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Abstract: Despite advanced machine learning methods, the implementation of emotion recognition
systems based on real-world video content remains challenging. Videos may contain data such as
images, audio, and text. However, the application of multimodal models using two or more types of
data to real-world video media (CCTV, illegally filmed content, etc.) lacking sound or subtitles is
difficult. Although facial expressions in image sequences can be utilized in emotion recognition, the
diverse identities of individuals in real-world content limits computational models of relationships
between facial expressions. This study proposed a transformation model which employed a video
vision transformer to focus on facial expression sequences in videos. It effectively understood
and extracted facial expression information from the identities of individuals, instead of fusing
multimodal models. The design entailed capture of higher-quality facial expression information
through mixed-token embedding facial expression sequences augmented via various methods into
a single data representation, and comprised two modules: spatial and temporal encoders. Further,
temporal position embedding, focusing on relationships between video frames, was proposed and
subsequently applied to the temporal encoder module. The performance of the proposed algorithm
was compared with that of conventional methods on two emotion recognition datasets of video
content, with results demonstrating its superiority.

Keywords: video; deep learning; facial expression recognition (FER); transformer

1. Introduction

Emotions are unintended responses that occur automatically when humans are stimu-
lated by stimuli such as an event or interaction. Emotion recognition is the classification of
the emotions of a person that appear in various multimedia content such as images, videos,
speech, and text, or in the context of such multimedia content [1]. It provides an adaptive
approach that aids in better understanding the events or interactions in a complex and
changing world through the detection of psychological changes in people.

Facial expression shown in the images of people is among the key methods for recog-
nizing emotions. These visual responses are extended to application programs to provide
important clues for more accurate emotional interactions in human–computer interactions
(HCI). Further, studies on recognizing emotions using speech, which is the foundation of
human communication, have also been conducted for a long period. Facial expression
recognition (FER) [2–8] and speech emotion recognition (SER) [9–13] have existed for over
20 years. However, with recent advances in deep neural networks, FER and SER have once
again gained attention.

In recent years, powerful and reusable deep learning technologies based on large-scale
training data and the power of high-performance computation have been suggested as
alternatives to existing technologies in almost all fields, including emotion recognition.
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As convolutional neural networks (CNNs) have outperformed humans in various pattern
recognition tasks by learning advanced features in image big data, researchers have begun
reviewing CNN extensively from various perspectives [14–18]. Recurrent neural networks
(RNN) can effectively classify speech and text owing to their ability to handle sequential se-
quence data of a long distance [19–21]. Consequently, many researchers have adopted RNN
and CNN models to achieve excellent results in application programs for FER [8,22–26] and
SER [27,28]. In addition, emotion recognition multimedia application programs based on
these research results have been utilized as one of the major or minor functions throughout
society, including robots, entertainment, social media industry, healthcare, and welfare.

However, there has been a recent emergence of a massive amount of video data
in the visual world. Videos are being created continuously at places such as public fa-
cilities to everyday lives through CCTVs, home cameras, online lectures, social media,
and medical video. Therefore, video-based emotion recognition has become a necessity.
Many researchers have begun focusing on fusion networks based on multimodal data to
detect more complex structures and features by exploiting the features of videos [29,30],
which contain both images and speech. Further, the DeepBlueAI research team [31], which
achieved third place in the eighth Emotion Recognition in the Wild (EmotiW) 2020 chal-
lenge [32], fused up to 14 models. In addition, the SituTech research team [33] achieved
first place with a hybrid network wherein seven types of data streams were fused.

Based on several empirical evidence, the multimodal approach, which fuses various
types of data, has been confirmed to outperform existing single method models. How-
ever, the applicability of this approach in the real-world application domains needs to
be discussed. In computer-aided diagnosis systems, image analysis and processing are
essential parts of interpreting and detecting most diseases from medical video. From a
crime prevention perspective, emotions and situations must be captured through facial
expressions rather than voice to determine the situation for emotion recognition that can
be used to prevent crimes through CCTV, arrest a suspect or a criminal, or detect digital
sex crimes through social media. In addition, another problem from the perspective of
an individual’s identity is encountered in the real world. It stems from the fact that facial
expressions may appear differently according to various races, cultures, looks, gender,
and age. Furthermore, the detection of subtle facial motions and head movements within
natural expressions is challenging. These problems can only be solved through research on
recognizing facial expressions from image sequences that have been extracted from a video,
excluding speech, which is one form of data among components of a video. However, even
the team [34] that accomplished the best result at EmotiW challenge [35] using the Acted
Facial Expressions in The Wild (AFEW) dataset [36,37] (widely known as a wild video
emotion dataset) achieved low-quality results when using only image sequences. They
achieved a best performance of 49.30% using a multimodal fusion model and only 39.69%
with the model employing only facial images [38]. This result indicates the prevalent low
accuracy of an individual performance on image sequence.

An image sequence has both spatial and temporal information. Therefore, the CNN–
RNN architecture [39], which employs a combination of CNN and RNN, was used in
many of the previous studies. However, CNN is a process of finding a type of template
filter that operates universally on image data. In addition, covering all identities of an
individual is challenging because parameters such as the input and weights are fixed
after training completion. Moreover, RNN renders the performing of data parallelism
challenging because it can learn only through sequential receival of sequence data as
the input.

Therefore, this study proposes a segment-level feature mixing and temporal encoding
(SMaTE) framework, in an attempt to tackle these problems. First, the SMaTE framework
was designed based on a reusable vision transformer (ViT) [40] to facilitate easy application
to real-world facial expression recognition application programs. The proposed model
comprised two separate transformer encoders to enable the learning of spatial and temporal
information. As this model first extracted the spatial information and then modeled the
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interactions between temporal indices, it is similar to the CNN–RNN architecture that
was widely used in previous studies. However, the proposed model can process image
sequence data in parallel because it is based on the transformer [41] model. Moreover, it
was designed to facilitate augmentation of image sequences using several effective methods
and subsequently fuse them within the FER transformer model. Furthermore, the proposed
method applied the position embedding technique, which primarily focused on temporal
information compared to spatial information, in a temporal encoder that modeled the
temporal interactions.

The primary contributions of this study are as follows:

1. A new framework referred to as SMaTE is proposed for facial expression recognition
based on the video vision transformer model.

2. Data augmentation and feature extraction were performed, with the aim being for
the model to learn useful representations of FER more effectively. Various data
enhancements were decomposed into patch units and converted into token sequence
through linear projection. Subsequently, these were randomly aggregated into one
token architecture and thus improved the modeling of FER.

3. Temporal position encoding is proposed for FER instead of the learned position
embedding used in the existing work [42]. This encourages increase in the interaction
between data and position encoding in temporal transformer encoder. This study
shows that the proposed encoding methods outperform existing position embeddings
on the Extended Cohn–Kanade (CK+) and AFEW.

4. The proposed framework was demonstrated to be the best choice for improving
FER performance with only a few adjustments of pure-transformer architectures [42]
through ablation analysis of the position encodings, data augmentation and feature
extraction methods, tokenization strategies, and a model architecture.

The Extended Cohn–Kanade (CK+) dataset [43,44] is a laboratory-based dataset,
whereas the AFEW dataset is a wild environment dataset for video-based FER. The experi-
ments conducted using two types of facial expression recognition datasets demonstrated
that the SMaTE model can improve the recognition rate of facial expression sequences in
both laboratory and wild environments. It also showed that the SMaTE model can achieve
better results than the existing methods.

The remainder of this paper is organized as follows: Section 2 introduces the related
motivations and tasks, and Section 3 describes the SMaTE model in detail. Further, Section 4
introduces the details of the experiment and evaluates the performance. Finally, Section 5
presents the conclusions.

2. Related Works

Researchers have proposed effective previous methods such as data preprocessing and
feature extraction to solve classification problems for images that are difficult to interpret,
such as vague boundaries in skin lesions detection and appearance bias in FER. Data
preprocessing removes unwanted parts of the image that can be misinterpreted to classify
the target. Feature extraction extracts distinct features from images that play an important
role in classification tasks. Handcrafted features manually design and extract elements of
the image that are relevant to the target through prior knowledge [45]. On the other hand,
non-handcrafted features were optimized features extracted through deep learning and
showed excellent detection accuracy in various fields [46].

In previous FER works, to address the problems discussed, fusion models such
as multiple modalities that combine various data (e.g., speech, brain, and peripheral
signals) [31,33,34,38] and multi-task learning that utilizes commonalities and differences
across tasks at the same time [47–50] have been studied. Reference [49] proposed a fusion
model that combined the two tasks to determine the optimized final loss from individual
identity-based face recognition and FER architecture. Further, references [51,52] proposed
fusion networks wherein features of face and semantic context were extracted from input
images and combined.
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Deep neural networks, combining CNN and RNN, have mostly been used to clas-
sify image sequences. CNNs [14–18] can effectively model the spatial relations of image
components, whereas RNNs [19,20] are advantageous in learning relationships within a
sequence [53–56]. These models are used via the combination of CNN as an encoder and
RNN as a decoder to extract features of frames and spatiotemporal features.

CNNs can learn and share several similar patterns by extracting features from various
portions while multiple convolution filters slice the image area based on the common
assumption of translation equivariance. These filters can efficiently learn the model by
sharing parameters for each target class [57,58].

While multiple convolution filters slice the image area based on the property of
translation equivariance, CNNs can learn several similar patterns through the extraction
of features from various portions. These filters can efficiently learn the model by sharing
parameters for each target class. Therefore, a CNN is translation-invariant and the output
does not change regardless of changes in position of the target object (e.g., facial expression)
or variation in its appearance in the input image. CNN exhibits superior performance in
image classification because it has correct assumptions regarding the following nature of
images [59]: locality assumption, which tends to have a stronger relationship with adjacent
pixels, and stationarity assumption, where the same patterns are repeated.

Nevertheless, appearance biases still influence prediction. Further, performance de-
cline due to individual characteristics (appearance, culture, gender, age, etc.) is a problem
that often occurs in classification using face images such as facial recognition and facial
expression recognition. Classification of even a well-generalized FER CNN model can
be challenging if facial expression intensity or patterns differ due to its appearance bias
across race and region, and response bias across cultures [60–62]. A person whose neutral
expression is similar to that of a smiling face or angry face can cause a CNN-based FER
model to yield incorrect results. This problem is particularly pronounced in video FER,
where movement and facial expression intensity are not constant.

This study transformed the CK+ dataset, traditionally used for FER, to measure
accuracy according to human appearance bias. The CK+ dataset is a dataset representing a
sequence of images from Neutral to the maximum intensity of seven categorical emotions
for each subject. As shown in Figure 1, image sequences that changed the starting frame to
1
4 , 1

3 , and 1
2 points were added for the training set. Thus, the impact of the appearance bias

was evaluated by training data that changed the unique neutral expression of a person.

Figure 1. Transformation of the start point of sequence on the Extended Cohn–Kanade (CK+).

To perform the experiments, a face-related multi-task model based on EfficientNet [63]
was used. It has an acceptable accuracy while having a relatively small size. Figure 2 shows
the results following 10-fold validation under different neutral expression data. The model,
which learned with 1

4 point and 1
3 point data, exhibited higher performance in all test

sets, including appearance biases, than the model that learned only with the original data.
Thus, based on the above observations, this study emphasizes the need for a robust FER
framework including data preprocessing, combination of handcrafted features and deep
learning-based features, and a transformer-based model to consider appearance biases with
diverse backgrounds.
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Figure 2. Ten-fold cross-validation accuracy for training sets corresponding to each transformation
method in the three test sets (original, 1/4 point, 1/3 point).

3. Proposed Methods

This section describes the SMaTE framework, which aims at (i) flexible learning to
appearance bias and (ii) increased temporal interaction between the embedding token and
position encoding, based on video vision transformer (ViViT). First, the data augmentation
and feature extraction technique are described, along with the data preprocessing methods
for facial expression recognition. Subsequently, the three main components in SMaTE
framework, mixed-token embeddings in Section 3.2.2, temporal positional encoding in
Section 3.2.3, and transformer encoder in Section 3.2, are discussed.

3.1. Preprocessing for FER

In general, face image tasks share a common data processing that obtains uniform
shape and normalized data and prevents learning unnecessary representation. The overall
steps for FER preprocessing are shown in Figure 3. Face preprocessing, which entails face
detection and face alignment, was performed to extract a facial expression image sequence
from the video. Thereafter, the preprocessed face sequences were augmented followed by
extraction of features to address training data scarcity and mitigate appearance bias.

Figure 3. Overall procedure for face preprocessing (face detection and face alignment), data augmen-
tation, and feature extraction.
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3.1.1. Face Preprocessing

In the face detection process, the face sequence is generated through the detection
and cropping from each image containing the face in the video. Face alignment can
efficiently handle pose, thereby improving the performance of demanding FER tasks. The
face preprocessing method comprised three steps: face detection, landmark detection, and
affine transformation in face alignment.

Face detection. Recent research results of deep-learning-based face detection have
already confirmed its effectiveness. Most face detection models receive images as input and
return a bounding box and a confidence score for each face. This study used the Light and
Fast Face Detector (LFFD) [64], which is a face detector that balances accuracy and latency
and focuses on fast processing data such as large-scale images/video. It yielded a result of
89.3% on the WIDER FACE [65] benchmark dataset. Further, it can run at 131.4 fps faster
than other models with a minimum and maximum of 12.81 and 81.11 fps, respectively, in
the same experimental environment, with a difference of only 2%.

Landmark detection. Face alignment ensures correspondence to the same location of
the face regions detected from different face images for a better face understanding. Land-
mark localization is a process of detecting facial landmark such as eyes, nose, eyebrows,
and jawline in the face as part of the face alignment task. The detected landmark points
are used as a reference for aligning the data. The landmark detector estimates landmark
localization by modeling the geometric structure with the already detected face region
as an input. This study used a PFL [66] that returned a 68-point landmark position at an
average of 100 fps.

Affine transformation. Following the identification of a reference point through land-
mark detection in face alignment, each pixel is aligned in the points through transformation.
This study employed affine transform, which preserves lines and parallelism and allows
in-plane of rotation, translation, scale transformation, and shear.

3.1.2. Data Augmentation

Compared to CNN, ViT recently achieved more high scores in image classification;
however, it has weak inductive biases, such as locality that allows CNN to reach high
performance with small data. Thus, ViT requires large-scale data and its performance
varies depending on the number of samples. Previous studies have shown that expand-
ing the data space reduces overfitting and provides improvements in performance [67].
Data augmentation is an essential method for learning induction bias within the data by
increasing the amount of labeled data in an insufficient dataset. This study utilized several
augmentations, such as transformation in geometry, pixels, and color distort (drop and
jitter), described in [68], as shown in Figure 4.

Geometric transformation comprises cropping, resizing, rotation, and flipping. Crop-
ping is employed to obtain subimages of central or random locations from the original
image. Thereafter, resizing is applied to maintain height and width dimensions. In facial
expression recognition tasks, appropriate reduction thresholds for cropping should be
selected to maintain the face shape and preserve a label. In flipping, only the horizontal
flip is used. Further, rotation is performed by rotating the image to the right or left relative
to the axis. To achieve facial expression-preserving transformation, the degree of rotation
parameter is limited to {2◦, 5◦, 7◦} [69].

Color transformation is not a label-preserving transformation in applications where
color information is important; however, for FER tasks, it aids in analysis of spatial struc-
tures by eliminating color bias in training sets. This study augmented the data using
color jitter techniques that simply converted RGB matrices to a single grayscale image, or
randomly changed lightness, hue, and saturation.
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Figure 4. Examples of augmented data. All augmentation methods are only applicable to training of
the model, except for cropping and resizing, which are used for testing. Photo by Pomfam20 licensed
under CC BY 4.0.

3.1.3. Feature Extraction

A local binary pattern (LBP), which is a simple and effective texture description
operator, was applied as a feature extraction method for converting data into a high-level
representation. LBP is a simple grayscale operator that describes the local spatial pattern. In
face-related tasks, LBP is a robust feature that emphasizes the texture of local information of
the human face, such as facial boundaries and muscle movements, which are key elements
of FER, regardless of brightness changes. LBP was first applied in [70] and has since been
used in facial recognition [71], facial expression recognition [72], and more. As illustrated
in Figure 5, each neighbor, based on the selected central pixel (xc, yx) in 3× 3 windows,
is assigned a binary label by specifying a threshold. The feature of LBP is expressed as
follows:

LBPP,R =
P−1

∑
p=0

2p · S(gp − gc) (1)

S(gp − gc) =

{
1, gp − gc ≥ 0
0, gp − gc < 0

(2)

where gc represents the value of the center pixel, and gp represents a neighborhood. All
pixels are labeled with S, a threshold function. Further, depending on S, the difference
between pc and pn, that is, 1, was assigned to the pixel if it was greater than or equal to
zero, and 0 if it was less than zero.
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Figure 5. Example of face feature extraction method based on local binary pattern (LBP).

3.2. Model for Facial Expression Recognition

First, ViT [40] and video vision transformer (ViViT) [42] are briefly described in
Section 3.2.1. The proposed framework is based on these two concepts. Thereafter, as
illustrated in Figure 6, through the explanation of the manner in which tokens are extracted
from the video in Section 3.2.2, the temporal position encoding method is proposed in
Section 3.2.3. Finally, the backbone architecture is described in Section 3.2.4.

Figure 6. The proposed framework segment-level feature mixing and temporal encoding (SMaTE)
comprises three main steps: (1) tokenization and token mixing for video sequences; (2) position
embedding and position encoding for temporal transformer encoder; (3) transformer model for
emotion classification based on video vision transformer (ViViT).

3.2.1. Overview of Vision Transformer

This section introduces the ViT (deep learning model designed to learn images only
with an attention mechanism) and ViViT (variant of ViT) as the baseline models. Transform-
ers have been widely applied to NLP; however, recently the proposed ViT also reached the
SOTA in large-scale image classification performance, and showed high-score performance
in the various fields of computer vision. Subsequently, architectures based on transformers
have been extensively studied in vision tasks, with ViViT being a variant of ViT specialized
in video work. Standard self-attention operation underlying all transformer models is
defined as follows:

Attention(Q, K, V) = SA(z) = so f tmax(
QKT
√

D
)V (3)
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The similarity between query Q = zwq and key K = zwk in the input sequence

zi =
[
z1

i , ..., zn+1
i

]
of the i-th transformer layer `, can be calculated. Then, a weighted sum

for all values V = zwv is computed (Equation (3)).
As shown in Figure 7, multi-head self-attention (MSA) comprises multiple heads,

representing the attention operation of different locations. Moreover, it allows the model
to learn different representation information in different locations in parallel on the input
token sequence z according to pure-transformer [41]. The number of heads is k, and Dh
is set to D/k. In the transformer, each layer ` of the encoder comprises an MSA, a layer
normalization (LN), and a multi-layer perception (MLP) block, including two layers with a
GELU nonlinearity [73] as follows:

y` = MSA
(

LN
(

z`
))

+ z` (4)

z`+1 = MLP
(

LN
(

y`
))

+ y`. (5)

Figure 7. Structure of the multi-head attention mechanism.

3.2.2. Token Embeddings

Tokenization. ViT [40] performs a process referred to as patch embedding, wherein
two-dimensional images are sequentially arranged and divided into N non-overlapping
patches, because it directly applies a pure-transformer model that receives a 1D sequence as
an input. In a similar manner, ViViT performs token embeddings that process n-dimensional
videos V ∈ RT×H×W×C to 1D input sequences.

ViViT [42] uses two embedding methods to extend the patch embedding of ViT to
video sequences: uniform frame sampling and tubelet embedding. Uniform embedding
is a simple method for extending non-overlapping image patches of nh × nw to a total
nt × nh × nw token over the time of the video clip, whereas tubelet embedding, described
in Figure 8, extracts non-overlapping spatiotemporal tubelets that fuse spatiotemporal
information from the image sequence.

Tokens are generated via linear projection of image patches (from uniform frame
sampling) or spatiotemporal tubes (from tubelet embedding) extracted from a video, such
as (6). Linear projection is a 2D convolution for uniform frame sampling and is similar to
3D convolution for tubelet frame sampling. zdata is an embedding token obtained via linear
projection of k extracted tubes, where data implies original data or augmented data.

zdata = [Ex1, Ex2, . . . , Exk] (6)
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Figure 8. Tokenization using tubelet embedding method.

Mixed-token embedding. Mixed-token embedding was proposed to mix data ran-
domly in latent space. As defined in Equation (7), a method is a notion of data augmentation
that results in robust representations of facial expressions rather than individual identities.
The embedding token and the mixed-token embedding are defined as follows.

To focus on representations of facial expressions rather than individual identities, the
mixed-token embedding method was based on an interpolable latent space as follows
(7). Subsets were randomly sampled from pairs of training token sequences zorigin and
augmented token sequences zaug via a random variable X that assigned a real number on a
finite sample space 0, 1. Thereafter, the sampled subsets, zorigin and zaugi , were aggregated
and represented as a 1D token sequence zmix. Here, zmix is defined as original data token or
data with augmented data mixed according to X. Each token, zorigin and zaug, was derived
from the same video; thus, the same shape Rnt×nh×nw×d facilitated the direct sum.

zmix =

{
zorigin if X = 0

1
N+1 (zorigin +

⊕N
n zaugi ) if X = 1, n ∈ {1..N}

(7)

As shown in Figure 9, mixed-token embedding was performed before the transformer
encoder. In addition, a learned classification embedding zcls was added to the token
sequence generated from the video. zcls functioned as a final representation for classification
at the final layer of the encoder. Thereafter, position embeddings p were added to maintain
location information (Section 3.2.3).

Figure 9. Mixed-token embedding method.

z = [zcls, zmix] + p (8)

3.2.3. Positional Embeddings

Spatial Positional Embedding. Position embeddings are positional values that are
added to input tokens to represent the positional information of each token that was
missed in the process of tokenization in transformer-based models. The video transformer
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model [42] has nt times more tokens than the image transformer model [40]; thus, it needs
nt times more position embeddings. Thus, p for the spatial transformer encoder initialized
the learned location embeddings repeatedly in each layer LS as per time nt, and then added
them to the input token.

Temporal Positional Encoding. The spatial transformer encoder in SMaTE equally
applied a learned position embedding of bidirectional encoder representations from trans-
formers (BERT) [74], which also perform well in vision transformers [40,42]. This is because
it also models spatial interactions with the same time index and there are no significant
differences between the transformer encoder of ViT models [40].

Absolute position encoding functions efficiently; however, the number of temporal
tokens that the model can process is limited. Moreover, it may not be fully utilized,
because the temporal transformer encoder models interactions over time rather than dealing
with highly structured data such as images. Thus, this study proposed two fixed-variant
relative position encoding methods: temporal positional encoding (TPE) for position
representations that are not restricted for long sequences and are appropriately generalized
for time. TPE is defined as Equations (9) and (10):

TPE1(pos) =
1

1 + e−α
2pos−L

L

(9)

TPE2(pos) =
posα

L
(10)

where position of the token zt is pos ∈ [0, L− 1] in the input sequence zt = (z0, . . . , zL−1),
and L is the maximum length of a token sequence output from the spatial transformer
encoder. All values were normalized to L such that they were located between [0, 1]. In
contrast to conventional methods, TPE is a fixed encoding that represents a position value
rather than an embedding with learnable parameters.

Figure 10 shows the two relative position encoding methods for various temporal
token lengths. Although the position encoding values varied depending on the token
sequence length, SMaTE applied the same frame sampling to the video. Consequently, the
input tokens possessed the same sequence length, and thus, even for different input data,
each position encoding value was applied equally.

Figure 10. Temporal positional encoding (TPE)-v1 and TEP-v2 graphs showing the fixed position
values according to the token position by the maximum length of the temporal token sequence.

3.2.4. Model Architecture

Figure 11 shows the structure of the SMaTE model based on the factored encoder–
decoder of ViViT [42]. The transformer model in SMaTE comprised two transformer
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encoders: spatial transformer encoder (STE) and temporal transformer encoder (TTE). The
transformer encoders were connected in series.

Figure 11. Illustration of the detailed model architecture in the SMaTE framework.

The STE received tokens extracted through a mixed-token embedding from prepro-
cessed video, as described in Section 3.2.2. The STE modeled the spatial interaction between
the input tokens, wherein each token was a mixed-token extracted from original and aug-
mented clips each. In addition, all tokens were extracted from the same time index and
different spatial indexes.

The TTE obtained frame-level representations hi, which were concatenated by the
application of the temporal position encoding. The representations hi is a group of output
zcls for each time index of STE. The TTE modeled the interaction between different tokens
of the time index and returned the final token zcls for classification from the last layer.
Further, MLP head classified the emotion class through the zcls token. Thus, the attention
was calculated separately in spatial and temporal dimensions, corresponding to “late
fusion”, wherein the output was fused later in the network among approaches that fused
information across time domains [75].

4. Results

First, the experimental setup and development environment are discussed in Section 4.1.
Thereafter, the performance improvement for both datasets is presented in Section 4.2.
The ViViT-Base (ViViT-B)/16 × 2/factorized encoder (FE) was employed as a backbone
architecture (Section 3.2). Because ViViT-B [42] follows that of ViT [40] and BERT [74], the
same setup was applied to the proposed model SMaTE in all experiments: the number of
transformer layers L was 12, number of self-attention block NH was 12, and hidden size d
was 768.

4.1. Experimental Setup
4.1.1. Dataset

CK+. The CK+ dataset is facial expression sequence data photographed in a laboratory
environment released for automatic facial expression recognition. Each image sequence is
labeled as one of the seven expression classes (anger, contempt, disgust, fear, happiness,
sadness, and surprise), showing a change in the face from a neutral expression to the target
emotion. Further, all videos were shot at 30 fps with a resolution of 640 × 490 or 640 × 480.
It is the most commonly used benchmark set for facial recognition evaluation because
it contains a total of 593 image sequences for 123 experimental participants of different
genders and ages ranging from 18 to 50.
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AFEW. The AFEW dataset is a video emotion recognition dataset for automatic emo-
tion recognition under various conditions in a wild environment. It was used as a training
and benchmark database from 2013 to 2019 in EmotiW, the emotion recognition challenge,
as part of the ACM International Conference on Multimodal Interaction. In addition, it is
widely used as a wild FER benchmark set for video as well as in the challenge. AFEW was
developed as a semiautomatic process using data from movies and reality TV, and each
image sequence is labeled as one of seven emotion classes (anger, disgust, fear, happiness,
neutral, sadness, and surprise). The subjects (actors) of 330 or more belong to a wide range
of ages from 1 to 77. The videos have a variety of scenarios, including indoors, outdoors,
at night, various different poses, and several people gathering. Further, most samples
contain background noise much closer to the actual environment than laboratory control
conditions. The entire dataset is divided into three sets: 773, 383, and 653 video clips in the
training, validation set, and test sets, respectively, thus totaling 1809 videos with 113,355
total frames. As the test set has no labels disclosed, the performance is evaluated through
the validation set. Moreover, it is an imbalanced dataset with significantly fewer samples of
fear, disgust, and surprise emotions. This study extracted 130 samples from the validation
set, balancing between classes, for use as a test set.

4.1.2. Performance Metrics

In multiclass classification, top-N accuracy is the ratio of facial expression images in
which the top-N predictions with high probability in the model result as correctly guessed
for the actual emotion class. We use top-1 accuracy, in which one prediction with the
highest probability matches the expected answer as a performance metric.

4.2. Ablation Study

Video clips were resized to a resolution of 256× 256 and center and randoms crop
of 224× 224. For all experiments, videos were sampled into 25 frames with a stride of 2
on CK+ and a stride of 3 on AFEW to fit the same number of tokens. First, a backbone
architecture for the CK+ and AFEW was evaluated, as presented in Table 1. The input was
25 frames, and tokens were generated as tubelet size t = 2 using the tubelet embedding.
ViViT exhibited low performance owing to small datasets (both CK+ and AFEW), with a
larger accuracy drop on CK+, compared to CNN-based models performed in Section 2.

Position information variants. This study applied the proposed TPE to the temporal
transformer encoder in the transformer model of the ViViT-B/16×2 FE pretrained on
Kinetics400. Subsequently, the model learned to compare the effects of different position
embedding methods on CK+ and AFEW. Table 2 indicates that the proposed simple fixed-
position encoding method exhibited good performance, leading to higher accuracy than
BERT’s learned position embedding baseline. TPE-v1 achieved a 43.18% accuracy on
CK+ and 36.66% on AFEW. However, TPE-v2 improved the accuracy of BERT by 1.51%
on CK+ and 4.45% on AFEW, and showed better performance than the TPE-v2 (0.75 %
on CK+ and 2.78 % on AFEW). Therefore, TPE-v2, which showed the highest accuracy
on all datasets, was used for comparison with ViViT-B/16×2 FE/BERT (baseline) in all
subsequent experiments.

Table 1. Top-1 accuracy of baseline using video vision transformer base (ViViT-B) on CK+ and AFEW.

Method CK+ AFEW FLOPs (×109) Params (×106)

ViViT-B/16 × 2 FE 42.42 37.22 213.93 171.45
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Table 2. Comparison of position information methods on CK+ and AFEW. We report the top-1
accuracy using ViViT-B/16 × 2 factorized encoder (FE) as backbone.

Initialization CK+ AFEW

BERT 42.42 34.99

TPE-V1 43.18 36.66

TPE-V2 43.93 39.44

Progressive data augmentation. We observe progressive improvements based on
BERT in Table 3 and TPE-v2 in Table 4 results obtained in the above experiments, applying
feature extraction and data augmentation to each data and tokenizing using mixed-token
embedding. Overall, significant improvements were obtained in both BERT and TPE-
v2 methods. In Tables 3 and 4, to progressively show the effect of each method, one
preprocessing method was added to each row. Each row contains all the methods listed
above. LBP improves the performance substantially and shows a larger performance
improvement, of 19.43 % on CK+ and 2.49 % on AFEW, in the TPE-v2-based model than
the BERT-based model. Data augmentation, including crop, flip, rotate, and color jitter,
demonstrates the best performance improvement among data processing methods with
accuracy increases of 32.02% for BERT and 37.02 % for TPE-v2 on CK+ datasets. Mixed-
token embedding was applied last because it requires augmented data. As shown in
Tables 3 and 4, mixed-token embedding achieved maximum accuracy across all datasets.
Finally, we observe that ViViT-B can be further improved by applying data preprocessing
for facial expression recognition, and we validated the superiority of the proposed SMaTE
framework by obtaining the best results in the TPE-v2-based model.

Table 3. Performance comparisons of various data preprocessing methods on CK+ and AFEW
datasets in BERT-based SMaTE framework.

CK+ AFEW

Original 42.42 34.99

LBP 54.95 37.22

Crop, flip, rotate, color jitter 91.97 38.33

Mixed-token embedding 98.39 38.88

Table 4. Performance comparisons of various data preprocessing methods on CK+ and AFEW
datasets in temporal positional encoding (TPE)-v2-based SMaTE framework.

CK+ AFEW

Original 43.93 37.22

LBP 63.35 39.71

Crop, flip, rotate, color jitter 95.38 40.83

Mixed-token embedding 99.19 41.38

Computation across the number of tokens. The SMaTE framework was implemented
using the JAX/FLAX and Scenic libraries. Time complexity experiments were conducted
on RTX A6000 using CK+ datasets sampled in 16 frames with a stride of 2. Table 5 shows
computations, GFLOPs and training speeds across the number of tokens, to simulate the
speed to learn quickly. Training speed is the speed performance in training steps per
minute, and the larger the number, the better. In Table 5, FLOP increases linearly and the
training speeds decrease according to the crop size.
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Table 5. Evaluation of time complexity (FLOPs and training steps per minute) for the SMaTE
framework on RTX A6000 using CK+ datasets.

Crop Size 64 128 224 320

GFLOPs 12.5 46.3 142.6 301.8

Training speeds 23.5 22.6 20.3 17.3

4.3. Comparison with State-of-the-Art

We compare our method SMaTE framework with SOTA methods based on ablation
studies. We use the TPE-v2-based SMaTE framework, which achieves the highest top-1
accuracy among the proposed methods. The performances of each SOTA method are the
same as they are in the papers, and methods are limited to image-sequence-based models
for fair comparison. We find that the proposed method provides a top-1 accuracy that
outperforms the previous methods for both datasets. Table 6 shows that our framework
based on TPE-v2 advances the results of CK to 99.19%. For AFEW in Table 6, Ref. [34] is the
CNN-based model that won the challenge. However, the proposed method shows about
1.69% higher accuracy than image-sequence-based [34].

Table 6. Comparisons of top-1 accuracy on CK and AFEW datasets.

Method CK AFEW

DeepEmotion [76] 98 -

HMTL [77] 98.23 -

C3D [34] - 39.69

SMaTE (TPE-v2) 99.19 41.38

5. Discussion

This study proposes a transformer model for facial recognition focusing on image
sequences in video-based emotion recognition. Previous work focused on vision trans-
former for video for a wide range of video classification; the proposed study focused on
effective application of a video vision transformer model to facial expression recognition
in video. The proposed framework improved performance on video emotion recognition
datasets in laboratory and wild environments, compared to previously studied ViViT. The
method to effectively reinforce a small FER dataset for application of a video-based vision
transformer model to facial expression recognition tasks was shown. Moreover, additional
performance improvements were shown through the application of position encoding to en-
hance time-relationship modeling. In the future work, studies can be conducted to improve
computational complexity, and to develop more generally applicable transformer-based
models with sufficient face datasets for real-world FER applications.
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