare the performance of the model; Resnetl8 and AlexNet were fine-tuned and
modified to train on the same dataset. The model achieved an accuracy of more than 90%.
However, the accuracy reached 97% by using transfer learning approaches. Ismail et al. [34]
presented a model which utilizes a hybrid convolution neural network and bald eagle
search optimization for the binary classification of skin lesions as melanoma or normal.
The experimentation was performed on a publicly available dataset ISIC 2020. The issue
of class imbalance was also resolved by applying random sampling and augmentation.
The proposed method achieved a remarkable accuracy for the detection of melanoma of
98.7%, sensitivity of 100%, specificity of 96.4% and f-score of 98.40%. Mijwil et al. [35]
applied the three architectures (Resnet, Vgg19 and Inception v3) of the convolutional neural
network (CNN) model for the analysis of 24,000 images collected from the ISIC archive.
This study used many parameters to analyze the best architecture for the classification of
benign and malignant images. Among the selected architectures, Inception v3 provided
promising results on the data. Inception v3 achieved an accuracy of 86.9%, sensitivity
of 86.1%, specificity of 87.6% and precision of 87.4%. Nawaz et al. [36] proposed a fast
region-based convolution neural network (RCNN) based on deep learning. This method
also utilizes fuzzy k-means clustering for the diagnosis of benign and malignant melanoma
images. The experimentation for this method was performed on three publicly available
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datasets named ISIC 16, ISIC 17 and PH2 dataset. Several preprocessing techniques for
noise removal and image enhancement were applied to achieve outstanding results. The
proposed method achieved an accuracy of 95.4% for the ISIC 16 dataset, whereas for the
ISIC 17 93.1% accuracy was achieved and the accuracy of 95.6% was achieved for the PH2
dataset. Dorg et al. [37] proposed a novel idea in which features are extracted by using a pre-
trained Alex net whereas the classification of skin cancer is performed by using ECOC SVM.
The experimentation was performed on four different types of skin cancer comprising a
total of 3753 images which were collected from the internet. The proposed method achieved
an accuracy of 95.1% for squamous cell carcinoma, 98.9% accuracy for actinic keratosis,
91.8% accuracy for basal cell carcinoma and 90.74% accuracy for melanoma. Afza et al. [38]
presented a framework that implements deep learning with two-dimensional superpixels.
They introduced the color segmented images which were extracted through the segmented
lesion mapped on the dermoscopic images. Resnet-50 is used for the feature extraction
through transfer learning whereas the naive bayes classifier is used for classification. The
experimentation was performed on the Ham1000, ISIC 2016 and PH2 datasets. This method
achieved an accuracy of 85.50% for the Ham1000 dataset, 91.1% accuracy for the ISIC
2016 dataset and 95.40% accuracy for the PH2 dataset. Hameed et al. [39] presented the
algorithm named multi-class multi-level (MCML) which classifies the skin lesion into mul-
tiple skin disease classifications including healthy, malignant, benign and eczema disease.
Traditional machine learning with improved noise removal techniques and progressive
deep learning was used to build the proposed algorithm. A total of 3672 images from
different sources were used to evaluate the diagnosis efficiency of the proposed algorithm
which achieved an accuracy of 96.47%. Lokash et al. [40] introduced a framework named
Transfer Constituent Support Vector Machine (TrCSVM) based on transfer learning (TL)
for the classification of melanoma from skin lesions using feature-based domain adap-
tion (FBDA). The presented framework comprises of support vector machine (SVM) and
Transfer AdaBoost (TrAdaBoost). The ISIC 2017 dataset was used as a training dataset.
It originally contained 2000 dermoscopic images which were extended to 50,000 images
using data augmentation. A total of 112 features were extracted from the ISIC 2017 dataset.
The testing of the proposed framework was performed on six different datasets, which
included PH2, HAM10000, MED-NODE, Dermatology Atlas, Dermnet Atlas and Der-
mis, with the achieved accuracy of 98.9%, 82.2%, 89.5%, 82.1%, 79.2%, 87.7%, respectively.
Mehak et al. [41] proposed a method for the multiclassification of skin cancer to implement
data augmentation, deep learning and transfer learning. Fine-tuned deep models and aug-
mented datasets were trained via transfer learning. Several machine learning algorithms
were used for the classification of selected features; based on accuracy, the best classifier was
selected for the skin cancer classification. The proposed framework achieved an accuracy of
92.7% for the augmented HAM10000 dataset. Attique et al. [42] presented a mask recurrent
convolution neural network (MASK R-CNN) for lesion segmentation. In this architecture,
a feature pyramid network (FPN) along with denset50 is used for the mask generation
whereas, the classification of higher features is performed through the 24-layer convolution
neural network. The validation of the segmentation process is performed on PH2, ISIC2016
and ISIC2017, and the classification is performed on HAM10000. The achieved accuracy
was 86.50% according to the experimentation process. A novel technique for the extraction
and classification of hybrid features is introduced by Ibrahim et al. [43]. Wavelet transform
(DWT), gray level co-occurrence matrix (GLCM) and local binary pattern (LBP) are the three
algorithms used for feature extraction, and the classification of these features is performed
by feedforward neural network (FFNN) and artificial neural network (ANN). The efficiency
of the proposed method was evaluated using ISIC 2018 and PH2 datasets. The measured
accuracy for the ISIC 2018 dataset was 95.24% whereas accuracy achieved by PH2 dataset
was 97.91%.

The researchers of [34,35,38,41] only focused on the binary classification of skin cancer
whereas a few researchers have worked on the multiclassification of skin cancer. More-
over, previous investigations focused on pre-trained algorithms for the classification of
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skin cancer. The high accuracy of deep learning classifiers opens a new door for disease
diagnosis. The use of convolution neural networks in the health care system has achieved a
better diagnostic accuracy for diseases such as skin cancer detection [44], chest infection
detection [45], brain tumor detection [46,47], breast cancer detection [48] and the analysis
of genetic sequences [49].

3. Proposed Methodology

This section presents the experimental techniques used to analyze the performance
of the proposed model, as well as four well-known pre-trained models which include
Inception-v3, ResNet-50, Alexnet and Vgg-19. For this purpose, we developed a novel
method, named as SCDNet, for the multiclassification of skin cancer trained on the widely
used ISIC 2019 dataset. The images of the dataset are first preprocessed to reconcile with the
input dimension of the architecture utilized in this study. For this purpose, the size of input
images is fixed to 224 x 224 resolution. Moreover, the overfitting of the model is prevented
by applying the process of normalization on images of the ISIC 2019 dataset. The images of
the dataset are split into training, testing and validation sets. To train the SCDNet, different
types of cancerous images are used as training and validation sets. The experimentation
was run for 50 epochs. After all of the epochs were finished, the proposed model reached
the accuracy in training and validation that had been predicted. Moreover, the comparative
analysis of SCDNet was performed with the four state-of-the-art pretrained methods in
terms of accuracy, f1 score, precision and sensitivity. The SCDNet constructs the output
images by combining the prominent features and classifying the images into four major
classes of skin cancer, namely, Melanoma, Melanocytic Nevi, Basal Cell Carcinoma and
Benign Keratosis. Figure 1 shows the architecture of the proposed SCDNet.

VGG-16

Conv2D Conv2D Conv2D Conv2D Conv2D
Filter Size 3x3 Filter Size 3x3 Filter Size 3x3 Filter Size 3x3 Filter Size 3x3
Stride 1 Stride 2 Stride 2 Stride 2 Stride 2
No. filters 64 No. filters 128 No. filters 256 No. filters 512 No. filters 512

Conv2D Conv2D+RelU+

Reshape 9x9x3 RelU Normalization

MaxPooling

Block 1 Block 2 Block 3 Block 4 Block 5

M SoftMax Dense (4)

Dropout laye
Dropout layer

CNN Model

Benign Keratosis

Output

Figure 1. The architecture of Proposed SCDNet.

3.1. Dataset Description

The primary focus of this research is dermoscopic images for skin cancer due to its
high impact across the world [50,51]. The ISIC 2019 dataset is utilized, which contains a
large number of dermoscopy images of skin lesions collected from multiple sources. The
dataset contains a total number of 25,331 dermoscopic images of different classes of skin
cancer. The dataset contains 4522 images of Melanoma, 12,875 images of Melanocytic Nevi,
3323 images of Basal Cell Carcinoma and 2624 images of Benign Keratosis; the remaining
images belong to different categories which are not considered in this study [32]. Figure 2
shows the sample of images from the ISIC 2019 datasets. The proposed SCDNet is trained
and tested on the ISIC 2019 dataset. to obtain efficient results. The dataset is split in the
ratio of 70%:20%:10% for training, testing and validation sets. Table 1 shows the division of
the dataset.
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Melanotic Nevi Melanoma

-

Basal Cell Carcinoma Benign Keratosis

Figure 2. Sample images from the ISIC 2019 dataset.

Table 1. Dataset division into training, validation and testing sets.

Dataset Melanoma Melanocytic Benign Basal Cell Total Images
Division (mel) Nevi (nv) Keratosis (bk)  Carcinoma (bcc) 8
Training Set 3166 9013 1837 2327 17,731
Validation Set 452 1287 263 332 2533
Testing Set 904 2575 524 664 5066
Total 4522 12,875 2624 3323 25,331

3.2. Data Normalization and Preprocessing

The steps for pre-processing were kept to a minimum in order for the proposed
method to achieve better generalization [52]. The built-in KerasImageDataGenerator was
used to perform the basic pre-processing [53]. The dermoscopy images in the dataset
have a resolution of 450 x 600 pixels. To reconcile the images with the input of the
model we downscaled the resolution of images to 224 x 224 pixels [54]. Moreover, the
data normalization technique was also used to ensure that the proposed approach is
properly trained [55]. As a result, we prepared our datasets to input into the SCDNet for
training purposes.

3.3. Pre-Trained Classifiers

In this section existing state of art pre-trained classifiers such as AlexNet, Inception
v3, Resnet50 and Vggl9 are applied to classify the different classes of skin cancer using
dermoscopy images. The ImageNet (ILSVR) database was used to train all of the classifiers.
There are thousands of different objects in the ILSVR dataset which are utilized for the
training and to analyze the classification performance of the model [56]. The architecture of
Alexnet is free and open-source and it is used for various research contexts. The architecture
uses five convolutional layers, three max-pooling layers, two normalization layers, two fully
connected layers, and a softmax layer. The max-pooling operation is carried out using
the pooling layers. Every convolutional layer has its own set of convolutional filters in
addition to a nonlinear activation function known as ReLU; because there are entirely
linked layers, there is no variation in size. The succeeding three-step process also uses
a single max-pooling layer of stride 2 with three convolution layers. The three fully
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connected layers (FCL) are found in the final stage (FCLs). Furthermore, an activation
function named SoftMax is used for the classification of skin cancer using dermoscopic
images [28]. The Vgg 19 architecture is deeper than the Vggl6 which made it more complex
and made training the model more costly [29]. The 50-layer residual network ResNet-
50 [30] features have four-step architecture in which three deep residual networks are
included with a kernel of 1, 64, 64 and 256, respectively. Furthermore, for the classification
of diseases, a modified variant of Inception known as Inception v3 is commonly used by
researchers. In the medical field, these pre-trained classifiers are widely utilized for disease
classification. In addition, researchers consider these classifiers to be the most advanced
classifiers currently available [44].

3.4. Proposed Architecture

The proposed SCDNet is based on the pre-trained Vggl6 model, which is then used
by CNN's network to classify multiple types of skin cancer using dermoscopy images. The
architecture of CNN is based on three different layers which consist of the convolution
layer, fully connected layer (FCL) and pooling layer (PL).

Vgglé is followed by two blocks of CNN for feature extraction (FE). Figure 3 shows the
model of SCDNet. The proposed model is trained by inputting the dermoscopy images of
224 x 224 resolution. The input images contain the RGB channels. The convolutional layer
is the initial layer in our model. This layer initiates the process by employing filters, which
are also known as the kernel. As seen in Equation (1), the size of the kernel is determined
by two variables.

Size of filter(SF) = Fu X Fy 1)

where the filter width is denoted by F,. and the filter height is denoted by F;. In the
course of our research, we decided to keep the size of the filter at its default setting of 3,
therefore Equation (1) is rewritten as SF = 3 X 3. These filters are also known as feature
identifiers. These identifiers assist us in the extraction of low-level features of the images,
which are also known as edges and curves [50]. The model has three additional convolution
layers to extract deep features and produce complete patterns from dermoscopic images.
Additionally, these filters initiate the convolution operations on the sub-area of dermoscopy
images. The process of convolution multiplication and addition to filer is applied to the
pixel values of dermoscopic images. The receptive field is another name for the dermoscopic
images sub-area. The capability of the model to extract the feature components was
increased gradually by adding more convolution layers to it.

When the model is trained, it learns the filter weights which are numerical values
assigned to each filter element. Filtering starts the convolution process from the beginning
of the dermoscopic image and continues through the whole image without interruption.
The filter convolution technique concludes after the whole image has been processed [57].
A wide range of values is obtained from the feature maps of dermoscopic images [58]. The
feature map values were calculated using Equation (2).

Flg, h) = (SFx I)[g,h] =) ) SF (j, k)] [g+], h+K] )
ik

The feature map is denoted by F, the input image is denoted by I, and the kernel
is denoted by SE. The dimensions of the filters were determined by using j and k. The
resulting array indexes were g and h. The value of the filter’'s movement was limited by
an additional parameter known as the stride. All convolution layers in our research have
a stride value set to 1. Moreover, higher stride values lower the spatial dimension and
cause difficulties, such as the receptive field exceeding the input size. Therefore, to solve
these issues, a zero-padding strategy was used. This technique places padding of zero
around the edge of the image so that the dimension of the output remains the same as the
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dimensions of the input image [59]. The zero-padding approach was used to calculate the
stride value, as shown in Equation (3).
w—1

zy=2— (3)
where Z, stands for zero paddings and the width of the filter is represented by w. The
filter’s height and width are the same in our research. For extracting numerous and domi-
nating features, Conv layers have utilized various filters. Our model’s initial convolution
layer has a total of sixteen filters. However, the filter count of the remaining Conv layers
was enhanced from 16 to 512. Equations (4)—(6) were used to calculate the output value
also known as the activation map.

Im,, — Fu +27Zp

Qu = f +1 )
Qh:w_i_l (5)
Qi:fn (6)

where the input image’s height and width are represented by Imj and Imy, while the
filter’s width and height are represented by Fy, and Fj,. Zp represents the zero-padding
and S shows the stride, whereas F;, shows the number of filters applied to the convolution
layers. The initial convolution layer of our proposed method contained the following
parameters: Img, =224, Imy =224, F,, =3, F,=3,S=1, Z, =0, and F, = 16. After
putting the values into Equations (4)—(6) following results are obtained:

Qu = —224_31+2(0) +1=222
o, 224—31+2(0) o
Qi =16

To start the process, the Conv outputs were corrected using a rectified linear unit
(ReLU). ReLU activation replaces negative outcomes with zero. ReLU is used in our
proposed CNN model to boost nonlinearity and computational time without compromising
the accuracy of the model [45]. Adding the max-pooling layer (MP) after the convolution
layers helps to lessen the spatial dimension of the input image. The filter size in SCDNet
was set to 2 x 2, and for all MP layers, the value of stride was 2.

This filter applies a convolving effect to the whole input volume, which results in the
greatest value possible for the sub-area of the image. It is noted that MP layers contain
the location of one feature relative to another. It also minimizes computational cost by
reducing weights and avoids the overfitting of the model. Then, the dropout layer was
introduced. We tested our model with dropout values of 0.05, 0.20, and 0.25. However, only
0.20 proved significant. Different dropout values were used to avoid the overfitting of our
proposed model [30]. This layer eliminated random activation and confirmed the model’s
ability to predict the label. The one-dimensional feature vector was created by applying the
flattened layer of the proposed model, which was used to transform the two-dimensional
feature map. The flattened layer’s output was supplied to the FCL. The FCL used the
one-dimensional feature vector to accomplish the classification process. The FCL used
in this research has 512 neurons. The first dense layer of FCL transmits the activation
outcome to the second dense layer. The final output of the proposed model is produced by
a dense layer that consists of a soft-max activation function and four neurons. This layer
is responsible for classifying the output image as belonging to one of the skin diseases:
Melanoma, Melanocytic Nevi, Basal Cell Carcinoma, and Benign Keratosis.
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Total parameters are 13,800,600, out of which 13,800,500 are trainable parameters (TP)
and there are 100 non-trainable parameters. When it comes to determining the ideal value
of a parameter, TPs are those that vary throughout training and must be used, while NTPs
are those that remain unchanged throughout the process. Consequently, NTPs will not
contribute to the categorization step. The description of the layer utilized in our proposed
SCDNet is shown in Table 2.

Basal Cell Carcinoma Melanoma

Melanotic Nevi Benign Keratosis

Melanotic Nevi

Basal Cell
Carcinoma

Melanoma

Benign
Keratosis

Figure 3. Confusion matrix of Proposed SCDNet.

Table 2. Summary of proposed SCDNet.

Types of Layers Shape Parameters
Vggl6 (layers) (7,7,512) 2,359,808
global average pooling (Reshape) (5,5,512) 0
dropout (Droupout) (3,3,512) 0
dense (Dense) 512 262,656
Dense (Dense) 4 2050
264,708
Total params 264,708
Train params 2,359,808

3.5. Performance Evaluation

In this research the issues of multiclassification are resolved. Melanoma, Melanocytic
Nevi, Basal Cell Carcinoma, and Benign Keratosis were classified correctly. The effec-
tiveness of the model was evaluated using a confusion matrix. The confusion matrix is
shown in Figure 4. Table 3 lists the confusion matrix’s parameters, as seen in Figure 3. The
efficiency of our proposed SCDNet was evaluated using four metrics: accuracy (Accu),
precision (P), sensitivity (SEN) also known as recall(R) and F1-score (FS). The following
formulae, Equations (7)—(10), were used to calculate the values of these metrics.

Tp+1Tn
Accu = 7
" Tp+Fp+TN+PN ()
Tp
Sen = ———— 8
o+ Fn 8)
Tp
Pre = ———~ 9
T T, ©)
ps = PXR (10)

P+R
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where Tp represents the True Positive, T, represents the true negative while Fy and F,
represent the False Positive and False Negative. The variables of Equations (7)—(10) are

described in Table 4.
model accuracy model loss
—  train 09 1 — train
0.95 1 validation validation
0.8 4
0.90 1 0.7 1
\ » 0.6
=
) 085 - Y I
® “ 0.5 1
o o
. 04
0.80 i
0.3
0.75 - 03 .
0.70 - XS
0 10 20 30 40 50 0 10 20 30 40 50
epoch epoch

(a) (b)

Figure 4. (a) SCDNet Model accuracy for training and validation (b) SCDNet Model loss for training
and validation.

Table 3. Confusion Matrix’s Parameters.

Parameters Explanation
PMC Melanoma correctly classified as Melanoma
PMN Melanoma incorrectly classified as Melanocytic nevi
PMB Melanoma incorrectly classified as Basal Cell Carcinoma
PMK Melanoma incorrectly classified as Benign Keratosis
PNC Melanocytic nevi is correctly classified as Melanocytic nevi
PNM Melanocytic nevi incorrectly classified as Melanoma
PNB Melanocytic nevi is incorrectly classified as Basal Cell Carcinoma
PNK Melanocytic nevi is incorrectly classified as Benign Keratosis
PBC Basal Cell Carcinoma is correctly classified as Basal Cell Carcinoma
PBM Basal Cell Carcinoma is incorrectly classified as Melanoma
PBN Basal Cell Carcinoma is incorrectly classified as Melanocytic nevi
PBK Basal Cell Carcinoma is incorrectly classified as Benign Keratosis
PKC Benign Keratosis is correctly classified as Benign Keratosis
PKM Benign Keratosis incorrectly classified as Melanoma
PKN Benign Keratosis incorrectly classified as Melanocytic nevi

PKB Benign Keratosis incorrectly classified as Basal Cell Carcinoma
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Table 4. Equations for confusion matrix.

Labels TP TN FP FN
PNM + PNB + PMB +
Melanoma PMC PBM + PBN + PMN + P KE/IP*I'(;KN PBfIfI\fIE/IK
PMC + PBC + PNC
Melanocytic PKB + DKM + PBK + PNK + PNM PBN + PMN
oo PNC PMK + PKC + PMB + + PNK + PKN
evt PBM + PMC + PBC
Basal Cell PBC + PNB + PKN + PMK + PMN PKM + PNM
Carcinoma PBC PKN + PNC + PBN + + PMB + PBM
PBK + PNK + PKC
PKC + PNK + PMK +
. . PBM + PBN PMB + PNK
Benign Keratosis PKC PKN + PNC + PMN + + PKB + PKB

PKM + PNM + PMC

4. Results

The dermoscopic images are used as input for the Vgg16 + CNN-based SCDNet which
was developed to classify various chest diseases. Using grid search techniques, several
hyperparameters of the proposed method were fine-tuned to achieve optimal performance.
The learning rate, the number of epochs, and the batch size are the included hyperpa-
rameters. Training of the SCDNet was completed in 50 epochs. A “stochastic gradient
descent” (SGD) optimizer was used to set the starting learning rate for the four transfer
learning models and SCDNet to 0.05. The momentum was adjusted to 0.8. The learning rate
decreased by 0.1 after 10 epochs. This was done to avoid overfitting. Our SCDNet batch
size was 20. The accuracy, precision, recall, ROC curve, confusion matrix, and F1-score
were determined for each class label for the proposed SCDNet, ResNet-50, inceptionv3,
AlexNet and Vgg19 architecture.

4.1. Experimentation Process

The Keras library was used to implement the SCDNet and the four pre-trained models.
Python language was used to program the methods that were not connected to the Conv
network. The experimentation was conducted on a Core i7, 8th gen windows-based
machine with a 16 GB EVGA GeForce RTX GPU and 32 GB RAM.

4.2. SCDNet Results

The accuracy of SCDNet’s training and validation throughout the 50 epochs is shown
in Figure 4. It has been observed that the maximum training accuracy acquired was
98.78%, whereas the highest possible level of validation accuracy obtained was 92.15%. The
model’s training and validation losses were 0.011 and 0.069. These results demonstrated
that our proposed SCDNet was properly trained and is capable of accurately identifying
many skin cancers, including Melanoma, Melanocytic Nevi, Basal Cell Carcinoma, and
Benign Keratosis.

The proposed SCDNet and four pre-trained models were evaluated using several
performance metrics for the classification of Melanoma, Melanocytic Nevi, Basal Cell
Carcinoma, and Benign Keratosis. To train, validate, and test the model, the dataset was
segmented as follows: 70:20:10. A total of 25,331 dermoscopic images of various types of
skin cancer are included in the dataset. The dataset includes 4522 images of Melanoma,
12,875 images of Melanocytic Nevi, 3323 images of Basal Cell Carcinoma, and 2624 images
of Benign Keratosis. The classification accuracy of transfer learning classifiers and the
proposed SCDNet was evaluated using these images. There are rows and columns in the
confusion matrix (Figure 4) that reflect actual cases and predicted cases respectively. The
confusion matrix of the proposed SCDNet and the transfer learning classifiers are shown in
Figure 5.



(d) Veg-19

(e) Inception—v3

Figure 5. Confusion matrix for (a) SCDNet (b) Resnet 50 (c) Alexnet (d) Vgg-19 (e) Inception-v3.
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The proposed method correctly classifies 1970 images of melanotic nevi out of 2099 to-
tal images while it misclassifies 38 images as basal cell carcinoma, 75 as melanoma and
16 images as benign keratosis. While the proposed model correctly classifies 550 images of
basal cell carcinoma out of 622 total images, it misclassifies the 25 images as melanoma,
35 images as melanotic nevi and 12 images as benign keratosis. The proposed method
correctly classifies 1620 images of melanoma out of 1782 images while it misclassifies the
90 images as melanotic nevi, 54 images as basal cell carcinoma and 18 images as benign
keratosis. The SCDNet correctly classify 530 images of benign keratosis out of 563 images.
It misclassifies 18 images as melanotic nevi, 3 images as basal cell carcinoma and 15 images
as melanoma. However, the Resnet 50 correctly classifies 1955 images of melanotic nevi,
541 images of basal cell carcinoma, and 1600 images of melanoma and correctly classifies
525 images of benign keratosis. In comparison to this, Alex net correctly classifies 1798 im-
ages of melanotic nevi, 480 images of basal cell carcinoma, 1511 images of melanoma and
515 images of benign keratosis. The Vgg19 correctly classifies 1901 images of melanotic
nevi, 487 images of basal cell carcinoma, 1480 images of melanoma and 492 images of
benign keratosis. Furthermore, Inception-v3 correctly classifies 1835 images of melanotic
nevi, 471 images of basal cell carcinoma, 1470 images of melanoma and 401 images of
benign keratosis.

As shown in Table 5, our proposed model achieved excellent results for the classifica-
tion of skin cancer classes by achieving an accuracy of 96.91%, recall of 92.18%, precision
of 92.19%, and achieving f1 score of 92.18%. The accuracy, recall, precision, and fl-score
achieved by the Resnet-50 were 95.50%, 91.16%, 91.18%, and 91.00%, respectively. However,
the Vgg19 model attained an accuracy of 94.25%, precision of 89.71%, recall of 89.20%, and
f1-score of 89.44%. The Alexnet attained an accuracy of 93.10%, precision of 88.41%, recall
of 88.32%, and fl-score of 88.36%. It has also been observed that Inception-v3 delivered
worse outcomes compared to its competitor techniques. In conclusion, the classification
accuracy of our proposed SCDNet is superior to that of the four existing transfer learning
classifiers. Moreover, the performance of the proposed method is validated by applying for
the leave one out cross validation (LOOCV). A single iteration of the learning process was
performed on each instance, with the remaining instances serving as the training set and a
single instance is chosen to serve as the test set. The 99% of the data was set for training
purposes whereas 1% of the data was used for testing purposes. The results of LOOCYV are
given in Table 5.

Table 5. Performance comparison of SCDNet with pre-trained classifiers.

Classifier Accuracy Recall Precision F1-Score
SCDNet 96.91% 92.18% 92.19% 92.18%
SCDNET(LOOCYV) 94.98% 91.35% 91.24% 91.30%
Resnet 50 95.50% 91.16% 91.18% 91.00%
Vgg-19 94.25% 89.71% 89.20% 89.44%
Alexnet 93.10% 88.41% 88.32% 88.36%
Inception-v3 92.54% 87.34% 87.36% 87.33%

All of these pre-trained classifiers are made up of deep neural networks, and the spatial
resolution of the feature map that they use is taken from their most recent convolution
layer. As a consequence, the resolution of the feature map has been substantially decreased,
which has resulted in a reduction in the accuracy of their classification. In addition, the
size of the filter for specific disease classification is also inappropriate; as a result, these
pre-trained classifiers overlooked essential aspects and generated a large number of input
receptive fields of neurons. The proposed SCDNet addresses the issues of poor resolution
and overlapping prominent features present in the specific area of skin cancer-infected
dermoscopic images. Our approach additionally incorporates the large size of the filters
and speeds up the convergence while greatly decreasing the effect of noise which results
in the enhancement of the classification performance. The model is deemed adequate
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and effective if it attained the largest area under the curve (AUC) of receiver operating
characteristic (ROC). True-positive rate (TPR) and false-positive rate (FPR) are used to
determine the ROC curve. The proposed method achieves an AUC(ROC) of 0.9516 whereas,
the AUC was 0.9335 for Resnet, 0.9423 for Vggl9, 0.9226 for Alexnet, and 0.9183 for
Inception v3. The AUC (ROC) findings reveal that our proposed SCDNet classifier beats
the four existing classifiers. In addition, our SCDNet method helps healthcare professionals
in the identification of skin cancer patients using dermoscopy images.

4.3. Comparison with the Most Advanced Classifiers

The comprehensive analysis of the proposed SCDNet in terms of accuracy, recall,
f1 score and precision is performed with the most advanced classifiers available mentioned
in Table 6.

Table 6. Performance comparison of SCDNet with pre-trained classifiers.

Model Accuracy Recall Precision F1-Score Reference
ConvNet 86.90% 86.14% 87.47% — [35]
ECOC SVM 93.35% 97.01% 90.82% — [37]
2D superpixels + o o o
MASK-RCNN 85.50 83.40% 84.50% 85.30% [38]
InceptionResnetV2 . o o o
+ ResNeXt101 88.50% 87.40% 88.10% 88.30% [42]
Inception-v3 92.83% 84.00% 83.00% 84.00% [51]
ARL-CNN 86.80% 87.80% 86.70% — [60]
Densnet & o
Resnet 87.00% — — — [61]
SCDNet 96.91% 92.18% 92.19% 92.18%

Mijwil et al. [35] provide a Convnet net model based on inception v3 which works
on the binary classification of skin disease. This method classifies skin cancer as benign
or malignant. Dorj et al. [37] work on the multiclass classification of skin cancer and it
achieves an accuracy of 92.83% for the classification of four classes of skin cancer which
include Actinic Keratoses, Basal Cell Carcinoma, Squamous Cell Carcinoma and Melanoma.
Afza et al. [38] utilize 2D superpixels with Resnet 50 for the multiclassification of skin
lesions and achieves an accuracy of 85.50%. Khan et al. [42] also achieve an accuracy of
88.50% for the multiclassification of skin cancer. Chaturvedi et al. [51] achieve an accuracy
of 92.83% for the multiclassification of skin cancer. In comparison to this, Zhang et al. [60]
and Lie et al. [61] achieve an accuracy of 86.80% and 87% for the binary classification of skin
cancer. The proposed method achieves an outstanding accuracy of 96.91% as compared to
other state-of-the-art methods.

5. Discussion

Dermoscopy images are utilized for the screening and categorization of several skin
cancers. Our method offers a complete view of a particular area, allowing us to identify
the disease and interior affected areas. Dermoscopy is a more dependable and effective
approach for detecting Melanoma, Melanocytic Nevi, Basal Cell Carcinoma and Benign Ker-
atosis. A computerized diagnostic technique is required to identify the deadly melanoma
since the number of confirmed cases is steadily rising. Dermoscopy images can automat-
ically discriminate between melanoma positive patients and other skin cancer disorders
using deep learning (DL) methods. As a result, we developed a deep learning-based SCD-
Net model that accurately identifies multiple skin diseases such as Melanoma, Melanocytic
Nevi, Basal Cell Carcinoma and Benign Keratosis and enables healthcare practitioners to
initiate the treatment for these patients at an earlier stage. The aforementioned experi-
mental study demonstrates that our suggested SCDNet is effectively and substantially
trained on skin cancer categories of Melanoma, Melanocytic Nevi, Basal Cell Carcinoma
and Benign Keratosis and correctly classifies these infected cases. Our SCDNet model
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outperforms the other four pre-trained classifiers for the multi-classification of skin cancer.
The proposed system achieves outstanding performance as compared to four pre-trained
classifiers. Moreover, it achieves an accuracy of 92.18% for the classification of Melanoma,
Melanocytic Nevi, Basal Cell Carcinoma and Benign Keratosis using dermoscopy images.
The resolution of images is set to 224 x 224 x 3 for our proposed SCDNet and four transfer
learning classifiers which include Inception v3, Vgg 19, AlexNet and Resnet 50. The pro-
posed method was trained via a cross-entropy loss function. The classification performance
of the proposed SCDNet is compared with the four transfer learning classifiers in Table 5.
It has been noted that the model that we have presented gives an outstanding performance.
It achieves an AUC of 0.9833, recalls of 99.9%, precision of 92.21%, an f1-score of 91.37%,
and accuracy of 92.21%. The diagnostic performance of other competitors’ transfer learning
methods with pre-trained weights is below that of SCDNet. Furthermore, Inception-v3
showed an AUC of 0.8245, recall of 83.42%, precision of 84.44%, f1-score of 84.32%, and
accuracy of 83.23% which are the lowest when compared with the other models. The binary
classification dilemma was unaffected by the use of pre-trained architectures such as CNNs.
These pre-trained classifiers showed better performance for segmentation or identifying a
disease from multiple classes [51,62]. Several studies [63—65] claim that the performance
of pre-trained network decreases for binary classification tasks when the number of CNN
layers increases. The proposed SCDNet efficiently identifies the pattern of anomalies and
generates the discriminative sequences which help in the diagnosis of multiple types of
skin cancer and achieve an accuracy of 92.21%. Table 5 presents the results obtained from
the evaluation of the various pre-trained classifiers. In this study multi-classification of
skin cancer is performed in which Melanoma, Melanocytic Nevi, Basal Cell Carcinoma,
and Benign Keratosis are accurately classified.

Furthermore, we provide a comprehensive explanation for why the diagnostic per-
formance of state-of-the-art methods is lower than our method. The architecture of the
pre-trained classifiers is based on deep networks, in which the spatial resolution of the
final convolution layer contains fewer feature maps which limit the classification accuracy
of the model. Other problems include networks with inappropriate filter sizes and an
excessive number of input neurons that miss important features. These problems are solved
by using our SCDNet model. We utilized a Vggl6-based CNN model with merged dilated
convolution values for the classification of different types of skin cancers. Additionally, our
SCDNet model has solved the issue of poor resolution and overlap in the infected area of
the dermoscopy image. Additionally, our methodology speeds up the convergence while
lowering the impact of structured noise which results in enhanced diagnostic performance.
In the final step, we use the appropriate filter size of 3 x 3 for our proposed model. It is clear
from the evaluation of experimental results that our proposed model for multi-classification
of skin cancer using dermoscopy images is an effective tool for doctors.

6. Conclusions

There has been an increase in the number of people affected by melanoma and other
forms of skin cancer throughout the globe in recent years. A speedy and effective diagnostic
process is required because of the large number of cases. There have been a large number
of deaths occurred due to late diagnosis. The number of deaths can be minimized if
skin cancer is detected at an early stage. After the emergence of deep learning-based
diagnostic systems, the traditional methods of diagnosis are becoming outdated. In this
work, a multi-classification model named SCDNet was developed and analyzed for the
diagnosis of multiple skin cancer diseases from dermoscopy images, including Melanoma,
Melanocytic Nevi, Basal Cell Carcinoma, and Benign Keratosis. The CNN-based SCDNet
can automatically identify prominent features in dermoscopy images. An exhaustive
experiment demonstrates that SCDNet has the highest diagnostic performance when
compared with the well-known pre-trained classifiers. From the results, we believe that
the SCDNet has the potential to play an important part as a guiding hand for medical
professionals. Moreover, the use of deep learning in dermoscopy systems also improves the
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quality and provides convenience for the user and a cost-effective solution for the diagnosis
of skin cancer. The sole drawback of our study is that it cannot use an image dataset of dark
skinned people for the diagnosis of skin cancer. In the future, we will use a pre-trained
model which extracts features from other publicly available datasets such as ISIC 2020.
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