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Abstract: Internet of Things (IoT) landscape to cover long-range applications. The LoRa-enabled IoT
devices adopt an Adaptive Data Rate-based (ADR) mechanism to assign transmission parameters
such as spreading factors, transmission energy, and coding rates. Nevertheless, the energy assessment
of these combinations should be considered carefully to select an accurate combination. Accordingly,
the computational and transmission energy consumption trade-off should be assessed to guarantee
the effectiveness of the physical parameter tuning. This paper provides comprehensive details of LoRa
transceiver functioning mechanisms and provides a mathematical model for energy consumption
estimation of the end devices EDs. Indeed, in order to select the optimal transmission parameters.
We have modeled the LoRa energy optimization and transmission parameter selection problem as a
Markov Decision Process (MDP). The dynamic system surveys the environment stats (the residual
energy and channel state) and searches for the optimal actions to minimize the long-term average
cost at each time slot. The proposed method has been evaluated under different scenarios and then
compared to LoRaWAN default ADR in terms of energy efficiency and reliability. The numerical
results have shown that our method outperforms the LoRa standard ADR mechanism since it permits
the EDs to gain more energy. Besides, it enables the EDs to stand more, consequently performing
more transmissions.

Keywords: LPWAN; IoT; LoRa; CSS modulation; ADR; MDP; energy efficiency; reliability

1. Introduction

The IoT (Internet of Things) and Internet of everything (IoE) technologies are revolu-
tionizing the world into modernity [1]. The connected objects impact the entire world and
emphasize new consistent communication aspects that will enable smooth connectivity
between objects and humans. The short-range technologies have provided low power and
short distance communications as they rely on small-order communication protocols stan-
dards. For instance, Bluetooth [2], Wi-Fi, Z-Wave, ZigBee and 6LoWPAN [3,4]. However,
these technologies remain constrained as they can not afford long-range connectivity with
low energy consumption, which is a tremendous requirement for new IoT applications.
Many constraints have been encountered, such as defective efficiency in terms of energy
consumption, latency, scalability, and network equipment costs. Afterward, these critical
requirements have encouraged the research community to design a new and effective alter-
native to provide long-range connectivity and low power communications. Consequently,
Low Power Wide Area Networks (LPWAN) have been raised as a practical alternative to
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short-range and low power communications [5]. Besides, LPWAN networks are regarded
as a new generation of IoT that relies on new communication techniques to guarantee long
transmission ranges and lifespan requirements.

LPWAN technologies have emerged in two categories; cellular and non-cellular [6].
The configuration of these networks is structured to achieve widespread communications
and scalable coverage in miscellaneous IoT fields in different environments types and
application classes. Within this context, many long-range communication paradigms have
been adopted in IoT applications such as Sigfox [7], INGENU [8], Weightless SIG [9],
DASH7 [10] and Long Range (LoRa) [11]. However, LoRa has been much attention in IoT
field. It operates in the unlicensed industrial-scientific-medical (ISM) frequency bands [12].
The IoT-based LoRa network connects end nodes (EDs) to their gateway (GW) through
direct communications. These EDs are typically battery-based. Therefore, it is paramount
to accurately assess the IoT-based LoRa system’s energy model. Accordingly, determining
the optimal LoRa communication parameters has been challenging for IoT networks.

In LoRa networks, the transmitted information should undergo several processing
steps (e.g., whitening, channel encoding, interleaving and modulation). Therefore, the
trade-offs between transmission energy and computational energy should be considered
to measure the energy efficiency of a typical set of parameter selections. Within this
context, many works have addressed the problem of energy modeling and transmission
parameter selection in LoRa networks [13–15]. However, the proposed models have not
considered all the main factors behind the energy cost in LoRaWAN, which can lead to
underestimating the lifespan of the EDs, thus the lifespan of the overall network. For
instance, the provided energy models in [13,16], have considered only the default available
coding rates by LoRa standard. In addition, the authors have adopted relative fixed values
for computation energy which is considered impractical as processing energy varies from
one transmission setting to another. Furthermore, other works have proposed adaptive
algorithms for the LoRa parameter setting [17,18]. However, the related models are based
predominately on transmission energy to select an adequate set of parameters. Whereas
it is should be more practical to set a coding rate index and then change the spreading
factors (SFs) as in some cases; using higher SF with lower coding rate (CR) is better than
using lower SF with higher CR. This may lead to gain a considerable amount of energy
better than the stand LoRa adaptive data rate (ADR). Moreover, the ideal policy to select
the optimal transmission parameters set (e.g., modulation, coding) taking into account
the energy-reliability performance has been neglected in most of the recent works. In this
paper, we focus on the LoRaWAN protocol elements and the mechanisms of estimating the
EDs battery lifetime. LoRaWAN technology uses different default parameters to optimize
the energy consumption of the EDs. Therefore, we propose a full energy consumption
model for EDs using LoRa modulation and LoRaWAN protocol. The main aim is to use
all the possible transmission combinations among SFs and CRs. Besides, investigating
the impact of channel medium, SFs, CRs, payload size, and communication range on the
energy consumption and reliability of LoRa EDs. In this paper, we have proposed an
accurate alternative for default LoRa stand ADR based on Markov Decision Process (MDP)
that aims to estimate the optimal transmission parameters to provide increased energy-
reliability policies. This scheme is apt to enables significant energy gain, high reliability and
adaptive selection of the LoRa transmission parameters regarding the channel condition, the
distance, and energy residual of the EDs. The contributions of this work can be summarized
as follows:

• We derive a completed LoRa communication system based mainly on the Hamming
channel coding scheme and CSS modulation technique. Likewise, thorough details on the
functioning and purpose of each system block are deeply detailed. The communication
system model includes the channel encoding/decoding, modulation/demodulation,
whitening/ de-whitening, and interleaving/de-interleaving processes;

• We provide a full energy model that features the main mechanisms behind energy
consumption in the LoRa communication system based on CSS modulation SFs hybrid
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settings with coded transmissions using different CRs under the Additive White
Gaussian Noise (AWGN) communication channel. The energy model addresses the
effect of the processing unit, channel coding, and decoding on energy consumption;

• We propose an optimal adaptive algorithm for LoRa parameters selection based on
MDP to guarantee energy efficiency and high-reliability trade-offs. The main objective
is to find adequate settings that allow LoRa devices to withstand longer, considering
the transmission quality and the energy efficiency;

The remainder of the paper is structured as follows. Section 2 presents related works.
Section 3 presents a detailed LoRa communication chain. Section 4 provides an investigation
of the energy efficiency of LoRa and proposes an energy model for the LoRa communication
system. Section 5 details the proposed adaptive parameter selection approach dedicated
to LoRa class A EDs. Section 6 discusses the obtained results. Finally, Section 7 provides
the conclusion.

2. Related Works

Numerous studies have been provided to understand the technical limits of LoRa
technology. These works have focused on different layers of LoRa including the application
layer [19], transport layer [20], network layer [21], data link layer [22] as well as the physical
layer [23]. The first attempts started by investigating the secret of the LoRa modulation
technique based on the Chirp Spreading Spectrum (CSS) scheme as reviewed in [24,25].
Moreover, the effect of the modulation chirps’ orthogonality issues has been studied
in [26–28]. Furthermore, the work [29] has been considered the first work that proposed a
primary model based on the LoRa communication chain. This model incorporates mainly
the CSS demodulation, de-interleaving, de-whitening, and then channel decoding using a
Hamming encoding [30]. Moreover, the authors in [31–33] have presented a model that
estimates the bit error rate (BER) behavior of LoRa CSS based modulation of diverse SFs
under AWGN channel conditions. Besides, to investigate the performance of LoRa under
different channel circumstances, authors in [34] have derived a study of LoRa modulation
BER under different channels among Nakagami-m, Rayleigh, and Rician fading.

To optimally select the LoRa physical parameters for a standard transmission, authors
in [35] have proposed a theoretical ADR control model based on a logistic regression
algorithm. In [36], the capture effect was investigated to address the transmit power
allocation of poor-conditioned LPWAN EDs among LoRaWAN. The authors of [37] have
investigated the ADR technique’s performance and security properties for battery-powered
LoRa devices that transmit data on cattle location and health. Another work proposed a
new MAC protocol called DG-LoRa and evaluated that varying the number of gateways,
channel BW, and CR improves the number of re-transmissions better than the default LoRa
method [38]. The impact of the packet size on the LoRa performance was evaluated in [39].
The study aimed to balance the reliability, delay, and energy consumption of LoRa under
different physical layer parameters.

Additionally, a platform to assess different stages of LoRa transceivers with a deep
emphasis on modulation and demodulation techniques were proposed in [23]. However,
this model can only deal with small-sized LoRa packets. On the other side, several works
have addressed both the LoRa reliability and energy dissipation requirements. For in-
stance, a first paper addressed the impact of LoRa transmission parameter selection on
the performance of LoRa networks, in which the authors studied the impact of LoRa
parameters on the system’s energy efficiency and communication reliability through an
adaptive method for parameter selection [18]. Moreover, to assess the issue that the nodes
near the gateway are more likely to transmit a packet successfully than distant ones, a
scheme was introduced to optimize the packet error fairness on LoRaWAN networks [40].
In [41], the authors had studied the effect of SFs allocation of LoRa EDs to optimize the
energy consumption constraint using a distributed genetic algorithm and Markov Decision
Process respectively. These methods have provided acceptable performance of packet
reception probability with a reduced energy consumption amount. Authors in [42,43]



Sensors 2022, 22, 5662 4 of 30

have addressed the energy consumption issue in LoRa EDs by proposing a delimitation
technique that evaluates the radio propagation behavior of the EDs in the network. The
work [44] investigates the optimal SF parameter and transmission power (Ptx) allocated to
EDs in LoRa networks. The other efforts have been dealing with the issue of sensor data
collection delay in urban areas focusing on LoRa based gateways [45]. Moreover, the energy
consumption and reliability trade-off were also considered in [46]. The authors experienced
the energy measurement on different LoRa Semtech EDs, and they have demonstrated the
transmission configurations and the channel type impact the energy/reliability trade-off
in LoRa networks. In the same context, a prediction model of energy consumption and a
probabilistic approach based on Markov’s chain is provided to estimate the lifetime of the
LoRa wireless sensor network using the Labview simulation tool [47].

Analyzing these works, we have recognized that the energy efficiency gained by
the channel encoding and decoding along with the adequate SF parameter has not been
addressed to assess the LoRa energy performance. Besides, the critical energy-reliability
tradeoff of LoRa transmission systems has not been addressed in most cases, yet its impact
on the energy and reliability performances is of paramount importance. Moreover, the
ideal policy to select the optimal set of transmission parameters (e.g., modulation, coding,
interleaving and whitening) taking into account the energy-reliability performance has
been neglected in most of the recent works. For instance, most of the related works have
used the default specified LoRaWAN CR 4/5, the CR 4/7 and occasionally the CR 4/8
along with CSS modulation scheme without considering the channel, residual energy and
transmission/processing trade-offs effects. Moreover, we have noticed that the used energy
models in previous works are exclusively based on CSS modulation parameters and in
few cases on fixed coding, neglecting the interleaving and whitening effects on energy
and reliability efficiency on the one hand, and the processing costs of all the transmission
blocs on the other hand. These works have been typically based on CSS modulation
and demodulation technique according to the channel variation without addressing the
channel coding performances in both energy conservation and reliability. Consequently,
this work considers a practical and real LoRa transmission scenario by considering the
effects of all the transmission blocs and their transmission rates (e.g., CR, SF, BW) in the
energy efficiency, reliability and delay performances bearing in mind the energy-efficiency
trade-offs resulting in the transmission-processing operations at each transmission round.

To deal with the mentioned gaps in the LoRa communication system, we re-investigated
the required transmissions and processing operations and provided a completed and de-
tailed energy-reliability model to practically assess the energy and reliability efficiency
gained by each configuration selection. Specifically, we have reconstructed a completed
LoRa communication system model that includes the channel encoding/decoding, modula-
tion/demodulation, whitening/de-whitening and interleaving/de-interleaving processes
by considering the effects of each transmission selection of all blocks. Within this context,
and knowing the effect of each parameter selection on energy and reliability performances,
the optimal transmission configuration according to the channel condition, distances and
the residual energy of LoRa nodes can be efficiently obtained at each transmission slot.
Consequently, based on the provided system model, an optimal adaptive parameter selec-
tion scheme is required to meet both reliability and energy efficiency performances. Thus,
this work proposes an adaptive LoRa transmission algorithm to provide the optimal policy
in terms of transmission parameters selection at each transmission slot, which considers
the energy-reliability tradeoffs, distances, channel conditions and residual energy.

3. System Model

LoRaWAN is an open standard exhibited by Semtech corporation. It is referred to
as an MAC protocol that assure on air wireless inter-connectivity and time scheduling
between end nodes and the base station in the network. Additionally, the nodes are
densely dispersed, forming a star of star network topology as shown in Figure 1. The GWs
communicate the received data to their servers at the back-end. Accordingly, those nodes
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can be of different classes depending on the requirements of the application: Class A, B,
and C [48,49].

Figure 1. LoRaWAN network architecture.

Generally, LoRa is referred to as the physical layer basis of the long-range LPWAN
technology launched by Semtech. Fundamentally, it uses a proprietary CSS-derived tech-
nique by spreading multiple chips over the occupied frequency bandwidth. The basis
chirp changes its frequency values instantaneously by wrapping all associated frequency
band. For LoRa, the basic chirp is integrated considering 5 main parameters: Bandwidth
(BW), SFs, CRs, Ptx, and channel Signal to Noise Ratio (SNR). The SF, BW and CR can be
selected from a set of SF ∈ {7, 8, 9, 10, 11, 12}, BWs ∈ {125 kHz, 250 kHz, and 500 kHz}, and
CR ∈ {4/5, 4/6, 4/7, 4/8} respectively. The modulator produces different chirps (up-chirps,
down-chirps). Concerning the bandwidth, LoRa may transmit a sample every Tc = 1

BW
which may also denote the chirp duration. Each sample holds a portion of the encoded
information to the SF number of bits. These data are encoded again into a non-binary
symbol that may take value in {0, 1, 2, . . ., 2SF − 1} before being modulated. Therefore, the
symbol is overlaid by changing the chirp signal frequencies over the BW with 2SF times
Tc. Thus, a symbol is transmitted every symbol duration Ts =

2SF

BW . Thereby, the higher the
SF is, the longer the symbol takes to be transmitted. Additionally, LoRa includes Forward
Error Correction (FEC) codes, which can combine blocks of data of four bits each, then
encode them by adding bits of adjustable parity from one to four bits, which makes it
possible to obtain different coding rates CR∈ {4/5, 4/6, 4/7, 4/8}. Furthermore, the useful
bite rate Rb is relatively proportional to the used BW, the SF, and the CR, as expressed by:

Rb = SF× BW
2SF × CR. (1)

To transmit a packet of several symbols, a combination of up chirps and down chirps
are used to refine wireless radio transmissions under allowed ISM free exploitable frequency
bands. The LoRa packet generally contains four elements—a preamble, a header, a payload,
and a Cyclic Redundancy Check (CRC) block [48]. LoRa relies on the physical layer
parameters and possesses specific blocks to convey a packet through large distances. Before
any succeeded LoRa transmission, a chain of concatenating processes is performed by the
LoRa device transceivers.

Furthermore, LoRa induces controllable redundancy bits into transmitted data to make
transmissions resilient to channel medium noises. Accordingly, the data in this method are
encoded using a Hamming channel encoding scheme with variable code-words regulated
by the parameter CR ∈ {4/5, 4/6, 4/7, 4/8}. A data of 4 bits is then encoded cyclically
by using the adequate CR to form a code-words of n bits. To improve the reliability,
LoRa adopts an extended version of Hamming by using additional CRs. Therefore, the
channel encoding generates for each block of four bits a code-word of (4 + αcr) bits, where
αcr ∈ {1, 2, 3, 4}.
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Additionally, the Hamming check matrix H for each code of length and dimension
(n,k) is a generator matrix of each orthogonal code C denoted by CT

i . For instance, if H
is the check matrix for C, H is an (n− k)× k matrix; the rows are orthogonal to C and
{x | M× T = 0} = C. The result from the block of encoded code-words (4 + αcr)× q is then
reordered to prepare symbol generation using the LoRa spreading factors and add some
extra resilience to those code-words by interleaving them. Before that, a whitening block
adds known pseudo-random bits to the output of the channel encoded block by operating
the XORing process. The length of the whitened vector with the encoded vector must have
the same length. Generally, this operation is applied to induce randomness into the symbols
to provide more features for clock recovery at the receiver. Afterward, an interleaving
operation is performed by taking each queued codeword at the output of the FEC coding
block and scattering them over time. This operation serves to separate and reorder the
positions of probable errors that may occur. Therefore, channel decoding methods increase
the probability of correcting these errors in the receiver decoding processes. Typically, the
interleaver shuffles the bits in a representative order to avoid the occurrence of an error, yet
it can provide neither error correction nor error detection. Thus, no gain is attached to the
processes. Indeed, in LoRa physical layer, this process is utilized mainly to reconstruct the
encoded code-words diagonally in the adequate form with the selected spreading factors
for the CSS modulation [24].

Sm =
SF−1

∑
p=0

Vm × 2p. (2)

Each vector Vm forms symbols of binary digits Sm that takes values in {0, 1, 2, 5, . . .,
2SF − 1}. Consequently, the total generated symbols may be surveyed as a vector of M
elements (i.e., S06m6M−1 = (S0 S1 S2 S3 S4 ...SM−1)).

After applying gray indexing, the symbol generation process is issued by translating
the interleaved binary code-words of length SF into non-binary symbols. Those symbols
may take values in the interval of [0, 2SF − 1] possibilities. Thus, each symbol that can be
transmitted in a certain defined period also depends on the SF and the chirp duration Tc.
For instance, if an SF of length seven is selected, the value of a symbol may vary from 0
to 255.

Each generated symbol is mapped to the CSS modulator. The modulation procedure
relies on specific criteria to give each transmitted packet a standalone form against channel
medium interference. Accordingly, each segment of the featured information by non-binary
symbols is spread over a time-frequency band using CSS chirps. The CSS modulator relies
typically on the on-base chirp waveform, especially to carry each symbol by spreading it
over the bandwidth within Ts duration. Hence the base-band chirp holding the symbols
S0<m<M−1 = 0 is represented in the time domain as:

C0(t) = A(t)× eπ j BW
Ts

t2+ϕ0 , (3)

where A(t) is the amplitudes that denoted by: 1√
2SF , t is time variate and ϕ0 is the ini-

tial phase.
Generally, each modulated symbol S0<m<(M−1) is denoted by:

CSm
(t) = A(t)× e2π j( BW

2Ts
t2+

Sm
Ts

t+ϕ). (4)

Assuming the sampling frequency is equal to the bandwidth BW, we obtain the
expression of the previous chirping process in the discrete domain due to the Shannon
sampling theorem. Consequently, assuming ϕ is null in the discrete-time domain, the
expression of the waveform carrying a single symbol Sm within Ts duration is:

CSm
(kTc) = A(kTc)× e2π j( BW

2Ts
×kTc+

Sm
Ts

)×kTc , ∀k ∈ Z. (5)
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Therefore, the spread chirps involving the packet of the encoded symbols are denoted
in the discrete domain by:

TSm
X (kTc) =

M−1

∑
m=0

CSm(k−m× 2SF). (6)

Afterwards, the system sends the modulated symbols sequentially over the radio
channel. The format of the entire collected message at the receiver input is:

RX [n] = h× TSm
X [n] + Z[n], (7)

where h, RX [n], TSm
X [n] and Z[n] are the block-fading channel, the received signal, the

transmitted signal and the Zero-mean Gaussian noise with valued variance σ2 respectively.
The demodulation technique occurs in two distinct phases; the de-chirping and the

extraction of the probably received symbols. The de-chirping operation aims to extract
the information from the analog received signal by multiplying this signal with the base
of the transmitted chirp signal. Regularly, the de-chirping operation extracts out the
part containing the transmitted symbols ready to be addressed in the subsequent runs.
The resulted signal after applying the de-chirping operation takes the form of an M-ary
Frequency Shift Keying (FSK) modulated signal as follows:

Rd
X [k] = RX [k]× e−π BW

Ts
×(kTc)

2
, ∀k ∈ Z. (8)

The LoRa demodulation extracts a set of symbols from the de-chirped signals. Herein,
particular coherent demodulation is a crucial strategy to deal with the M-FSK signals
after crossing an AWGN channel. Moreover, this modulation technique is more resilient
against channel impairment, including the AWGN. Moreover, applying the Discrete Fourier
Transform (DFT) enables us to recuperate the transmitted symbols [23].

Ŝm = Argmax{Re{DFT{Rd
X(k + m× 2SF)× Sm}}}. (9)

The application of the DFT process extracts the recovered non-binary symbols Ŝm.
Then, they are coded into binary frames using the gray indexing method, preparing the
bit sequence to be declined. The de-whitening processes are applied to withdraw the
bit-stream form by re-XORing the binary stream of the received symbols. The expression
of de-whitening is given by XORing the demodulated with the same applied whitening
sequence of bits. Afterward, an inverse of the interleaving process at the transmission
side allows us to store one codeword at a time in the same rectangular array format in a
row-wise manner. Furthermore, the vector array of the received bit-stream analysis is the
input of the decoding block to check the occurred number of errors. The FEC decoding of
the de-interleaved bits relies on the Hamming decoding algorithm. This procedure allows
the system to recognize and investigate the LoRa received packet by providing enforcement
against the channel to measure the number of occurred bit errors.

4. Energy Efficiency of LoRa

A LoRa network incorporates multiple small devices with small batteries, thus their
energy is limited. Therefore, the network’s lifespan depends on the adopted protocol to
manage the power source of the nodes. Each wireless sensor performs many processes
before succeeding a single transmission. Hence, to estimate the overall network energy con-
sumption, a thorough consideration should address all the energy consumption provokers
by each single node.

4.1. Energy Modeling of LoRa/LoRaWAN

The on-off transmission mechanism is integrated into the node’s hardware system
to maintain energy management. This strategy has become increasingly important in
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improving energy saving for most wireless sensors. Besides, LoRa nodes are activated
only for a particular time Tactive and then remain silent during sleeping mode Tsleep. In
standby mode, the node listens to the radio using clocks that ordinarily do not consume
as much energy as during active mode, where it operates several activities that drain the
node’s energy supply. Consequently, each packet may last for a total duration of Tpacket
expressed by:

Tpacket = Tpreamble + Tpayload, (10)

where Tpacket, Tpreamble and Tpayload are the full packet duration, the preamble duration and
the physical payload duration respectively. The preamble duration depends on the used
device chip, whereas the payload duration depends on the number of symbols holding the
important data [50]. Their values are expressed in function of symbol duration Ts by:

Tpreamble = (4.25 + NPr)× Ts (11)

Tpayload = Nphy × Ts. (12)

The transmission energy in function of transmission power Ptx and Tpacket is ex-
pressed by:

Etx(t) =
Tpacket × Ptx(t)

ζa
, (13)

where ζa is a fraction related to the node’s antenna amplifier power efficiency. The trans-
mission power Ptx typically differs from the uncoded, coded and adopted modulation
techniques. Besides, the transmission power for uncoded transmission is expressed by:

Ptx,u(t) = η
Eb
N0
× N × Lp, (14)

where η , Eb, N0 are the system’s spectral efficiency, the required minimum energy per bit
at the receiver side, and the noise power spectral density respectively. Lp is the path loss
estimation which is defined by:

Lp =

(
4π fc

c

)2
×
(

d
d0

)α

+ χ (15)

N = T × K× BW × 10
( NF

10

)
, (16)

where fc, c, d, d0, NF, and χ are: the carrier frequency, celerity, distance between transmitter
node, the GW and d0 initial distance which is fixed in this study to one meter, noise
figure and α is the path loss exponent which depends on the environment characteristics
respectively and the standard deviation used only when there is a shadowing effect.

Besides, the transmission power for non coded packets is given by:

P(t)
tx,u = η × 10

(
γu+NF

10

)
× T × K× BW × Lp, (17)

where γu is the required SNR for non-coded transmissions, λ is the transmitted wavelength
corresponding to fc, K is the Boltzmann constant, T is the absolute temperature in Kelvin
and BW is the bandwidth.

Given the SNR gain by using an FEC code, the required power for encoded transmis-
sion can be expressed in function of Ptx,u and coding gain Gc as follows:

P(t)
tx,c =

P(t)
tx,u

10
(

Gc
10

) . (18)
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The utilization of LoRa modulation based on the CSS scheme enables the system to
perform transmission in noisy channel mediums. The CSS modulation scheme provides
crucial energy savings as LoRa uses different SFs, resulting in different gains. We rely on
the gain measures expression below for different SFs. We define SNR gain as the additional
SNR in dB required by CSS modulation schemes that allows the SFs to achieve the same
BER performance target. Hence, SNR gain for a given target BER for coded Gc,css(SF)
transmitted packets can be expressed ∀ SFi 6= SFj ∈ {7, 8, 9, 10, 11, 12} by:

Gc,css(SFi,j) = γc,css(SFi)− γc,css(SFj). (19)

Thus, to measure the minimum required power between two separate spreading
factors SFi and SFj; the following expression can be used:

P(t)
tx,css(SFi) =

P(t)
txcss

(SFj)

10
(

Gcss(SFi,j)
10

) . (20)

Typically, any LoRa ED spends its energy cooperatively by performing several tasks.
In general, the node may take two states; active and sleep state. A significant amount of
energy is consumed in active mode than in sleep mode. The total energy consumed per
node taking into account both states is expressed by:

E(t)
Tot(EDid) = E(t)

sleep(EDid) + E(t)
act(EDid), (21)

where E(t)
sleep and E(t)

act are the total consumed energy during sleep and active mode respec-

tively. The energy consumed in sleep mode is proportional to P(t)
sleep within sleep duration

T(t)
sleep by:

E(t)
sleep(EDid) = P(t)

sleep × T(t)
sleep. (22)

In active mode, the node is required to perform multiple principal operations which
leads to drain energy such as Radio Frequency (RF), CPU, and then circuity-sensing energy
that englobes both consumed energy for sensing and circuit tasks.

E(t)
act(EDid) = E(t)

r f + E(t)
proc + E(t)

cs . (23)

4.1.1. Radio Communication Energy

The communication module includes both up-link transmission and down-link recep-
tions. The RF is responsible for end-nodes data transmission and reception. Typically, to
transmit a packet, the node starts by sending two up-link notifications in a specific time
duration, then it prepares to receive the feedback by opening sequentially two listening
windows. If there is an absence of detection during the first opening, the node opens a
second window. If no reception occurs during both windows opening, the node will wait
for the next duty cycle to re-transmit the message until the link exchange succeeds. At
the emitter node, after the expiry of the allowed number of up-link trials within Tpreamble,
it initiates the first listening window during Tw1, if nothing is detected, it tries again by
opening a second window of Tw2 duration, otherwise it transmits the same preamble
waiting for the next duty cycle.

The energy consumption during this radio communication processes is estimated by
the following expression:

E(t)
r f (EDid) = E(t)

rx (EDid) + E(t)
tx (EDid), (24)
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where E(t)
rx (EDid) is the energy consumed during reception period and E(t)

tx (EDid) is the
energy consumed during transmission period.

E(t)
rx (EDid) = E(t)

rx,w1(EDid) + E(t)
rx,w2(EDid), (25)

where E(t)
rx,w1(EDid) and E(t)

rx,w2(EDid) are the energies consumed during listening on first
window opening and second window respectively.

E(t)
rx,w1(EDid) = P(t)

rx,w1 × Nsym(EDid)× Ts, (26)

where Nsym corresponds to the number of symbols associated with up-link and down-link

communications and its value depends on the selected SF. P(t)
rx,w1 is the needed transmission

power during Tw1, and Ts is the symbol duration.

E(t)
rx,w2(EDid) = P(t)

rx,w2(EDid)×
(

2SF + 32
BW

)
, (27)

where P(t)
rx,w1 is the required transmission power during Tw2, and BW is the bandwidth.

4.1.2. Computation Energy

In addition to the energy dissipated by radio components, the ED’s processing unit
consumes energy while treating the data through different sequences; channel coding,
whitening, interleaving, gray indexing, and mostly when modulating the signal. The ED
consumes energy through switching sequences and leakage current. Thus, in our model,
we consider the total time taken by the processed ED’s processing unit to complete packet
post-processing as follows:

T fmcu = Tsc + Tcc + Twhi + Tint + Tgr + Tcss, (28)

where the time required by the physical block source coding, channel coding, whitening,
interleaving, gray conversion and the CSS modulation block are denoted respectively by:
Tsc, Tcc, Twhi, Tint, Tgr and Tcss. The energy dissipated by a single node upon the activation

state i.e the energy consumed by the processing unite E(t)
pros can be expressed by:

E(t)
pros = P(t)

mcu,on ×Φ(t)
mcu + P(t)

mcu,o f f × (Tbo −Φ(t)
mcu) + E(t)

leakage, (29)

where E(t)
leakage and Φ(t)

mcu are the number of clock cycles per task . P(t)
mcu,on and P(t)

mcu,o f f are the
consumed power when the CPU is on and off modes, respectively. Tbo is the back off time.

E(t)
leakage = Lpacket ×Vdd × Ileakage ×

(
Φ(t)

mcu
fEDid

)
. (30)

Additionally:

Φ(t)
mcu =Tbo((1− pα)(1− pβ)(1− p0)(τL + (1− p f )Lack)

+ λs × Tm + T fmcu
MCU).

(31)

Given that, pα, pβ, p0, p f , τ, L, Lack, Tbo and T fmcu
MCU denote respectively; the busy

channel probability during the first and second window opening, the probability when the
gateway queue is empty, probability of fail, the channel access probability, the length of
data frame, the length of checking acknowledgment, the back-off time and the processing
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duration required by the device micro-controller within frequency fmcu and λs is the sensing
frequency of the LoRa end-device.

Considering the channel encoding scheme is based on Galois field GF(2m), the time
required to encode a code sequence of n bits operation within a time period tcycle using
Hamming code [51,52] can be expressed by:

Tcc =
n× (2k− 1)

k
× tcycles, (32)

where tcycle is the time required to complete each single coding sequence. Therefore, the
processing duration needed to modulate Nsymbols number of symbols by CSS modulation
can be given as:

Tcss =
Nsymbols

Mspeed
, (33)

where the modulation speed Mspeed can be expressed by:

Mspeed =
BW
2SF × CR. (34)

In this work, the total time required for interleaving, source coding, gray mapping,
and whitening is assumed to be negligible as they are practically small compared to other
processing operations. Besides, the value of Φ(t)

mcu ≈ T fmcu
MCU .

4.1.3. Sensing and Circuity Energy

The sensor unit consumes the energy for data acquisition, and digital-analog convert-
ers which is estimated by:

E(t)
sc (EDid) = E(t)

c + E(t)
s . (35)

The energy dissipated by the node circuitry E(t)
c and sensing unit E(t)

s .

E(t)
c (EDid) = E(t)

idl + E(t)
syn + E(t)

on + E(t)
o f f + E(t)

led + E(t)
brd. (36)

The expressions Eidl , Esyn, Eon, Eo f f , Eled and Ebrd present respectively the energy
dissipated by each single end node in mode: idle lightening, synthesizer to transmission,
switching off to on, switching on to off, energy consumed by node Light Emitting Diodes
(LEDs) and the beard energy.

ES(EDid) = Tboλs(
Ns

∑
i=1

Pon
s Tm + Pon

adcTm + Po f f
adc (

1
λs
− Tm) +

Ns

∑
i=1

Po f f
s (

1
λs
− Tm)), (37)

where the time required for total sensing by a node is Tm, the sensing power in on active
mode Pon

s and off mode Po f f
s . Back off duration Tbo and λs refers to node’s sensing frequency,

consumed power in by ADC activity when the node is active Pon
adc and Po f f

adc in sleep mode.

4.2. Total Energy Dissipation of the Overall Network

The total energy dissipated in the network that comprise Nnodes number of LoRa end
nodes EDid at time t after the occurrence of total number of duty cycles Nc, is the sum of
the total energy dissipated by each ED:

Enetwork =
Nnodes

∑
id=1

Nc × E(t)
Tot(EDid). (38)
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Furthermore, we can also use the following formula to predict the residual energy at
specific time in a given ED equipped with initial power capacity Einit(EDid) in function of
the number of the occurred transmission cycles.

E(t)
Res(EDid) = Einit(EDid)− Nc × E(t)

Tot(EDid). (39)

5. Proposed Method

We assume an extensive LoRa network composed of various autonomous battery-
powered LoRa EDs scattered randomly around their GW. Each ED is supposed to convey
packets respecting the duty cycle (DC) regulation with minimum energy usage. Thus, the
transmission parameters should be adopted carefully to ensure the energy efficiency and
reliability trade-off. In other words, if multiple choices are available, the ED has to select
the setting that meets the task with the lowest power requirement with high reliability. The
GW can successfully decode the received packets if the SNR is above the threshold SNRth
for a given selection, and the received signal should necessarily exceed the sensitivity of
the receiver antenna Srx. If these conditions are not satisfied, the uplink and downlink
messages cannot be received. Therefore, the ED re-transmits the packets within a certain
number of allowed uplink attempts. The sensitivity of the GW receiver [53] is given as:

Srx = −174 + 10log10(BW) + NF + SNRth. (40)

This work proposes a method that overlaps the energy efficiency and transmission
reliability of the LoRa ED. Due to their gains, the study considers both CSS modulation
and coding rate energy saving. The EDs power consumption is potentially related to
the transmission and surrounding environmental conditions. Therefore, the parameter
selection procedure for the physical layer must be handled carefully, respecting the several
criteria among transmission parameter adaptation, transmission power, and critical dis-
tance dc to maintain energy efficiency and consistency for any ED. Each ED in the network
should choose the adequate transmission parameter considering the channel medium
variances. As a result, the selected option should prove successful transmissions with low
power consumption.

Besides, to remedy the issue of many transmission parameter options availability,
to choose the most efficient, a parameter called distance threshold dc was introduced.
This parameter is defined as the distance at which any node located far from the GW can
successfully convey a typical transmission. The system adjusts the settings until obtaining
the highest distance with suitable parameters. Correspondingly, the selection should
consider the packet size, processing energy, and the distance that separates any ED from its
GW. To estimate this distance, we rely on the following expression:

dc =


(Etx,SFi − χ)× 10

−γ
(t)
css(SFj)−NF

10


Tpacket(SFj)

× η × T × K× BW

(
λ

4π

)2



1
α

. (41)

Any ED in the network must decide which parameter combination is selected to
maintain the energy-draining for a given duty cycle. Typically, selecting a single param-
eter among SF or CR regarding data packet size, the system must settle the parameters
continuously, taking into account the critical distance.

Therefore, the main aim to measure the difference of the energy consumed for different
SFs, which is, in other words, the gain of energy obtained using two separate SFs. Thus,
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the energy difference between two consecutive SFs; SFi and SFj, i, j ∈ {6, 7, 8, 9, 10, 11, 12},
and ∀i 6= j, is denoted by:

∆Etx(EDid) = Etx,css(SFi)
(EDid)− Etx,css(SFj)

(EDid). (42)

Besides, this equation is also applied to get the average consumed energy for process-
ing comparing between two different SF parameters which can be expressed by:

∆Eproc(EDid) = Eproc,css(SFi)
(EDid)− Eproc,css(SFj)

(EDid). (43)

The energy consumption of a given set of configurations among SF, CR, BW, and
transmission power Ptx is considered taking into account the trade-off between the required
energy for transmissions and the computation processes. More specifically, for a given
transmission scenario, an ED may successfully transmit a packet by using multiple possible
settings. Therein, the transmission setting with less energy consumption is more likely
to be selected. This may be achieved by assessing the energy efficiency esteemed by the
margin difference between Etx and Eproc for each possible setting.

This classification is obtained by comparing the total Etx and Eproc per cycle for two
successive configurations using different SFs with a given CR where SF ∈ {7, 8, 9, 10, 11, 12}
and CR ∈ {4/5, 4/6, 4/7, 4/8}. Therefore, the energy saving is defined as the difference of
transmission and processing energy consumption between two different settings, and it is
expressed as:

∆E(EDid) = ∆Etx(EDid) + ∆Eproc(EDid). (44)

This expression allows us to investigate the energy performance between various
transmission parameters, therefore calibrating the energy differences in terms of energy
gain and cost. Moreover, to decide if the selected configuration is relevant in reliability and
energy efficiency, we compare multiple settings that execute the same task for the same
scenario conditions. Besides, we investigate the energy efficiency ratio that combines both
required transmission and computation energy. However, the difference value between
two settings ∆Etx by a given end device EDid is considerable if the overall transmission
energy is strictly higher than energy processing [54]. Therefore, the energy efficiency metric
is expressed as:

Ee(EDi) =
∆E(EDid)

ETot
× 100. (45)

Additionally, the reliability using a given set of transmission can be assessed between
two different settings to transmit the same packet by dividing the total transmitted packet
Lpacket by the total consumed energy per cycle:

Êe(EDi) =
Lpacket

ETot
[bit/J]. (46)

We investigate the system performance in AWGN canal using our redeveloped LoRa
communication chain that includes all the previous mentioned physical layer processes.
The BER eber and the packet error rate (PER ) of a coded packet given that the SNR and SF
can be derived as follows [55]:

PER(EDid) = 1− (1− BER)
4
5 (lpacket−lheader). (47)

According to [56], the BER expression of CSS modulation in AWGN channel can be
approximated by:

BER(EDid) ≈
1
2

Q

(
1.28

√
Es

N0 × 2SF − 1.28
√

SF + 0.4

)
, (48)
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where Es depicts the symbol energy, N0 is the single-sided noise power spectral density, Q
is the distribution function, and lheader is the header length. Moreover, the required energy
to transmit a coded bit Etx,c

b is subtracted from the energy needed to transmit an uncoded
bit Etx,u

b . It can be analytically provided by:

Etx,c
b =

Ptx,c

Rb
=

Etx,u
b

10
Gc
10

. (49)

Furthermore, the energy consumption can be analytically expressed independently to
the data throughput for a typical selected physical parameter. Therefore, the amount of
saved energy ∆Etx(EDid) is expressed as: N0

∆Etx(EDid) = Etx,u
b (1− 10−

Gc
10 ). (50)

We adopt a multi-objective optimization method to formulate the LoRa transmis-
sions and processing parameter selection as a Markov Decision Process. The designed
optimization model under uncertain surroundings for decision-making is known as MDP.
This method is based mainly on the MDP [57] technique to assign the transmission pa-
rameters autonomously. The flowchart presented by Figure 2 illustrates the whole idea
of the proposed method. Therefore, the main aim is to assign the most energy-efficient
configuration to an ED while transmitting a given packet from a given distance to the GW.
To assign a given transmission parameter, the ED has to consider many variances affecting
transmission quality, such as random channel conditions. The ED should efficiently adjust
its transmission parameters by using minimum energy dispenses. At each decision instant,
the system is maintained in a particular state S , and the agent elects an action A, existing
in the latter state. Once the action A is performed, an intermediate cost C is received by
the agent, and thus the system is moved to a qualitatively different new state S′ based on
the transition probability Pr(S ,A,S ′). The main aim of the MDP is to find the optimal
policy that minimizes the long term average cost (i.e., Etot(ED) ) . An MDP can be either a
finite or infinite time frame [58]. Given a finite MDP time horizon, the optimal policy π∗ to
minimize the total expected cost is defined as follows:

min Vπ(S) = Fπ,s

T

∑
t=1

γtR(s
′ |s, π(a)). (51)

Here, γ is the discounting factor and F[.] is the expectation function. Furthermore,
finite time horizon Markov decision processes are a finite time horizon MDP solution. The
system’s performance takes place in a time known as the lifetime measure of the ED. In
particular, the system starts in state S or the initial state of the node when it is full of energy
and continues to operate until the battery is completely discharged. The optimal policy
is to minimize Vπ(S). If we denote V∗t (S) as the minimum achievable reward at state s,
then we can estimate the value of V∗t (S) at each state recursively by solving the following
optimal Bellman equations:

V∗t (S) = mina∈A[Rt(s, a) +
T

∑
s′∈S

P(s
′ |s, a)V∗t+1(s

′
)] (52)

Q∗t (s, a) = C (s, a, s
′
) +

T

∑
s′

P(s, a, s
′
)V∗t−1(s

′
). (53)

Wherein V∗t (S) is the value of state s and Q∗t (S ,A) is the value of taking action A in
state S .
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Figure 2. Flowchart of the proposed model.

The proposed MDP model is defined by the tuple (S , A, Pr, C(.)), where S presents
the state of the system,A is the set of possible actions, Pr is the set of transition probabilities
of the system states, and C(.) is the cost function for a given decision. We specify each
element of the tuple as follows:

• States: There are two different states associated with every ED on the network; a
sleep state Ssleep and active state Sactive. During Ssleep the ED may perform data
gathering from its environment and processing tasks but no transmissions can be held,
whereas during Sactive, it communicates with the GW base and opens predominately
listening windows to send and receive exchanged complete duplex transmissions
with the same GW. In an active state, the ED takes many autonomous decisions to
adjust transmission settings, including transmission power Ptx adjustment. Each
state s ∈ S consists of two components s = [b, h], where S = B ×H. B denotes the
energy state space, and H denotes the channel medium state space. b ∈ B is the
energy state, B = {0, 1, . . . , B} contains all possible energy buffer levels regarding
the different possible transitions. The channel medium state h ∈ H = {1, . . . , H}
influences the packet reception probability at the receiver ED and, since we assume a
power-controlled transmission system, it also affects the power consumption at the
transmitter. The process is used to derive the channel state transition matrix for an
AWGN channel model as described in [59,60].

• Action: At each decision epoch t, the transmitter ED obeys the system state s = st and
determines an action a = at from the action setAs. In our model a = at corresponds to
the efficient setting SF and CR to be used in the current slot t. It compares the energy
efficiency of each possible transmission set used by the transmitter in the current time
slot t. After comparing each possible transition, the ED selects the adequate SF and
CR as actions. The ED is assumed to check and test all the possibilities of transmission
settings in order to find the optimal policy. This way ensures successful transmissions
with high bite rates. The transition to the active state is proportional to the action
A(SF, CR) that is handled consecutively by the established transmission parameters
and transition probability;

• Transition probabilities: Let t and s = st[bt, ht] express the current time index and the
approach state in slot t, respectively. We indicate with at the action taken in the present
slot t, and we refer to Etot(st, at) as the total consumed energy given that action at is
chosen. Hence, the energy evolves as:
The transition from the state S to another state S ′ by the action A relies on the
efficiency of different possible transmission settings. The selection of an action A is
proportional to the transition probability from sleep to active mode. The transition
probability from state st+1 = [bt+1, ht+1] given that the action at is selected is:

bt+1 = max{0, minbt − Etot(st, at), B}. (54)
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If st is the system state, action at is admissible only if Etot(st, at) ≤ bt. Additionally,
Etot(st, at) is given by the sum of two segments: the energy consumption associated
with processing Epros(st, at) and that associated with the transmission task Etx(st, at).

Pr(st+1|st, at) = θ(bt+1 − bt + Etot)× ph(ht+1|ht), (55)

where θ(.) refers to the indicator function that is equal to 1 when the argument is zero
and zero otherwise. ph(.) is the transition probability matrices of the channel.

• Cost function: It is a function that minimizes the total energy that encompasses the
transmission and processing energy as defined by Equations (13) and (29). The cost
function implicitly selects the adequate transmission parameter that minimizes the
assessed energy ETot per transmission using optimal SF and CR. Pr(.) is the probability
that the ED stays in the active mode. The transition from s to s′ by the action a is
established through the probability of Pr(.) with the cost C(.):

C (s, a, s′) = minETot(s, a, s′), (56)

where ETot(s, a, s′) is the consumed energy by the ED at the current state using optimal
selected transition parameters.
Policy π describes a sequence of decision rules that associate the system state with
the action to be taken. The purpose of this policy is to minimize the long-run average
distortion, i.e., the long-run average cost. It is driven by the chosen eligible policy π
(that decides on the action a).

Jπ = lim
N→+∞

1
N

Es

N

∑
n=0
C(sn, an). (57)

The main goal of this expression is to determine J? = minπ∈φ Jπ and the corresponding
optimal policy π∗ = argminπ∈φ Jπ .

• Solution of the MDP: The proposed MDP scheme can be solved via the Value-Iteration
Algorithm (VIA), which satisfies the optimal Bellman’s equation. This method is used
mainly for infinite-horizon average cost MDPs as in our current study. Generally,
VIA defines two parts J and Q, that are iteratively updated beginning from an initial
assessment J0(.), e.g., J0(s) = 0, ∀s ∈ S . Notably, the tth iteration determines:

Qt(s, a) = C (s, a) +
T

∑
s′

Pr(s, a, s
′
)Jt−1(s

′
). (58)

The long term average cost is expressed as:

Jt(s) = min Qt(s, a), (59)

where Jt(S) is the value of state s and Q∗t (s, a) is the value of taking action A in
state S .
The immediate cost C(s, a) derived in current state s is summed with the expected op-
timal cost retrieved from the upcoming slot, weighed according to the system dynamics.
The span gives the convergence criterion semi-normal operator sp(j) , min(j)−max(j)
characteristic computed for j = Jt+1(S)− Jt(S) the semi-normal of the span guar-
antees that (59) is a compaction mapping, and thus the algorithm is guaranteed to
converge. The iterative algorithm is stopped when sp(.) ≤ ε, at a chosen tolerance
threshold ε. Consequently, the optimal policy π∗ is then determined by computing
the optimal action to take in each state s ∈ S , i.e., a∗(s) = Argmina inAs

∈ Qn(s, a),
where n is the last iteration of VIA, and has the next key characteristic.
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6. Results and Discussions

In this section, we compare the performance of LoRa default ADR with our proposed
model. We implemented large-scale LoRaWAN simulation tests using the Matlab tool. The
simulation environment imitates the real-world behavior of LoRaWAN taking into account
all the elements of the transceiver communication chain described in section III. As a
channel medium, we considered the AWGN channel. Table 1 shows the parameter settings
we used in the simulation experiments. We assumed that payload is variable for the general
comparison scenario but fixed at PL = 30 Bytes a specific distance for comparison reason
between LoRa default ADR and the proposed method. The class A EDs are randomly
scattered within the range of 12 km around a GW.

Table 1. Simulation parameter values.

Parameter Value

BW 125 KHz
CR 4/5, 4/6, 4/7, 4/8
SF 7, 8, 9, 10, 11, 12
ED type Class A
Path loss exponent 2.5 ≤ α ≤ 4
NF 10 dBi
DC 1 %
Sensing energy per cycle 0.28 mJ
Tsleep + Twakeup 0.18 µs
Ileakage 10 ηA
Irx 11 mA
Isleep 1.5 µA
Ipros 22 mA
Processing frequency 4 MHz
Carrier frequency 868 MHz
Sensor unit voltage 2 V
Leakage voltage 2.2 V
Processing unit voltage 3.3 V

We limit the transmission power to 20 dBm, the noise figure to 10 dBi, and the path loss
to 3. The duty cycle is limited to 1%. In LoRaWAN’s essential operation, multiple channels
and bandwidths can be employed. However, for simplicity, only 125 kHz comprehensive
single-channel communication is tested. All the activities by the processing units are
performed with a 4 Mhz processing frequency. For the energy consumption modeling, we
assumed that the EDs consume the energy of 0.25 mJ every detection cycle. The currents
Ileakage, Irx and Isleep are fixed as described in LoRa sensors datasheet [61,62]. The processing
and transmission voltages are 2 V and 3.3 V, respectively. Besides, to represent the errors
that occurred during transmitting different packet sizes within the AWGN channel medium.
The communication chain explained earlier has been explored to tune the appropriate SNR
value (i.e., γc,CSS(SF)) for BER for coded transmissions using Hamming coding scheme.
A packet of random stream bits (e.g., 0 and 1) has been transmitted through an AWGN
channel and then decoded for each iteration. Exploring the mentioned blocks at the receiver
and the results found in our previous work [32], we assume the SNR versus BER values
of each SF at BER = 10−4 for simplification of calculation. These values have been used
to estimate the consumed energy of each transmission configuration of a given ED in the
following sections.

6.1. Energy and Reliability Evaluation of LoRaWAN

In this subsection, we evaluate the energy and the reliability of LoRa default ADR
under different scenarios. The evaluation aims to understand the distribution of the energy
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consumption of the EDs on the network versus the covered distances using different
transmission setting. The main goal of this section is to demonstrate that the LoRa standard
ADR is not energy efficient under certain scenarios, therefore considering the transmission
and processing energy for parameter selection could provide better performances.

Figure 3 shows the required transmission power of an ED using LoRa default ADR
for different settings based on CR 4/7 and variable SFs from 7 to 12 when transmitting a
payload of 30 bytes from variable distances. As shown, SF 12 requires lower transmission
energy to attain the same distance, followed by SF 11, SF 10, SF 9, SF 8, and SF 7. Besides,
SF 12 can attain the most significant distance with minimum energy dissipation. This is
explained by the significance of CSS modulation to gain power in order to target long-
range distances. Furthermore, from Figure 3, we state that for each specified combination
between SF and CR has a threshold distance that can be covered according to the adopted
transmission power by the ED.

0 1 2 3 4 5 6 7 8 9 10
 d [Km]
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Figure 3. Transmission power Ptx versus range d for different SFs with CR 4/7 to carry out
30 Bytes payload.

Figure 4 shows the total consumed energy of an ED that transmits the same payload
from distinct distances to the GW using the configurations based on CR 4/7 with variable
SFs. The exhibited results confirm that the energy consumption increases with the increase
of both the distance and the SFs. Among the SF configurations, SF 7 reveals to consume less
energy than the others in short covered distances. Besides, from Figure 4, it is important
to notice that for the same CR 4/7. Before SF 7 reaches its maximum critical distance,
which is approximated to 1.2 Km, there is an interval where SF 8 consumes less energy
than SF 7. This is noticed for the rest of the configurations. That signifies that if the
energy consumption increases, there are some distance intervals where the next SF (i.e.,
SF 8) is better than the current one (i.e., SF 7). For instance, the curve representing the
performance of the setting (SF 10, CR 4/7) was revealed to consume more energy than the
following settings (i.e., (SF 11, 4/7) and (SF 12, CR 4/7)) even though it does not yet reach
the maximum allocated transmission power Ptx. Therefore, this declines the assumption
that the ED should operate with a given setting until reaching the maximum Ptx before
switching to the next configuration. The reason is that there is a trade-off between the
processing and transmission energy for every single configuration, which approves our
assumption about the energy performance in LoRa EDs. Hence, it is essential to notice
that each SF configuration ensures energy efficiency on specific distance margins. That
means the SF should be used for the distances where it may consume minimum energy to
maintain energy efficiency.
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Figure 4. Total consumed energy versus distance d using SF 7 with CR 4/7 to carry out 30 Bytes payload.

Figure 5 shows the total consumed energy of the configuration SF 7 using different
CRs of LoRa default ADR. For the same SF 7, using CR 4/5 consumes more energy than CR
4/6, followed by CR 4/7 and CR 4/8. Moreover, the maximum distance that can be reached
by CR 4/5 is shorter than the one reached by CR 4/6, CR 4/7, and CR 4/8, respectively.
Therefore, CR 4/8 presents an advantage as it extends the covered distance with less energy
consumption. That is justified by the BER gain performance of lower CR, which is better
as it benefits from extra redundancy bits. Besides, according to the covered distance, the
energy-efficient coding rate can be used to lower the ED energy consumption. In terms of
energy-saving, the lower CR (i.e., CR 4/5) shows better performances toward time-on-air
(TAO) since it is the fastest option. However, Hamming’s coding scheme, with its various
CRs, has been selected to be used in the LoRa standard due to its lightweight coding,
decoding, and parity check redundancies, which do not impact the performance intensively
toward time-on-air. Accordingly, from both Figures 4 and 5, it is inferred that both coding
and modulation gains affect the energy consumption of LoRa EDs. Therefore, adopting the
better setting configuration between SFs and CRs is of paramount importance.
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Figure 5. Total consumed energy at different ranges d using different CRs with SF 7 to carry out a
30 Bytes payload.

The difference in the consumed energy for transmission and processing trade-offs can
be derived respectively from Figures 6–8. As shown, the smaller SF consumes more energy
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for transmissions Etx operations and less energy for processing Epros, whereas the higher
CR (i.e., CR 4/5) consumes less energy for transmitting the same payload of 30 Bytes using
SF 7. More precisely, Figure 6 shows that SF 7 consumes more energy for transmission
covering the distances inferior to 1.1 Km, and SF 8 consumes more energy than SF 9, SF 10,
SF 11 and SF 12 when covering the distances between 1.1 Km and 1.8 Km. According to
Figure 7 the approximated consumed energies for processing processes Epros are 1.78 ηJ/bit,
0.97 ηJ/bit, 0.57 ηJ/bit, 0.31 ηJ/bit, 0.18 ηJ/bit and 0.11 ηJ/bit for SF 12, SF 11, SF 10,
SF 9, SF 8 and SF 7 respectively when using same CR 4/7. Besides, Figure 8 shows 0.16
ηJ/bit, 0.14 ηJ/bit, 0.12 ηJ/bit and 0.09 ηJ/bit for the coding rates 4/8, 4/7, 4/6 and 4/5,
respectively when using same SF 7.
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Figure 6. The transmission power performance relative to the range in Km carrying out a
PL = 30 Bytes using setting of different SFs with CR 4/7.
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Figure 7. The distribution of the consumed energy for processing when transmitting a PL = 30 Bytes
using different SFs setting with CR 4/7.
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Figure 8. The distribution of the consumed energy for processing when transmitting a PL = 30 Bytes
using setting SF 7 with different CRs.

Accordingly, the small SF consumes less energy in short distances than higher SFs. For
this reason, the default LoRa mechanism configures the setting beginning from the smallest
SF (i.e., SF 7) until reaching the highest available Ptx to access the maximum distance.
Then the system switches to the immediate next SF ( i.e., SF 8) until the maximum SF 12.
Nevertheless, this strategy is not always appropriate. As previously shown by Figure 4,
it is revealed that there are distance ranges where the next SF (i.e., SF 8) configuration
is better than the current SF (i.e., SF 7) in terms of energy consumption and reliability
considerations. More specifically, it is not obvious to wait until achieving the maximum
allowable Ptx to switch to the next setting; this applies to both SF and CR parameters
allocation. For this reason, the proposed scheme aimed to address this gap to assign
accurately the transmission parameters configuration for LoRa EDs.

Figure 9 shows the transmission parameter’s energy classification for the standard
LoRa/LoRaWAN scheme in function of distances. As illustrated, each configuration of
SF and CR can guarantee an energy-efficient transmission in a specific range area defined
by critical distances. The covered distance by a given parameter is controlled by the
Ptx threshold. For example, when transmitting a PL of 30 Bytes using CR 4/8 from the
distances 1 m ≤ d ≤ 1440 m; SF 7 appears to be the most efficient setting among others.
whereas, SF 8, SF 9, SF 10, SF 11 and SF 12 show better performance respectively in
1441 m ≤ d ≤ 2127 m, 2128 m ≤ d ≤ 3489 m, 3490 m ≤ d ≤ 4892 m, 4893 m ≤ d ≤ 7041 m,
and 7042 m≤ d ≤ 11, 360 m. Noting that these threshold distances may change by changing
the coding rate or the payload length. Furthermore, the configuration assigned to cover the
ranges should differ if the path loss exponent α differs.

Figure 10 illustrates the energy efficiency performance of LoRa default ADR using
different SFs versus the covered distances. It is observed that the energy efficiency varies
for different SFs and declines regardless the covered range. SF 7 reveals to be more efficient
for short distances than others. Besides, each parameter setting shows its effectiveness
within a specific range. However, the ranges classification associated to each SF shown in
Figure 9 for LoRa default ADR could be updated if the energy efficiency performance for
each tuning is considered. The most considerable configuration should prove the highest
energy efficiency performance. Thus, if the energy efficiency of each setting is considered,
the setting that would be used to cover variable ranges are respectively; (SF 7, CR 4/7) for
the EDs situated at ranges below 855 m, (SF 8, CR 4/8), (SF 9, CR 4/8), (SF 10, CR 4/8),
(SF 11, CR 4/8) and (SF 12, CR 4/8) for ranges 856 m ≤ d ≤ 1230 m, 1231 m ≤ d ≤ 2456 m,
2457 m ≤ d ≤ 3005 m, 3006 m ≤ d ≤ 3723 m and 3724 m ≤ d ≤ 11, 360 m respectively.
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Figure 9. Optimum setting classifications for ranges d using different SFs with CR 4/8 to carry out
30 Bytes payload.
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Figure 10. Energy efficiency distribution relative to variable covered distance d using different SFs
with CR 4/8 to carry out a 30 Bytes payload.

In short, the difference in energy efficiency explains why several distances are consid-
ered thresholds at which specific parameters cannot succeed in communication. Therefore,
the ED would determine the parameter autonomously to be considered at a defined dis-
tance to make a reliable transmission. Bearing this in mind, in other cases, the transmission
can be successfully maintained using different options, even though the energy efficiency
of any transmission would be taken into account to ensure a high level of energy man-
agement satisfactory. To this end, the critical distance dc has the potential to increase
the reliability of the overall communication setup and can also lead to conscious energy
resource management.

As exhibited by Figure 10, it is impossible to ED to succeed in transmission from it is
position using the transmission settings (SF 7, CR 4/8), and (SF 8, CR 4/8). Nevertheless,
the ED can reach the required distance by relying on four possible configurations based
on SF 9, SF 10, SF 11, and SF 12 for the same CR = 4/8. However, the setting offering
a considerable energy efficiency requirement is the most recommended. According to
classical LoRa functioning, the ED would use the possibility (SF 9, CR 4/8) since the
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position of the ED is included in the covered ranges by this setting and the Ptx did not
yet reach its threshold, which is associated with the maximum distance 3.4 km. This is
explained by the fact that in the classical LoRa ADR, the system does not switch to the
next SF or CR until the outflow capacity of the actual parameter exceeds the maximum
Ptx threshold (i.e., the critical distance dc). However, according to Figures 11 and 12, this
configuration is not the most efficient when considering the energy efficiency and the total
consumed energy of the possible setting that can succeed in the transmission of the ED.

Figure 11. Energy efficiency performance comparison between of different possible transmission
settings at the distance d = 3 km.

Figure 12. The total consumed energy by different possible transmission settings at the distance
d = 3 km.

6.2. Performance Evaluation of the Proposed Scheme versus LoRa Default ADR

In this section, we investigate the MDP based approach’s performance against the
LoRa standard ADR for the same scenario conditions. For first scenario, we pick a random
ED from the network that is situated at a distance of d = 3 Km from the GW. The network
is supposed to cover an urban area. The concerned ED can operate dynamically with



Sensors 2022, 22, 5662 24 of 30

maximum transmission power up to +20 dBm and is instructed to handle the transmission
parameters to convey payloads with different payload sizes. The comparison relies on
the gains in transmission reliability and the energy consumption layouts. Initially, we
study all the possible transmission parameters that can carry the transmission from the
required distance. For this reason, we plot the curves of different possible combinations in
the following figures to assess their performance in terms of energy consumption. Then,
we compare the performance of the parameter assigned by LoRa default ADR versus the
proposed scheme.

Figure 13 shows the difference of energy residual distribution of the ED situated at
4 km from the GW using MDP-based method and default LoRa ADR. From this figure
we conclude that our proposed model consumes less energy for the same scenario, as it
helps the ED to carry on more transmission before it dies. MDP-based carry out 540,256
transmissions, 55,489 more than LoRa ADR. This is explained by the fact that our model
adopts the parameter selection according to the channel condition taking into account both
the transmission and processing energy of each possible setting before its selection.

Figure 13. Residual energy variation versus distance of MDP-based model and LoRa default ADR
carrying out a 30 Bytes payload.

To emphasize the results, we have simulated our model against LoRa default ADR
under different scenarios for transmitting the payload size from distinct locations on the
network. Figure 14 shows the results of the total succeeded transmission from 5 km, 1 km,
2 km, and 3 km, respectively, of the proposed model against LoRa ADR. As shown in
Figure 14, the proposed model outperforms the standard LoRa ADR mechanism, leading
the ED to carry out more transmissions before dying. For instance, from the distance of
1 km, the ED that adopts default LoRa ADR 867,565 maximum transmissions, which is
less than 135,826, is achieved by our proposed model. Concerning the ED situated at 2 km,
it achieved 540,256 transmissions with 55,489 more than LoRa defaults ADR. As noticed,
the number of total transmissions that the ED can realize decreases with increasing the
distance, which signifies that the ED that is situated far from the GW is expected to die
before the nearest ones. Additionally, the energy consumption increases as the payload
size increases.
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Figure 14. Total number of succeed transmission of the proposed model against LoRa default ADR
for distinct distances transmitting a payload of a 30 Bytes.

Figure 15 shows the average energy cost distribution by the 100 first transmission
rounds using MDP model. The total consumed energy Etot differs from one round to an-
other due to the random channel conditions. Our proposed model adopts the transmission
parameters according to the channel medium. Therefore, the average cost changes from a
round to another due to the randomness of the channel medium. Besides, the cost increases
with increasing the payload size. The larger the payload size, the more energy the ED is
expected to consume, therefore, it will last for less time.

Figure 15. Average cost variation of each round for different package sizes from 3 km using MDP-
based model.

Figure 16 presents the average long-term cost against the distance variation for trans-
mitting 30 Bytes payload for different channel states H. For channel states that have been
selected for the study; α = 2.5, 3, 3.5 or 4. From the figure, we conclude that the MDP aver-
age cost increases with the transmission distance and the path loss exponent representing
the channel condition, including the shadowing. Our model for each distance chooses the
set of parameter selections that consumes minimum energy. For each channel state, our
model succeeds in choosing the better policies that reside on choosing the adequate SF and
CR for a given transmission, whatever the position of the ED on the network.
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Figure 16. The average long term cost of transmitting a PL = 30 Bytes using MDP method under
different channel states versus distances.

The total number of transmissions that an ED can undergo per day in public LoRa
networks is limited due to the region and state restrictions. The DC obeys the ISM frequency
band; thus, the maximum duty cycle allowed is 1%. After completing a given transmission,
the ED must remain silent for 99% of the total time taken. More precisely, the ED forwards
a packet within a time interval and then waits for a given time as instructed by the DC
duration. Besides, to predict the lifespan and the total number of transmissions that can be
held by an ED equipped with different battery source capacities (500 mAh, 2600 mAh, and
3500 mAh) that transmit every DC, the same payload packet of 30 Bytes using the same
settings. We apply the experience scenarios of different battery capacities to the identical
previous ED. Then we compare its lifespan when adopting the proposed method versus
the default LoRa based ADR.

Figure 17 shows the performance of the studied ED relying on our method as well
as on the LoRa defined scheme assuming a DC 1%. The ED’s lifespan depends on the
used batteries’ capacity for both methods. In these scenarios, adopting the configuration
recommended by our proposed method, the ED lasts for more time than using LoRa default
ADR. The ED can last for approximately 435 days, 1850 days, and 2771 days using a battery
capacity of 500 mAh, 2600 mAh, and 3500 mAh, respectively. Meanwhile, it may last
less time by adopting LoRa ADR for the same battery capacities; 202 days, 1052 days,
and 1417 days. As a result, the proposed scheme is expected to increase the times more
than the LoRa standard ADR. Accordingly, the lifespan of the ED may last for more when
transmitting payloads of size smaller than PL = 30 Bytes, and it may be decreased by
increasing the length of the transmitted payload.

Figure 17. Comparison of the proposed scheme against LoRa’s default ADR in terms of ED lifetime
for different battery capacity.
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7. Conclusions

Several works are interested in using the technology without deeply launching its
functional mechanisms. Likewise, these networks have become denser with the increased
number of connected devices on the network. Therefore, evaluating the overall network
performance, such as by measuring the lifespan, tracking the energy consumption, and
evaluating its reliability and scalability, becomes more demanding. This paper highlights
the IoT paradigm’s energy efficiency and reliability performance of LoRa EDs. Firstly, it
provides comprehensive knowledge about the functioning of LoRa transceiver operations,
focusing on the CSS modulation and the channel encoding schemes. Secondly, it provides a
thorough mathematical model devoted to assessing the energy consumption in LoRa EDs.
The model concentrates more on communication and processing energy, which has not
been considered in most previous works. Accordingly, this model could assist in forecasting
the LoRa networks’ lifespan in general or anticipating the lifespan of a single ED on the
network regarding its distance from the GW before the real implementation of the network.
Thirdly, it presents an MDP-based energy-efficient adaptive scheme that serves to tune LoRa
physical transmission parameters. More precisely, it permits LoRa EDs to tune their radio
transmission parameters, ensuring energy efficiency and the reliability of packet delivery.
The scheme compares and evaluates the processing and transmission energy trade-off
of each possible setting of any selection. The process aims to assign an accurate set of
parameters regarding the BW, CRs, SF, transmission power, payload size, and the position
of the loRa EDs. This approach has been evaluated and compared with LoRa default ADR.
The obtained results through simulations have shown that the proposed method provides a
better performance than LoRa default ADR in energy consumption in the studied scenarios,
which leads to an increase of the LoRa end-nodes lifespan. Additionally, the presented
energy model accurately anticipates the node’s lifespan for different transmission scenarios
regarding the payloads’ size and duty cycle periods. In future works, we aim to adapt
our proposed scheme to address the energy efficiency and reliability for dynamic EDs
where the adaptive physical layer parameter management is complex and challenging.
Moreover, the future research will deal with multi-objective optimization in mobile edge
computing. We plan to design architecture based on Mobile Edge Computing between
the Gateways and the connected objects. All the processing charges of the IoT devices,
whatever the nature (Objects, Drones, Vehicles, Robots, and more), will be sent to the Edge
Server, in which a multi-objective optimization will be run to select the transmission and
processing parameters of the whole network, then forward the optimal decisions via a
downlink transmission. We believe this approach will provide more energy and delay the
performance of the IoT networks.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronym Description
ADR Adaptive Data Rate
BER Bit Error Rate
BW Bandwidth
CR coding Rate
CPU Central Processing Unit
CSS Chirp Spread Spectrum
d distance
dc critical distance
DC Duty Cycle
ED End devices
Ee Energy Efficiency
Etx

c Uncoded Transmission Energy per bit
ETot Total consumed Energy per cycle
Eact Consumed Energy in sleep mode
Etx Consumed Energy for transmission
Erx Consumed Energy during reception
Erx,w1 Consumed Energy during W1 opening
Erx,w2 Consumed Energy during W2 opening
Eproc Processing Energy
Ec Circuity Energy
Es Sensing Energy
ENetwork Total consumed energy of the network per round
ELeakage Consumed energy for leakage per round
FEC Forward Error Correction
fcpu Processing Frequency
GW Gateway
ISM Industrial Scientific and Medical
IoT Internet of Things
LoRa Long Range
LPWAN Low Power Wide Area Network
MAC Medium Access Control
MT Modulation time
Mspeed Modulation speed
NF Noise Figure
PER Packet Error Rate
PHY Physical Layer
Ptx Transmission Power
SF Spreading Factor
SNR Signal To Noise Ratio
Srx Receiver sensitivity
Tc Chirp duration
Ts Symbol duration
Tw1 First Window listening duration
Tw2 Second Window listening duration
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