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Abstract: Heart rate variability (HRV) has been studied for decades in clinical environments. Cur-
rently, the exponential growth of wearable devices in health monitoring is leading to new challenges
that need to be solved. These devices have relatively poor signal quality and are affected by numerous
motion artifacts, with data loss being the main stumbling block for their use in HRV analysis. In
the present paper, it is shown how data loss affects HRV metrics in the time domain and frequency
domain and Poincaré plots. A gap-filling method is proposed and compared to other existing ap-
proaches to alleviate these effects, both with simulated (16 subjects) and real (20 subjects) missing data.
Two different data loss scenarios have been simulated: (i) scattered missing beats, related to a low
signal to noise ratio; and (ii) bursts of missing beats, with the most common due to motion artifacts. In
addition, a real database of photoplethysmography-derived pulse detection series provided by Apple
Watch during a protocol including relax and stress stages is analyzed. The best correction method
and maximum acceptable missing beats are given. Results suggest that correction without gap filling
is the best option for the standard deviation of the normal-to-normal intervals (SDNN), root mean
square of successive differences (RMSSD) and Poincaré plot metrics in datasets with bursts of missing
beats predominance (p < 0.05), whereas they benefit from gap-filling approaches in the case of
scattered missing beats (p < 0.05). Gap-filling approaches are also the best for frequency-domain
metrics (p < 0.05). The findings of this work are useful for the design of robust HRV applications
depending on missing data tolerance and the desired HRV metrics.

Keywords: HRV; ANS; Apple Watch; Poincaré plots

1. Introduction

For several decades, heart rate variability (HRV) has been a researched field because
of its ability to evaluate the autonomic nervous system (ANS) noninvasively, presenting
itself as a potential tool for the prognosis, diagnosis and monitoring of diseases, mainly
in the clinical environment [1–7]. HRV is defined as the changes in the duration of the
beat-to-beat interval, which is calculated from R-wave detections in electrocardiographic
(ECG) signals. Alternatively, variability in pulse rate (PRV) can be derived from pulse
photoplethysmography (PPG). This signal can be recorded at various locations on the body,
making it of interest for wearable devices. Despite pulse rate variability being different
from HRV, it can be used as a surrogate in many practical situations [8,9].

The exponential growth of wearable devices able to record ECG and/or PPG signals
has opened up a new horizon for HRV, allowing massive monitoring at a relatively low cost.
The accessibility of a large variety of designs has made them an everyday use tool, allowing
non-invasive health monitoring in the general population. In this context, assessing the state
of the ANS during daily life has become a very attractive objective in the field of health and
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well-being. However, obtaining reliable variability measurements from wearable devices
is challenging. Wearable devices are worn throughout the day in constantly changing
conditions, and motion artifacts are very frequent. In addition, comfortability is relevant
when deciding the place of recording of a wearable device, in contrast to the clinical settings,
where the signal quality is usually more relevant. All this leads to an overall low signal
quality compared to clinical monitoring scenarios, downgrading the performance of the
traditional HRV methods. Most devices only measure the mean heart rate (MHR), which
is very robust to data loss in stationary conditions but less powerful for ANS assessment
than HRV. Although changes in the MHR are mainly induced by the ANS, it cannot be
considered a measure of autonomic function [10–12]. Despite studies that criticize the
added value of HRV with respect to MHR [13], there are scenarios in which an alteration
of ANS function produces changes in HRV but not in MHR, such as in depressed patients
with respect to controls [14] or in exercise contexts [15].

Acquisition technology has made a qualitative leap that has surpassed traditional
HRV preprocessing methods to some extent. In a few years, the challenge has shifted from
dealing with casual artifacts to being forced to forego a large part of the total recording
time. The proliferation of health applications of wearable devices makes it necessary to
investigate the degradation of HRV metrics in the presence of incomplete recordings, as
well as new methods that allow robust analysis under adverse conditions.

1.1. Related Work

Artifacts have been a concern since the beginning of HRV studies, as they can appear
even in the most controlled environments. Most of the works in the literature focus on arti-
facts of small duration, which are often treated in the same way as ectopic beats [16–22]. In
general, methods are divided between those that simply remove outliers in beat detections—
both false positives and false negatives—and those that interpolate them based on accepted
proximal values (gap-filling methods) [16]. Correction methods are mandatory since errors
representing less than 0.1% of the detections may cause variations of up to 50% in some
HRV metrics [16].

Some gap-filling methods generate evenly-spaced interpolations. The beat event series
is not available with these methods, so time-domain metrics or Poincaré plots cannot be
assessed. Mateo and Laguna proposed an IPFM-model based corrector for ectopic beats
on the heart timing signal [17], a continuous signal, assuming that autonomic modulation
can be modeled using a band-limited signal. Meanwhile, McNames et al. used an impulse
rejection filter on the instantaneous heart rate signal—evenly sampled—on the basis that
nonpathological artifacts are of small duration and large amplitude [18]. Lee and Yu
detected and corrected outliers in the tachogram using cubic splines [19].

On the other hand, some studies obtain a corrected unevenly-sampled inter-beat
interval (IBI) series, allowing the assessment of time-domain metrics and Poincaré plots.
Begum et al. used k-nearest neighbors in the IBI series [20], while Al Osman et al. used a
combination of cubic and nonlinear predictive interpolation methods [21]. An interesting
aspect of the latter is the use of simulation to introduce artifacts in order to compare errors.
Giles and Draper compared different interpolation methods of the IBI series, including
cubic splines [22].

Although the previous methods may work for isolated outliers, they have not been
evaluated for longer artifact segments. Baek and Shin studied the degradation of temporal
and frequency metrics in response to an increase in missing IBI data, obtained by simulation,
although they do not provide any correction method [23]. The simulation randomly
removes samples from the tachogram in an increasing manner, over a fairly wide range,
from 5 to 285 intervals, in 5 min recordings. Morelli et al. developed one of the first
studies to investigate the effect of large heartbeat losses, from the perspective of wearable
devices [24]. Their simulation method for missing detections is based on a two-state
Markov chain, simulating losses of 30%, 50% and 70% of IBIs. This is one of the most
complete studies on artifact correction applied to wearables, including temporal and
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frequency metrics and Poincaré plots. Benchekroun et al. used filtering and gap filling
using a Gaussian distribution in IBI series with 5% to 35% simulated missing beats [25].
HRV metrics were derived from corrected series and used as features for a stress/relax
classification. Classification results were compared with other gap-filling approaches
(linear, spline, and pchip). Nevertheless, no separate metric results were reported. Królak
et al. proposed a gap-filling algorithm tested with bursts of up to seven missing beats [26].
They reported that cubic interpolation can in some cases result in lower errors for long gaps.
Finally, some works address artifact correction in the detection stage, using methods such
as adaptive filtering, wavelet transform or feature extraction of the cardiac signal [27,28].
These approaches are beyond the scope of this paper, as they are signal specific, and many
wearables do not allow exporting cardiac signals but event series. In addition, they can be
used in conjunction with event series correction.

1.2. Aims of the Study

There is still much to be known about the degradation of HRV metrics in scenarios
with large missing data. To the authors’ knowledge, there is no study that provides insight
into how correction methods behave under different types of losses that can occur in a
real case: bursts and scattered missing beats. There is also no conclusion on the maximum
burst size to discard a segment for further analysis. The same is true for scattered missing
beats. In this work, the degradation of different HRV metrics—in the time domain and
frequency domain and Poincaré plots—is evaluated in missing data scenarios. A missing
data simulation protocol has been developed for this purpose. In addition, a method to
attenuate the effect of missing data in HRV metrics has been proposed and compared
to existing methods in the literature. Then, these methods have been applied to analyze
PRV derived from Apple Watch. This work aims to contribute to HRV/PRV analysis by
proposing guidelines to select the best correction method for each studied metric and
missing data scenario and to provide conclusions about when to discard a segment for
further analysis depending on the quantity and distribution of missing data.

2. Materials and Methods
2.1. Simulation of Missing Beats

The simulation study was based on a real database comprising 16 subjects (age
28.5± 2.8 years, 10 males) who underwent a tilt-table test consisting of the following:
4 min in supine position, 5 min at a 70º angle and 4 min back to supine position. An
ECG signal—V4 lead—was recorded using Biopac’s ECG100C amplifier and disposable
Ag–AgCl electrodes with a sampling frequency of 1000 Hz. See [8] for further details. Two
2 min duration segments, free of artifacts and ectopic beats, were selected for each subject:
one for the first supine stage and the other for the tilt stage. Stationarity was assumed for
this duration [8]. HRV metric degradation was evaluated in terms of error, as well as in their
ability to distinguish the tilt and supine states, characterized by changed sympathovagal
balance.

A wavelet-based algorithm was used for QRS detection [29]. Detections were visually
inspected and corrected if necessary. First, HRV metrics were computed prior to data
removal, resulting in a benchmark for each method under review. Then, missing beats
were simulated by removing detections from the time series in two ways: (1) by a random
selection using a binomial distribution and (2) through deletion bursts, with an increasing
number of missing beats in each one. The former simulated the effect of a low signal-to-
noise ratio (SNR). Sometimes, signals had sufficient quality to perform detections, although
an automatic detector could still miss some pulses in borderline situations. A binomial
distribution was used, so every beat was deleted with a p probability, i.e., every beat deletion
was an independent Bernoulli trial. Ten different realizations of this stochastic process
were computed for each segment, obtaining a total of 160 segments for each supine and tilt
position. Figure 1a shows an example of a 40-beat segment, in which 25% of the samples
are removed (p = 0.25). In successive realizations, the positions of the removed samples
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changed randomly. On the other hand, artifacts could affect signals even with a high long-
term SNR. Movements were mainly the cause of this kind of noise—a common problem
in wearables—characterized by a finite duration and a total masking of the physiological
signal. These events caused a burst of missing detections. This effect was simulated by
removing central elements from the series with windows of a certain duration. Although it
is possible to find bursts at any position by taking random segments of a signal, bursts were
not simulated at interval ends, since the most advisable solution in that case is not to use
those first or last seconds of the window. Specifically, 30 s at each of the two segment ends
was not considered for removal. Beat removal was restricted to the the remaining segment.
Samples were removed from segments with a sliding window of 10 steps, again obtaining
160 segments per supine/tilt position. An example is shown in Figure 1b. As the duration
of the bursts was determined in seconds, different numbers of beats were removed at each
step depending on the instantaneous heart rate, even for the same segment. For simplicity,
in the figure, all bursts have the same number of elements. In scenarios with scattered
missed beats, an increase in missed beats poses a challenge in detecting where each missed
beat is located, as the baseline can be lost. However, if a correct detection has been made,
correction is still straightforward as adjacent beats are present. On the other hand, in the
case of bursts of missing beats, detection becomes easier the greater the number of missing
beats, as they will produce a larger outlier. In this case, the complication lies in finding out
how many beats are missing and how to perform corrections based on gap-filling methods.

Scenarios with possible extra detections (false positives) are not analyzed in this work.
This decision was made on the basis that only a few false positives would complicate
any correction due to loss of reference. Therefore, it is assumed that detections should be
performed after a signal quality evaluation stage that is sufficiently restrictive to avoid
most false positives.
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Figure 1. Example of simulation with a segment of 40 beats. Deleted beats are displayed in red.
(a) Random distributed missing beats, p = 0.25. (b) Bursts of missing beats. The elements at the ends
(green) cannot be deleted.

2.2. Apple Watch Dataset

As a real case, the dataset described in Hernando et al. in [30] was selected. It is
composed of 20 healthy subjects (age 31.3± 8.2 years, 12 males) who underwent a protocol
that involved controlled relax and stress environments. Three two-minute-length segments
per subject were used—the same duration as the simulation—for each relax and stress
phase, yielding a total of 120 segments. Two heart rate-related series were obtained in each
segment: PPG-based pulse detection series recorded by the Apple Watch on the wrist, and
ECG-based R-wave detection series recorded by Polar H7 (Polar Electro Ltd., Kempele,
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Finland), with the last used as benchmark. It is worthwhile to note that Apple Watch
outputs the event timestamps only when the internal PPG allows reliable pulse detection
according to an internal signal quality algorithm. Thus, the derived pulse-to-pulse series
present intermittent gaps. A total of 206 gaps were found in the recordings, equivalent to
1321 missing intervals. Missing data represent around 10% of total events, distributed in
gaps of 6 s length on average. The minimum gap length is 3.3 s, and the maximum is 10.4 s.
Synchronization between Apple Watch and Polar H7 was performed using a delay that
maximized the cross correlation using the first 20 intervals, where no gaps appeared in
Apple Watch recordings [30].

2.3. Missing Data Detection

Figure 2 displays a graphical summary of the methods applied, described in Sections 2.3–2.5.
Missing data detection is usually based on detecting physiologically abnormal increases in
the interval series that suggest that at least one heartbeat is missing. In this study, interval
series are represented using the interval function dIF(tk), defined by

dIF(tk) =
K

∑
k=1

(tk − tk−1)δ(t− tk) (1)

where tk is the event series. This function is defined on a continuous-time basis, with zero
values for all t other than tk; for example, each event occurring at time tk is represented
by a unit impulse function δ(t− tk) scaled by the length of the preceding interval [31,32].
The scaling causes missing beats to produce outliers in dIF(tk) at each tk corresponding to
events after a gap. A moving median threshold is used as outlier detection (OD) rule. First,
dIF(tk) is filtered with a 2Lth-order median filter to produce an expected inter-beat interval
(EIBI) value for each event tk [21]:

EIBI(tk) = median({dIF(ti) | i ∈ N, (k− L) < i ≤ (k + L)}) (2)

The interval at tk is marked as an outlier if the equation

dIF(tk) > (α× EIBI(tk)) (3)

is satisfied, i.e., if the the interval is longer than α times the expected interval, with α ∈ [1, ∞).
The values of α and L were empirically set using the simulation dataset, resulting in α = 1.5
and L = 25. The best value for α was searched between 1 and 1.7 with a step of 0.1.
Similarly, the best value for L was searched between 5 and 50 with a step of 5.

2.4. Correction Methods

The simplest correction rule is to remove outliers from dIF(tk). This method is referred
to as Outlier Removal (OR) in this paper, and its estimations are denoted tORk . However,
some metrics are greatly affected by incomplete interval series. Thus, methods for estimat-
ing missing beat locations remain very interesting. A novel gap-filling method is proposed
as follows. First, missing beats are estimated by interpolation allowing a single beat per
gap. The outlier detection rule (Equation (3), Section 2.3) is applied to each new estimate,
setting α = 1.1 for a better fit. If a gap is still detected, the algorithm discards the added
beats and passes to the next gap. In the next iteration, it will try to fill it with one more beat.
Otherwise, it is checked if dIF(tk) > (β× EIBI(tk)) for all the added tk, with β = 0.9, to
avoid introducing more beats than necessary. If this condition is not fulfilled, the gap is
filled with the number of beats from the previous iteration and marked as corrected. Both α
and β were empirically set using the simulation dataset. The best value for α was searched
between 1 and 1.5 with a step of 0.1, while the best value for β was searched between 0.5
and 1 with a step of 1. At the end of the iteration, i.e., when all the gaps were covered, the
outlier detection rule was checked again in the whole segment. If it did not pass, a new
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iteration was started, using one more beat per gap until the segment was completed. A
flowchart of this algorithm is presented in Figure 3.
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Figure 2. Process flow. OD = Outlier Detection; OR = Outlier Rejection; L = Linear; NL = Non-
Linear;M = Model-based.

The interpolation method will greatly affect the results. Here, both linear interpolation
and non-linear interpolation by Hermite polynomials were used. Hermite polynomials
preserve data shape and have already been shown to outperform other methods in HRV
gap-filling applications [33]. Hereafter, gap-filling methods are referred to as linear (L) and
non-linear (NL) gap filling and their estimations tLk and tNLk , respectively.

Finally, the correction method described by Mateo and Laguna in [17] has also been
used when analyzing metrics in the frequency domain using Fourier-based techniques.
This method is referred to as model-based (M) correction. OR, L, NL andM corrections
are used both in scattered missing beats and bursts.

2.5. HRV Metrics

Metrics in the time, frequency and Poincaré-related domain have been computed.

• Time domain: Mean heart rate (MHR), standard deviation of the normal-to-normal
interval (SDNN) and root mean square of successive differences (RMSSD), as described
in [1].

• Frequency domain: LF and HF powers (PLF,PHF); LF power measured in normalized
units (PLFn); and PLF/PHF ratio. Only relative errors of PLF and PHF are presented,
as the other two are derived from them. While all subjects are included when mea-
suring relative errors, not all of them could be included when measuring the ability
to distinguish sympathovagal balance. For this comparison, only subjects with res-
piratory rates above the classic LF band (>0.15 Hz) were selected, thus allowing a
correct frequency component separation [34]. Therefore, simulation dataset is reduced
from 16 to 9 subjects (age 28.3± 2.6 years, 5 males). This selection only applies when
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comparing metrics in the frequency domain. No selection is made in the Apple Watch
dataset. In addition, respiratory rate does not exceed 0.4 Hz—the classic HF band
upper limit—in any case.
Spectral estimation is performed via Fast Fourier Transform (FFT) and Lomb’s meth-
ods. FFT estimations are made on the evenly-sampled instantaneous heart rate signal,
r(t), obtained from the IPFM model [17]. This model assumes the ANS modulates
the sinoatrial node by a band-limited zero-mean signal [35]. In [36], it is shown that
spectra derived from r(t) are a more accurate estimator for HRV than spectra derived
from evenly-sampled interval series, avoiding spurious components and low-pass
filtering effects. Welch’s method is used for periodogram averaging using 60 s Ham-
ming windows with 50% overlap. For 120 s signals, three periodograms are averaged.
Powers are computed using trapezoidal integration and classic windows (0.04–0.15 Hz
for LF and 0.15–0.4 Hz for HF). This FFT-based approach has been tested using both
model-based and gap-filling correction.
On the other hand, Lomb’s periodograms can be computed from unevenly spaced sig-
nals, even in the presence of missing beats. Therefore, this method has been tested both
usingOR and gap-filling correction. It is demonstrated that the estimates on the heart
rate representations are more accurate than on the beat interval representations [36];
therefore, Lomb’s periodograms are computed on the inverse interval function

dI IF(tk) =
K

∑
k=1

1
(tk − tk−1)

δ(t− tk) (4)

obtained by inverting the intervals of dIF(tk) after correction. Lomb’s periodograms
are averaged using 60 s Hamming windows with 50% overlap, and powers are
computed using trapezoidal integration within the classic windows as well.

• Poincaré plots: SD1, SD2, SD1/SD2, ellipse area (S = π · SD1 · SD2), mean distance
to the ellipse centroid (Md) and standard deviation to the ellipse centroid (Sd) have
been computed using the ellipse fitting method [37]. As S and SD1/SD2 are computed
from SD1 and SD2, relative errors are not shown for these metrics. The reliability of
Poincaré plots in ultra-short term segments—less than 5 min, as this case—has been
demonstrated recently [38].

2.6. Statistical Analysis

Relative errors (ε) have been computed as the absolute value of the difference between
the reference and the correction divided by the reference value, both in the simulation
study and in the real database. Values are expressed as a percentage. In the simulation
case, ε is obtained for each correction method, and within each method for each type and
number of removed beats. In the Apple Watch case, only one ε is shown for each method,
since missing beats are given by the dataset (Section 2.2). ε is presented as a tuple of
three elements: median (first quartile–third quartile). A Wilcoxon signed rank test has been
performed to compare the performance of methods on the same segments.

On the other hand, another signed rank test has been applied for ANS state discrimi-
nation results. The test is done to supine/relax and tilt/stress records as separate samples,
pairing states from the same subject. Metrics that could not differentiate states in any case
have been omitted. Also coverage graphs are shown for the Apple Watch dataset. These
graphs show the percentage of cases (nth) with a relative error under a certain threshold
(εth) as εth is increased. These results can be very valuable to choose a correction method
depending on the allowed tolerance of each application. Coverage graphs are not included
for the simulation because of the large number of combinations depending on the type and
number of deletions. Segment rejection decision thresholds, i.e., the maximum deletion
probability/burst duration allowed to obtain reliable results, are also proposed in Section 4.
These thresholds are proposed based on the criterion that the third quartile of the relative
error does not exceed 20%.
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Figure 3. Gap-filling algorithm flowchart.

3. Results
3.1. Time-Domain Metrics

Table 1 shows the relative error values of the different metrics with increasing deletion
probability in the case of scattered missing beats (Table 1a) and burst duration (Table 1b).
Regarding the relative error of scattered missing beats,NL gap filling is the best-performing
correction method for MHR and SDNN for all deletion probabilities, although no significant
differences can be found between OR and NL with up to 35% missing beats in the case
of MHR. L gap filling yields the best results for RMSSD up to 25% deletion probability. A
higher degradation can be observed at high loss rates, with OR the best option from 25%
deletion probability onwards. In the case of bursts, NL gap filling yields the best results
for MHR up to 10 s bursts. No significant differences can be found between OR and NL
from 15 s. OR gives the best results for SDNN and RMSSD.
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Table 1. Relative error (%) of time-domain metrics. (a) Scattered missing beats. (b) Bursts. †: Signif-
icant differences (p < 0.05) between OR and L. 4: Significant differences (p < 0.05) between L and
NL. §: Significant differences (p < 0.05) between NL and OR.

(a)

Method Metric Deletion Probability (%)
5 15 25 35

OR
MHR 0.13 (0.05–0.24) 0.25 (0.12–0.48) † 0.39 (0.20–0.74) † 0.54 (0.28–1.02) †

SDNN 1.80 (0.85–3.07) † 3.61 (1.76–6.03) † 5.10 (2.34–9.18) † 7.32 (3.11–14.93) †

RMSSD 2.09 (0.95–4.03) † 5.40 (2.12–9.23) † 8.90 (3.96–14.55) 10.84 (5.21–23.97)

L
MHR 0.00 (0.00–0.01) 4 0.01 (0.01–0.03) 4 0.03 (0.01–0.49) 4 0.08 (0.03–0.75) 4

SDNN 0.43 (0.19–0.81) 4 1.85 (0.81–3.37) 4 4.71 (2.59–8.25) 4 8.09 (4.18–14.48) 4

RMSSD 1.07 (0.41–2.05) 4 2.68 (1.14–6.09) 4 7.90 (2.72–19.56) 4 13.98 (5.21–37.84) 4

NL
MHR 0.00 (0.00–0.00) 0.00 (0.00–0.02) 0.02 (0.01–0.09) 0.05 (0.01–0.70) §

SDNN 0.16 (0.05–0.44) § 0.77 (0.24–2.34) § 2.63 (0.85–6.00) § 5.42 (2.10–10.18) §

RMSSD 1.13 (0.44–2.28) § 4.14 (2.13–7.43) § 9.42 (4.95–16.70) § 14.50 (7.54–29.35) §

(b)

Method Metric Burst duration (s)
5 10 15 20

OR
MHR 0.16 (0.07–0.28) 0.22 (0.11–0.44) † 0.31 (0.14–0.56) † 0.40 (0.17–0.71) †

SDNN 1.69 (0.84–2.43) † 2.12 (1.10–3.65) † 3.06 (1.40–4.87) † 3.55 (1.72–5.96) †

RMSSD 1.66 (0.83–2.44) † 2.43 (1.14–3.74) † 3.15 (1.58–5.38) † 4.08 (2.07–7.08) †

L
MHR 0.01 (0.00–0.03) 4 0.03 (0.01–0.53) 4 0.47 (0.02–0.76) 4 0.73 (0.09–0.98) 4

SDNN 1.39 (0.57–2.66) 4 3.41 (1.51–5.32) 4 4.83 (2.63–7.82) 4 6.38 (3.14–9.87) 4

RMSSD 1.66 (0.75–3.38) 4 3.60 (1.83–6.23) 4 4.87 (2.84–8.41) 4 6.97 (3.95–10.86) 4

NL
MHR 0.01 (0.00–0.09) § 0.02 (0.01–0.57) § 0.09 (0.01–0.72) 0.55 (0.03–0.83)
SDNN 1.24 (0.44–3.02) § 2.84 (1.04–4.82) § 4.46 (2.15–7.02) § 5.80 (2.86–8.85) §

RMSSD 1.77 (0.90–3.87) § 3.77 (2.13–6.51) § 5.80 (3.40–9.01) § 7.78 (4.36–12.17) §

Table 2 shows the results of the Wilcoxon test for distinguishing between supine
and tilt states. The first column shows the reference test results. There are no major
differences between methods, although only NL is able to maintain the benchmark results
throughout the entire simulation. This is consistent with the results of NL in terms of
relative error. Both OR and L fail with SDNN in the case of scattered missing beats with
deletion probabilities greater than 15%.

Table 2. p-values of ranked signed test for supine/tilt discrimination of time-domain metrics.
N.S.: Not significant (p > 0.05).

Method Metric Reference Deletion Probability (%) Burst Duration (s)
5 15 25 35 5 10 15 20

OR
MHR <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

SDNN 0.020 0.011 0.016 N.S. N.S. 0.011 0.011 0.011 0.011
RMSSD <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

L
MHR <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

SDNN 0.020 0.014 0.008 N.S. N.S. 0.011 0.011 0.011 0.004
RMSSD <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

NL
MHR <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

SDNN 0.020 0.012 0.011 0.021 0.014 0.014 0.007 0.012 0.026
RMSSD <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3
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Table 3 shows the Apple Watch dataset’s relative errors, exhibiting equality among
all correction methods. Figure 4 shows the coverage from the Apple Watch dataset. No
differences are found between methods. MHR once again demonstrates great robustness,
with an nth close to 100% with less than 2% εth. SDNN achieves 80% nth with 10% εth, while
for the same εth, RMSSD has 60% nth. Finally, Figure 5 shows metric distributions with
relax (green) and stress (blue) groups separately from the Apple Watch dataset. Wilcoxon
test results are marked with asterisks above each pair. One asterisk indicates p < 0.05, and
two asterisks indicate p < 0.001. All correction methods present the same behavior for
MHR and SDNN. RMSSD results show improved OR performance by maintaining the
reference p < 0.001 versus p < 0.05 of the gap-filling methods.

Table 3. Relative error (%) of time-domain metrics from Apple Watch dataset. †: Significant dif-
ferences (p < 0.05) between OR and L. 4: Significant differences (p < 0.05) between L and NL.
§: Significant differences (p < 0.05) between NL and OR.

Metric Method
OR L NL

MHR 0.12 (0.04–0.47) 0.03 (0.01–0.52) 4 0.03 (0.01–0.66) §

SDNN 3.36 (1.97–7.47) † 2.92 (1.51–9.55) 4 2.96 (1.31–8.62)
RMSSD 7.84 (4.29–15.90) † 8.56 (3.99–20.22) 4 8.61 (3.74–17.69) §
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Figure 4. Coverage of time-domain metrics from Apple Watch dataset. (a) MHR. (b) SDNN.
(c) RMSSD.
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Figure 5. Relax (green)/stress (blue) discrimination of time-domain metrics from Apple Watch
dataset. (a) MHR. (b) SDNN. (c) RMSSD. *: Significant differences (p < 0.05) between relax and
stress groups. **: Significant differences (p < 0.001) between relax and stress groups.

3.2. Frequency-Domain Metrics Computed via FFT

In the case of frequency-domain metrics, gap-filling methods show a clear improve-
ment. NL gap filling is the best-performing method in terms of relative error in the case of
scattered missing beats (Table 4). The correction advantage of gap-filling is maintained in
the case of bursts. Although differences are reduced, they are still significant. In addition,
differences between L and NL gap filling are reduced. In this case, L gap filling performs
better for PHF, while NL is still better for PLF. Another aspect to note is that correction is
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not as effective in PHF as in PLF with scattered missing beats. Discrimination results follow
a similar pattern (Table 5). For scattered missing beats, gap-filling correction performed
better thanM correction for PHF and PLF/PHF. This difference only appears after a 35%
deletion probability; thus, the differences are not very large. On the other hand, results are
identical for the burst case. PLF showed no discrimination capacity for this dataset.

Table 4. Relative error (%) of frequency-domain metrics computed via FFT. (a) Scattered missing
beats. (b) Bursts. †: Significant differences (p < 0.05) betweenM and L. 4: Significant differences
(p < 0.05) between L and NL. §: Significant differences (p < 0.05) between NL andM.

(a)

Method Metric Deletion Probability (%)
5 15 25 35

M PLF 8.08 (3.46–19.10) † 20.29 (11.37–32.72) † 36.36 (22.36–53.64) † 55.16 (29.10–161.86) †

PHF 15.37 (7.00–30.10) † 32.89 (20.17–45.24) † 50.12 (36.46–63.16) † 59.41 (42.65–73.21) †

L PLF 0.99 (0.39–2.34) 4 4.28 (2.04–9.24) 4 10.94 (5.66–18.71) 4 15.98 (8.81–28.74) 4

PHF 2.81 (1.19–5.47) 4 10.83 (5.54–17.64 ) 4 22.69 (11.98–41.40) 4 34.04 (19.54–61.20)

NL PLF 0.41 (0.15–1.11) § 1.44 (0.48–4.71) § 4.24 (1.41–12.57) § 8.96 (2.20–21.22) §

PHF 1.63 (0.71–4.16) § 6.88 (2.45–14.99) § 18.97 (9.80–37.55) § 29.20 (17.06–54.77) §

(b)

Method Metric Burst duration (s)
5 10 15 20

M PLF 10.20 (3.53–20.75) † 14.62 (6.52–26.29) † 21.90 (9.95–32.57) † 26.50 (14.26–39.04) †

PHF 12.62 (6.38–28.40) † 17.99 (9.32–32.90) † 22.82 (14.13–36.28) † 28.65 (18.53–43.37) †

L PLF 4.94 (1.70–12.34) 4 10.89 (4.67–19.12) 4 15.45 (7.13–26.16) 4 19.25 (8.88–31.24)
PHF 6.81 (2.92–11.42) 4 9.95 (4.98–17.20) 4 14.02 (7.06–22.67) 4 18.26 (9.41–28.11) 4

NL PLF 4.72 (1.56–12.18) § 10.01 (4.34–17.88) § 13.31 (6.35–25.36) § 19.34 (9.28–30.70) §

PHF 6.82 (3.36–11.76) § 11.02 (5.73–17.59) § 15.19 (7.85–23.70) § 19.10 (10.94–29.80) §

Table 5. p-values of ranked signed test for supine/tilt discrimination of frequency-domain metrics
computed via FFT. N.S.: Not significant (p > 0.05).

Method Metric Reference Deletion Probability (%) Burst Duration (s)
5 15 25 35 5 10 15 20

M
PHF <10−3 <10−3 <10−3 <10−3 N.S. <10−3 <10−3 <10−3 <10−3

PLFn <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLF/PHF <10−3 <10−3 <10−3 <10−3 0.005 <10−3 <10−3 <10−3 <10−3

L
PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLFn <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLF/PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

NL
PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLFn <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLF/PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

Regarding the Apple Watch dataset, NL gap filling obtains the best performance at
low frequencies (Table 6), although there is virtually no difference at high frequencies. In
addition, PHF errors are higher than PLF errors as in the simulation. Coverage graphs show
the same phenomena (Figure 6). PLF coverages are similar until 10% εth—approximately
60% nth—separating thereafter. NL gap filling is the best correction method, followed by
L gap filling. In contrast, there are no differences for the PHF case. In addition, the coverage
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is clearly lower, approximately 40% nth at 10% εth. Both PLF and PHF correctly discriminate
the states (Figure 7), showing no difference between correction methods.

Table 6. Relative error (%) of frequency-domain metrics computed via FFT from Apple Watch
dataset. †: Significant differences (p < 0.05) betweenM and L. 4: Significant differences (p < 0.05)
between L and NL. §: Significant differences (p < 0.05) between NL andM.

Metric Method
M L NL

PLF 0.09 (0.04–0.30) † 0.08 (0.03–0.22) 4 0.08 (0.03–0.17) §

PHF 0.14 (0.07–0.31) † 0.16 (0.07–0.30) 4 0.17 (0.07–0.31) §
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Figure 6. Coverage of frequency-domain metrics computed via FFT from Apple Watch dataset.
(a) PLF. (b) PHF.
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Figure 7. Relax (green)/Stress (blue) discrimination of frequency-domain metrics computed via
FFT from Apple Watch dataset. (a) PLF. (b) PHF. *: Significant differences (p < 0.05) between relax
and stress groups. **: Significant differences (p < 0.001) between relax and stress groups.

3.3. Frequency-Domain Metrics Computed via Lomb’s Method

In the case of frequency-domain results calculated via Lomb’s periodograms, NL gap
filling clearly outperforms the others with scattered missing beats, as well as for PLF with
small bursts (Table 7). L gap filling performs better for PLF from 15 s onwards and for PHF
with any burst duration. Statistically significant differences are found between all methods
at any loss rate. All methods are equally reliable in terms of discrimination for all deletion
probabilities and burst durations (Table 8).

NL gap filling remains superior in the Apple Watch dataset in terms of relative error
(Table 9), followed by L gap filling. Coverage graphs (Figure 8) show an advantage of NL
in PLF, while bothNL and L gap filling perform similar in PHF, although much better than
OR. As in simulation, all methods are robust in state discrimination (Figure 9).
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Table 7. Relative error (%) of frequency-domain metrics computed via Lomb’s method. (a) Scat-
tered missing beats. (b) Bursts. †: Significant differences (p < 0.05) betweenOR andL. 4: Significant
differences (p < 0.05) between L andNL. §: Significant differences (p < 0.05) betweenNL andOR.

(a)

Method Metric Deletion Probability (%)
5 15 25 35

OR PLF 10.75 (4.77–18.84) † 23.45 (9.90–40.99) † 34.71 (17.49–66.27) † 58.11 (24.93–123.23) †

PHF 23.01 (11.38–45.74) † 79.42 (46.93–155.29) † 160.28 (87.39–296.90) † 304.57 (142.89–665.16) †

L PLF 0.89 (0.35–1.90) 4 3.75 (1.60–7.49) 4 9.90 (4.56–18.19) 4 15.77 (7.56–28.59) 4

PHF 2.62 (1.10–4.81) 4 8.94 (4.93–16.22) 4 21.27 (11.03–37.15) 4 30.78 (17.23–61.62) 4

NL PLF 0.37 (0.13–1.06) § 1.36 (0.44–3.95) § 3.43 (1.17–11.70) § 7.58 (2.28–22.67) §

PHF 1.45 (0.51–3.31) § 5.46 (1.92–12.01) § 16.22 (8.12–31.57) § 28.33 (14.72–52.65) §

(b)

Method Metric Burst Duration (s)
5 10 15 20

OR PLF 11.19 (6.69–17.18) † 18.66 (10.87–28.82) † 25.33 (12.89–38.36) † 29.23 (14.57–48.91) †

PHF 14.06 (7.55–19.79) † 22.86 (12.70–34.06) † 30.88 (18.39–45.27) † 39.17 (24.01–60.79) †

L PLF 4.48 (1.65–11.24) 4 9.99 (3.64–19.00) 4 13.85 (6.53–23.87) 4 17.38 (7.14–28.54) 4

PHF 5.51 (2.26–11.05) 4 8.74 (3.94–18.11) 4 13.18 (5.10–21.58) 4 16.22 (7.42–26.31) 4

NL PLF 4.58 (1.68–11.53) § 8.43 (3.55–17.21) § 13.49 (5.93–23.56) § 18.41 (9.23–28.86) §

PHF 6.00 (2.79–11.69) § 10.92 (5.24–19.42) § 14.60 (7.65–23.30) § 18.46 (9.45–29.31) §

Table 8. p-values of ranked signed test for supine/tilt discrimination of frequency-domain metrics
computed via Lomb’s method. N.S.: Not significant (p > 0.05).

Method Metric Reference Deletion Probability (%) Burst Duration (s)
5 15 25 35 5 10 15 20

OR
PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLFn <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLF/PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

L
PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLFn <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLF/PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

NL
PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLFn <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

PLF/PHF <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

Table 9. Relative error (%) of frequency-domain computed via Lomb’s method metrics from Ap-
ple Watch dataset. †: Significant differences (p < 0.05) betweenOR and L. 4: Significant differences
(p < 0.05) between L and NL. §: Significant differences (p < 0.05) between NL and OR.

Metric Method
OR L NL

PLF 0.10 (0.05–0.24) † 0.08 (0.03–0.23) 4 0.08 (0.03–0.18) §

PHF 0.20 (0.08–0.56) † 0.15 (0.06–0.32) 4 0.13 (0.06–0.25) §
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Figure 8. Coverage of frequency-domain metrics computed via Lomb’s method from Apple Watch
dataset. (a) PLF. (b) PHF.
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Figure 9. Relax (green)/Stress (blue) discrimination of frequency-domain metrics computed via
Lomb’s method from Apple Watch dataset. (a) PLF. (b) PHF. **: Significant differences (p < 0.001)
between relax and stress groups.

3.4. Poincaré Plots

As for time-domain metrics, there is no clear difference between correction methods
for Poincaré metrics (Table 10).

Table 10. Relative error (%) of Poincaré metrics. (a) Scattered missing beats. (b) Bursts. †: Significant
differences (p < 0.05) between OR and L. 4: Significant differences (p < 0.05) between L and NL.
§: Significant differences (p < 0.05) between NL and OR.

(a)

Method Metric Deletion Probability (%)
5 15 25 35

OR

SD1 2.13 (0.94–3.96) † 5.33 (2.24–9.25) † 9.06 (4.10–14.36) 10.66 (5.29–23.67)
SD2 2.58 (1.31–4.28) † 4.93 (2.04–8.53) † 7.20 (3.22–13.05) † 10.75 (4.93–20.32) †

Md 2.40 (1.16–4.15) † 4.49 (2.18–7.44) † 6.35 (2.87–10.78) † 8.70 (4.10–17.82) †

Sd 2.80 (1.31–4.95) † 6.19 (2.87–11.14) 10.05 (4.47–18.67) † 14.46 (7.16–31.01) †

L

SD1 1.07 (0.41–2.05) 4 2.68 (1.14–6.09) 4 7.90 (2.72–19.56) 4 14.00 (5.21–37.87) 4

SD2 0.40 (0.19–0.93) 4 1.85 (0.97–3.30) 4 4.28 (2.24–7.08) 4 6.99 (3.95–13.22) 4

Md 0.52 (0.22–1.08) 4 2.05 (0.85–4.18) 4 4.46 (2.07–7.23) 4 7.11 (3.54–11.93) 4

Sd 0.47 (0.17–0.98) 4 1.34 (0.52–3.23) 4 3.59 (1.27–12.57) 4 7.09 (1.78–33.63) 4

NL

SD1 1.13 (0.44–2.28) § 4.14 (2.13–7.43) § 9.42 (4.95–16.70) § 14.51 (7.54–29.39) §

SD2 0.12 (0.04–0.30) § 0.56 (0.15–1.50) § 1.67 (0.54–3.98) § 3.39 (1.19–8.51) §

Md 0.23 (0.09–0.56) § 1.06 (0.27–3.00) § 2.43 (1.04–5.73) § 4.83 (1.88–9.33) §

Sd 0.30 (0.10–0.76) § 0.90 (0.26–2.46) § 2.39 (0.77–7.89) § 4.92 (1.60–17.24) §
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Table 10. Cont.

(b)

Method Metric Burst Duration (s)
5 10 15 20

OR

SD1 1.69 (0.84–2.50) † 2.45 (1.16–3.76) † 3.19 (1.63–5.39) † 4.03 (2.00–7.04) †

SD2 1.85 (0.89–2.74) † 2.44 (1.29–3.92) † 3.24 (1.57–5.11) † 3.94 (1.89–6.39) †

Md 1.91 (0.94–3.05) † 2.54 (1.04–4.59) † 3.49 (1.26–5.86) † 4.14 (2.01–7.40) †

Sd 1.50 (0.90–2.49) 2.32 (1.21–3.65) 2.98 (1.65–4.54) 3.57 (2.02–5.67)†

L

SD1 1.67 (0.75–3.38) 4 3.60 (1.83–6.23) 4 4.88 (2.84–8.41) 4 6.97 (3.95–10.86) 4

SD2 1.31 (0.56–2.70) 4 3.40 (1.36–5.37) 4 4.90 (2.49–7.88) 4 6.26 (3.10–10.14) 4

Md 2.33 (0.97–4.11) 4 5.65 (2.90–8.72) 4 8.44 (4.31–11.97) 4 10.53 (4.53–14.29) 4

Sd 1.97 (0.75–4.06) 4 3.24 (1.57–6.84) 4.08 (1.92–7.50) 4.68 (2.37–8.05) 4

NL

SD1 1.77 (0.90–3.87) § 3.78 (2.13–6.52) § 5.80 (3.41–9.02) § 7.78 (4.36–12.17) §

SD2 1.16 (0.32–2.87) § 2.53 (0.89–4.96) § 4.42 (2.18–6.88) § 5.60 (2.61–8.70) §

Md 1.16 (0.32–2.87) § 2.53 (0.89–4.96) § 4.42 (2.18–6.88) § 5.60 (2.61–8.70) §

Sd 1.81 (0.61–4.33) 2.97 (1.21–5.62) 3.53 (1.67–7.63) 4.17 (1.99–7.03)

In the case of scattered missing beats, L performs better with SD1 when the deletion
probability is below 25%. There are not significant differences with OR from 25% onwards.
NL outperforms the others with SD2, Md and Sd. On the other hand, OR is the best
for SD1, SD2 and Md when dealing with bursts. No significant differences can be found
with Sd.

Results in terms of group discrimination suggest an advantage of NL gap filling in
the case of scattered missing beats, while NL and OR perform similarly when dealing
with bursts (Table 11). The three methods perform virtually identically on the Apple Watch
dataset, both in terms of relative error (Table 12), coverage (Figure 10) and discrimina-
tion (Figure 11). In the last, OR performed better with SD1 and S, in accordance with
the simulation.

Table 11. p-values of ranked signed test for supine/tilt discrimination of Poincaré metrics. N.S.:
Not Significative (p > 0.05).

Method Metric Reference Deletion Probability (%) Burst Duration (s)
5 15 25 35 5 10 15 20

OR

SD1 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

SD2 0.031 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
SD12 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

S <10−3 <10−3 <10−3 0.012 0.002 <10−3 <10−3 <10−3 <10−3

Md <10−3 0.001 0.002 0.155 0.016 0.001 0.002 0.002 0.002
Sd 0.039 0.009 N.S. N.S. N.S. 0.024 0.026 0.022 0.015

L

SD1 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

SD2 0.031 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
SD12 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

S <10−3 <10−3 <10−3 <10−3 0.007 <10−3 <10−3 <10−3 <10−3

Md <10−3 <10−3 0.001 0.010 0.012 <10−3 <10−3 0.002 0.002
Sd 0.039 0.034 N.S. N.S. N.S. N.S. N.S. N.S. N.S.

NL

SD1 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

SD2 0.031 0.043 N.S. N.S. N.S. N.S. N.S. N.S. N.S.
SD12 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

S <10−3 <10−3 <10−3 <10−3 0.004 <10−3 <10−3 <10−3 <10−3

Md <10−3 <10−3 <10−3 0.002 0.002 0.002 0.001 0.002 0.013
Sd 0.039 0.033 N.S. N.S. N.S. 0.041 0.041 0.027 0.049
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Table 12. Relative error (%) of Poincaré metrics from Apple Watch dataset. †: Significant differences
(p < 0.05) betweenOR andL. 4: Significant differences (p < 0.05) betweenL andNL. §: Significant
differences (p < 0.05) between NL and OR.

Metric Method
OR L NL

SD1 7.83 (4.15–15.91) † 8.56 (3.99–20.22) 4 8.61 (3.73–17.70) §

SD2 3.22 (1.59–6.38) † 2.61 (1.06–7.98) 4 2.35 (1.06–6.08)
Md 3.97 (2.21–8.28) † 3.55 (2.03–9.24) 4 3.40 (1.67–8.42)
Sd 4.20 (1.66–9.42) 3.96 (1.87–10.00) 4 3.44 (1.49–10.06) §
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Figure 10. Coverage of Poincaré metrics from Apple Watch dataset. (a) SD1. (b) SD2. (c) Md.
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Figure 11. Relax (green)/stress (blue) discrimination of Poincaré metrics from Apple Watch
dataset. (a) SD1. (b) SD2. (c) S. (d) Md. (e) Sd. *: Significant differences (p < 0.05) between
relax and stress groups. **: Significant differences (p < 0.001) between relax and stress groups.

4. Discussion

An analysis of the degradation of some of the most important HRV metrics due to
data loss has been presented. A simulation study has been designed to test the influence of
missing beats depending on whether they are distributed scattered or in bursts. Correction
methods have been tested with both simulation and experimental data, recorded with a
commercial wearable. Note that, in contrast to the simulation dataset, PRV was compared
to the HRV in the case of the Apple Watch dataset. Thus, the error results obtained for
the simulation dataset should not be compared with those obtained for the Apple Watch
dataset. Nevertheless, correction methods within the same dataset can still be compared.
In the following, a discussion of the best correction method for each metric is given, as well
as the maximum acceptable missing beats for a relative error less than 20% in the third
quartile. A summary is shown in Table 13.

Regarding time-domain metrics, noticeable differences are only found in the relative
error results of the simulation. NL is the best option in case of applications where MHR is
the only interesting metric, as it is the best correction method both with bursts and scattered
missing beats. NL is also the best-performing method for SDNN with scattered losses.
OR is a reliable correction for SDNN and RMSSD in datasets with burst predominance,
while RMSSD should be computed using L with scattered missing beats. The robustness of
MHR using both L and NL gap filling supports the idea that the number of missing beats
is well approximated by these methods. Gap-filling degradation with bursts of missing
beats is easily explained by the lack of information as the correction moves away from
the edges of the burst. Phenomena such as respiratory sinus arrhythmia also cannot be
inferred in large bursts. MHR proved to be a very robust metric in missing data scenarios,
assuming a worst-case maximum deviation of 0.7 beats per minute. Although not shown
in our results, MHR was able to withstand losses in bursts of up to one minute without the
median error exceeding 1 beat per minute. However, it is not easy to establish a threshold
for which it is preferable to reject the segment. This will rather depend on the stationarity
of the data. Because of the metric’s robustness, in periods where variations are expected,
the rate of these changes should be a more dominant factor than metric degradation in the
segment rejection decision. The case of scattered losses can be more complex, as depending
on the distribution, it can be complicated for an outlier detection method to correctly work.
This is magnified in cases with large respiratory sinus arrhythmia oscillations. Segment
rejection is encouraged when computing RMSSD with >25% missing beats, as the third
quartile error is around 20%. In any case, attempting to correct segments with more than
35% missing beats or a 20 s burst is not considered adequate.

Regarding frequency metrics calculated via FFT, gap-filling methods show a clear
advantage in terms of error and state discrimination. NLwas the best correction method for
datasets with scattered missing beats predominance. In datasets with burst predominance,
NL performed better for PLF, while L obtained better results for PHF. The third quartile of
PLF error is greater than 20% in case of segments with more than 25% scattered missing
beats, suggesting that those segments should be discarded for PLF analysis. In the case of
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PHF, segments with more than 15% missing beats should also be discarded. Discarding
segments is suggested when analyzing missing data in bursts longer than 10 s.

Table 13. Summary of findings. (a) Best correction method. (b) Maximum acceptable missing beats
for a relative error less than 20% in the third quartile.

(a)

Metric Scattered Missing Beats Bursts

MHR NL NL
SDNN NL OR
RMSSD L OR
PLF (FFT) NL NL
PHF (FFT) NL L
PLF (Lomb) NL NL
PHF (Lomb) NL L
SD1 L OR
SD2 NL OR
Md NL OR
Sd NL OR/NL

(b)

Metric Scattered Missing Beats Bursts

MHR 35% 20 s
SDNN 35% 20 s
RMSSD 25% 20 s

PLF (FFT) 25% 10 s
PHF (FFT) 15% 10 s

PLF (Lomb) 25% 10 s
PHF (Lomb) 15% 10 s

SD1 25% 20 s
SD2 35% 20 s
Md 35% 20 s
Sd 35% 20 s

In regards to Lomb’s method, NL obtained the best results for scattered missing
beats. In datasets with burst predominance, L obtained the best results for PHF, while NL
obtained the best results for PLF. Segment rejection for PLF analysis is suggested with more
than 25% scattered missing beats. In case of PHF analysis, rejection is suggested with more
than 15% missing beats. Segments should be discarded for bursts longer than 10 s as well.
Although Lomb’s method allows its use without gap filling—in fact, with no interpolation
at all—it deteriorates rapidly in the absence of the whole series (OR case). This is explained
due to the phenomenon of the over-oscillation of the spectrum as samples are discarded,
whose effect is limited when calculating the power by integrating [39], but still causes a
degradation of the metrics.

In the case of Poincaré metrics, NL obtained better results in the case of scattered
losses for most metrics, in terms of both error and discrimination between states. L obtained
the best results when analyzing specifically SD1 up to 25% of missing beats, while OR
obtained better results with more than 25% missing beats. However, the third quartile
error is greater than 20% in this case, and segment rejection is suggested. As in the case of
time-domain metrics, the criterion for rejecting a segment should prioritize the expected
stationarity, given the robustness of the metrics with correction methods. OR obtained the
best results in the case of bursts for all metrics.
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The proposed gap-filling method, especially in its non-linear version, has been demon-
strated to be a very effective correction method. In [24], the difference between correcting
the interval series, as is the case with most of the methods in the literature, and correcting
the event series, i.e., the beat-occurrence timestamps, was shown. Correcting the interval se-
ries involves shifting the timestamps of subsequent beats to address the interval correction.
This ultimately means forgoing the reference provided by the subsequent, well-detected
beats. Instead, the proposed method corrects the event series without this shifting by
adding a variable number of beats, taking into account the budget of seconds to be filled
in. Larger gaps require a greater number of filling beats to obtain IBIs in accordance with
the adjacent intervals to the gap. In [24], it is shown that event correction yields more
accurate results than interval series correction. Besides, a novel aspect of the proposed
gap-filling method lies in the way in which the correction of each segment is approached.
The proposed method is a segment-based iterative algorithm instead of a gap-based one.
The use of this kind of algorithm aims to cope with two major problems of event series gap
filling: distinguishing outliers at high loss rates and the lack of knowledge of the number
of missing beats per gap. Thus, it starts by solving simple gaps before those involving
more than one beat. This is an improvement over the majority of gap-filling methods in
the literature, where each gap is corrected before moving on to the next one, missing the
advantage of solving the shorter gaps first.

It should be noted that the best method is not necessarily the one with the lowest error.
Depending on the application, especially working with devices with limited computational
capacity and/or which are battery-operated, a method with acceptable results is interesting
if it means an improvement in computation time and overall processing load.

Limitations

Regarding the limitations of this work, it is important to note that this research only
focuses on data losses—false negatives in beat detections—and not on general errors—a
combination of false positives and false negatives. The presence of false positives has a
deleterious impact when trying to obtain the most accurate metrics. This type of error
introduces an additional variable: the baseline from which to infer false negatives could be
lost. In addition to a previous artifact detection stage, a false beat detection rejection stage
should be implemented before applying the presented methods to deal with missing data.
If the number of false beat detections is not very high, a moving-average-based algorithm
may be enough. This concept is of paramount importance when dealing with wearable
devices, especially those that monitor 24/7, since beat detections can be unreliable a high
percentage of the time, and therefore for any further processing.

Another limitation is the monotonicity of Hermite polynomials. As this interpolation
eliminates relative maxima and minima within the burst, it should be taken into account
in cases with long bursts and high variability, such as in cases with strong respiratory
sinus arrhythmia. Despite this, it performs better than other traditional interpolation
methods in the literature, such as cubic splines, which present convergence problems
by introducing unwanted oscillations. Further work should be done to address this, for
example, by introducing estimated stationary points before interpolating. In addition,
interpolation methods that do not impose monotonicity while limiting overshooting should
also be investigated.

In addition, in contrast to the simulation database, respiratory frequencies have not
been tested for the Apple Watch database. Therefore, the use of classical frequency bands
may result in an incorrect evaluation of the frequency metrics in some cases, and their
behavior may differ from that seen in simulation [34]. However, data presentation in
medians and quartiles should limit the effect of these outliers in the results.
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5. Conclusions

A segment-based gap-filling method for HRV series analysis in the presence of missing
data has been presented. Correction is made on the event series, allowing this method to
be used independently of the signal used for beat detection (ECG, PPG, etc.). The best-
performing correction methodology depends on the analyzed HRV metrics: correction
without gap filling is the best option for SDNN, RMSSD and Poincaré plot metrics in
situations when the missing beats are mainly in bursts, whereas they benefit from gap-
filling approaches in the cases of scattered missing beats. Gap-filling approaches obtained
the best performance in terms of frequency-domain metrics. Furthermore, the performance
analysis allows us to extract some conclusions about when to discard a segment for further
analysis depending on how much error is assumable in the specific application: in order to
obtain estimations with an error lower than 20%, those segments with more than 35% of
missing beats or more than 20 s bursts should be discarded for HRV time-domain metrics
and Poincaré plots. Moreover, those segments with more than 25% of missing beats or
more than 10 s bursts should be discarded for HRV frequency-domain analysis.
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HRV Heart rate variability
PRV Pulse rate variability
ANS Autonomic nervous system
ECG Electrocardiography
PPG Pulse photoplethysmography
IBI Inter-beat interval
SNR Signal-to-noise ratio
OD Outlier detection
OR Outlier removal
L Linear (correction method)
NL Non-linear (correction method)
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