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Abstract: Vehicle seats have a significant impact on the comfort of passengers. The development
of seats is a field in which scholars are widely concerned. In this study, we add an electromagnetic
levitation structure and design a new active seat suspension based on the passive seat suspension.
Then, simulation research is carried out based on a C-level road surface combined with integral
sliding mode control and state feedback control. The results show that both state feedback control and
integral sliding mode control positively affect vehicle seat vibration reduction, and integral sliding
mode control has a better anti-interference effect than state feedback control. At the same time, it is
proved that the seat suspension has good working characteristics and economy.

Keywords: active seat suspension; electromagnetic levitation; integral sliding mode control; state
feedback control

1. Introduction

The vibration reduction system of a car is mainly composed of three parts: tires, body
suspension, and seat suspension. The car seat is an important part of the vehicle and the
last link in the vibration attenuation of the car. Changing the stiffness damping of tires
and the body suspension will affect the driving performance of the car, while changing the
seat suspension has little effect on the handling and drivability of the car. In addition, the
manufacturing cost of the seat is low, and the manufacturing cycle is short, so improving
the shock-filtering performance of the seat is a low-cost and high-efficiency method, which
is of great significance for improving the riding comfort of the driver and passengers.

Low-frequency and large-amplitude vibrations cause various hazards to the human
body, including bone pain, low back pain, cardiovascular disease, gastrointestinal disease,
and increased risk of cancer [1,2]. In addition, large-amplitude vibrations cause great harm
to the human muscle system and spine [3]. According to the experimental results, 4–10 Hz
is the sensitive range of the human body [4]. In this range, resonance will occur in some
areas of the body, and the body will be greatly endangered.

At present, the most common seat vibration reduction method is passive vibration
reduction, that is, vibration reduction through passive suspension seats. The passive sus-
pension seat has a simple structure, low cost, and convenient maintenance. However, since
the stiffness damping of the passive suspension seat is fixed, the vibration reduction effect
when dealing with complex road surfaces is unsatisfactory. To adapt to more complex road
surfaces and achieve a more comfortable driving experience, active vibration reduction con-
trol methods have been proposed. An active vibration reduction control system obtains the
running state of the suspension through a sensor, calculates and outputs the corresponding
active control force through an algorithm, and performs vibration reduction control on the
seat in real time.

The seat has the longest contact with the driver and is an important part of the
vehicle’s vibration damping system. The seat suspension consists of springs, dampers, and
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other structures that improve the ride comfort by damping vibrations transmitted from
the body. According to the suspension structure, seat suspensions can be divided into
passive suspension, semi-active suspension, and active suspension [5]. The three types of
seat suspension are shown in Figure 1. The stiffness and the coefficient for passive seat
suspension are not variables. The semi-active seat suspension collects information about
the suspension and vehicle body through sensors and can adjust the stiffness and damping
values in real time, so that the system can attenuate the vibration in real time. An active
seat suspension adds actuators to a passive seat suspension to generate control forces to
suppress vibration, which consumes energy.
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At present, mainstream seat optimization mainly focuses on two aspects: the optimiza-
tion of the structure and research into, and optimization of, control methods.
Oshinoya et al. [6] designed an active suspension system for a small vehicle to improve
the riding comfort of the driver’s seat using the optimal control method, and the effec-
tiveness of the system was verified by experiments. Maciejewski et al. [7] described the
simulated dynamic response of an active vibration isolation pneumatic seat and developed
and analyzed a three-feedback-loop control system based on the described active vibration
isolation system. Sun et al. [8] designed a dynamic output feedback controller with an order
equal to the plant, according to the actual situation of the active seat suspension system,
and transformed the controller design into a convex optimization problem by using the
effective multiplier expansion. This was verified by an example with specific and random
road disturbances. Pan and Hao [9] proposed a five-DOF vehicle analysis mathematical
model with an active seat air spring suspension system to improve the driver’s comfort.
The results showed that the active seat suspension could reduce the vertical vibration
acceleration of the driver more effectively than a passive seat suspension. Maciejewski [10]
proposed a design method for an active vibration damping control system for the seat
suspension, studied a seat with a pneumatic suspension, and shaped its vibration isolation
characteristics by an appropriate selection of controller settings. Pan et al. [11] proposed
a seven-DOF half-car dynamic model including a cab mounting system and seat suspension
system to study the performance of the active seat suspension. The results showed that
the active seat suspension could significantly improve the performance of automotive
seats. Maciejewski et al. [12] studied the robustness of the proposed control system with
respect to different load qualities, through computer simulation and experimental research.
Gan et al. [13] proposed an active seat system to reduce the vibration levels transmitted to
the seat pan and the bodies of passengers under low-frequency periodic excitation. The
experimental results showed that the system had good robustness and stability.

Ning et al. [14] designed two actuators for the seat suspension, each of which had
one rotating motor and one gear reducer, and verified the feasibility of the suspension
system through tests. Ning et al. [15] designed a static output feedback H∞ controller with
friction compensation to reduce the vibration of the seat. Maciejewski et al. [16] discussed
a horizontal seat suspension using pneumatic muscles for active vibration control.
Chouinard et al. [17] proposed a simple and economical active seat suspension using
a controlled slippage magnetorheological (MR) actuator. The test results showed that the
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performance of the active seat suspension could match the performance of commercial
alternatives. Alfadhli et al. [18] proposed the control of an active seat with vehicle suspen-
sion preview information. Ning et al. [19] proposed an integrated active and semi-active
seat suspension for heavy duty vehicles and established its prototype. An integrated con-
trol algorithm using measurable variables was designed for the proposed seat prototype.
Maciejewski et al. [20] introduced the control design of an active horizontal seat suspension
with an electromagnetic actuator and verified the effectiveness of the active suspension
system through experiments. Zhao et al. [21] established a five-DOF driver and seat sus-
pension system model for active vibration control and developed a full-state feedback
controller to reduce the human vibration in the seat suspension system. Xia et al. [22]
proposed a hybrid controller using an advanced electromagnetic damper (EMD) system
to meet the requirements of vibration isolation and energy saving for seat suspensions.
Cvok et al. [23] introduced the design of a rig that used a linear electric servomotor to exert
accurately controlled vertical vibrations on the driver’s seat, which could provide a basis
for extending ride comfort evaluation research in different directions.

Zhang et al. [24] proposed an adaptive fuzzy fault-tolerant control for a seat ac-
tive suspension system with an actuator fault. They proved the effectiveness of this
method through simulation. Yang et al. [25] proposed a discrete nine-DOF driver’s seat
active suspension model. The L2 feedback algorithm was used to solve the optimal feed-
back matrix of the model, and the adaptive Kalman filter algorithm was used to replace
the linear Kalman filter. The results showed that the new algorithm and model signif-
icantly improved the driver comfort. Zhang et al. [26] studied the effect of a delayed
resonator on the vibration reduction performance of a vehicle active seat suspension.
The results showed that the delayed resonator could greatly suppress the seat vibra-
tion response regardless of the road’s simple harmonic excitation or random excitation.
Maciejewski et al. [27] discussed an innovative active control for a horizontal seat sus-
pension system in the context of realistic input vibrations that occurred in the cabins of
agricultural tractors. Laboratory measurements on the seated human body have shown
improved comfort of drivers under fore-and-aft vibrations. Liu et al. [28] proposed
an event-triggered tracking control for active seat suspension systems with time-varying
full-state constraints. The feasibility and the rationality of this method were proved by the
simulation analysis of a real example of a seat suspension system.

Vehicle seats have a significant impact on the comfort of passengers, and therefore
it is necessary to study active seat suspension systems. The main contribution of this
paper is to propose a new active seat suspension structure that is characterized by adding
an electromagnetic levitation structure to the passive seat. The function of the electromag-
netic levitation structure is to provide active control forces for the active seat system. By
establishing a “seat–body–tire” three-degrees-of-freedom dynamic model that incorporates
an electromagnetic force, the model is feedback linearized. The electromagnet current is
changed by methods such as integral sliding mode control, to control the vibration displace-
ment and acceleration of the seat. The results show that the integral sliding mode control
method has excellent anti-interference ability. The electromagnetic active seat suspension
based on integral sliding mode control can effectively attenuate the vibration of the seat.

The remainder of this paper is organized as follows: Section 2 of this paper establishes
the dynamic model of the seat; Section 3 discusses the design of the controller based on
integral sliding mode control and state feedback control; Section 4 discusses the simulation
experiments; Section 5 presents the simulation results and the discussion; and Section 6
draws the conclusions.

2. Dynamic Model
2.1. Establishment of “Seat–Body–Tire” Dynamic Model

The three-degrees-of-freedom dynamic model for a quarter-vehicle model is shown in
Figure 2. The “seat–body–tire” system of the vehicle is simplified into a three-DOF model
composed of the mass block, spring, and damping element. The model can directly reflect
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the information on seat acceleration, seat displacement, body acceleration, suspension
dynamic deformation, and tire dynamic load. In addition, because the model involves
fewer suspension structure parameters, the amount of calculation required for simulation
and control is small.
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According to Figure 2, the motion equation of the following quarter-vehicle model is
established as follows:

ms
..
zs = ks(zc − zs) + cs

( .
zc −

.
zs
)

mc
..
zc = kc(zt − zc) + cc

( .
zt −

.
zc
)
− ks(zc − zs)− cs

( .
zc −

.
zs
)

mt
..
zt = kt(zr − zt)− kc(zt − zc)− cc

( .
zt −

.
zc
) (1)

where ms is the mass of the seat and the person, ks is the seat suspension stiffness, cs is the
damping for the seat suspension, mc is the body mass, kc is the body suspension stiffness,
cc is the damping for the body suspension, mt is the mass of the tire, and kt is the stiffness
of the tire. In addition, zs, zc, zt, and zr are the seat displacement, body displacement, tire
displacement, and road excitation, respectively.

According to the above dynamic equations, the dynamic simulation module of the
seat passive suspension system was built in Simulink. At the same time, road excitation
with a speed of 60 km/h and road level C was taken as the input of the model. Seat vertical
displacement and seat vertical acceleration were selected as the main evaluation indexes of
the seat suspension, to evaluate the ride comfort of vehicle drivers.

2.2. Electromagnetic Vibration Damping System
2.2.1. Structure of Electromagnetic Vibration Reduction System

The electromagnetic vibration damping structure designed in this study is shown in
Figure 3. The vibration reduction system is mainly composed of four parts: the electro-
magnet, seat armature, controller, and actuator. The actuator includes an electromagnet
and a corresponding power amplifier. When the electromagnet winding is energized,
an electromagnetic attraction force is generated on the armature. When vibration occurs,
one of the electromagnets is energized and the other electromagnet is de-energized. In
this way, a change in the direction of the electromagnetic attraction force can be quickly
realized. As long as the current in the electromagnet winding is controlled, displacement
control of the seat can be realized. However, this balance between the electromagnetic force
and gravity is unstable, because the magnitude of the electromagnetic force between the
electromagnet and the floating body is inversely proportional to the square of their distance,
that is, the smaller the distance, the greater the force and the greater the distance, the smaller
the force. Therefore, if this balance is disturbed by a tiny amount, it will be destroyed.
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Hence, closed-loop control of the entire system must be established. The sensor picks up
the displacement signal of the seat online, and the controller processes the acceleration,
speed, displacement of the seat, and vibration displacement signal of the body accordingly
and generates a control signal. The power amplifier generates the required control current
according to the control signal, and sends it to the electromagnet coil, thereby generating
a magnetic force in the executive electromagnet. According to the corresponding changes
in the acceleration of the seat and the car body, the magnitude of the electromagnetic force
is changed, so that the vibration of the seat can reach the desired control value.
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2.2.2. Dynamic Model of Electromagnetic Vibration Damping System

A structural schematic diagram of the electromagnetic vibration damping system
is shown in Figure 4. The upper and lower ends are electromagnets, and the middle is
an armature connected to the seat. Here, i(t) is the control current of the electromagnet, φ
is the air gap flux, φ1 is the leakage flux, and δ(t) represents the gap between the armature
and the magnet. Furthermore, F(i, δ) is the electromagnetic force.
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It is assumed that the magnetic flux leakage can be ignored and the resistance in
the electromagnet and armature can be neglected. It is also considered that the magnetic
potential drops evenly in the air gap and the electromagnet has no movement in the
horizontal direction.

(1) Establishment of electromagnetic force equation:

(1) Idealized assumptions: (a) the armature is rigid and the stiffness coefficient
is large enough; (b) the armature mass is evenly distributed; (c) when the
armature is in the balanced position, the air gap between the armature and
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the upper and lower electromagnets is the same and is very small, to ensure
that the magnetic line of force passes through vertically; (d) the magnetic flux
passes through the magnetic circuit with the cross section S of the magnetic
pole; (e)the permeability is µc � 1; and (f) flux leakage is ignored.

(2) The electromagnetic force equation is expressed by the coil current i and the
air gap δ.

The magnetic reluctance of the magnetic circuit has the following relationship:

R =
2δ

µ0S
(2)

The magnetic flux density of the air gap between the armature and the electromagnet
can be written as:

B =
φ

S cos ϕ
(3)

where φ is the air gap flux and ϕ is the included angle between the magnetic line of force
and the vertical line on the magnet surface. According to hypothesis (d), when the air gap
is very small, it can be considered that the magnetic line of force passes vertically through
the magnetic pole, that is, ϕ = 0.

According to
Ni = Rφ (4)

the electromagnetic force of the system is

F =
N2i2µ0S

4δ2 (5)

where µ0 is the vacuum permeability, µ0 = 4π× 10−7 H/m. In addition, S is the conductive
area of the electromagnet, N is the number of turns of the coil, δ is the distance between the
electromagnet and the armature, i is the control current in the excitation coil, and F is the
electromagnetic force generated by the electromagnet.

(2) Establishment of the three-degrees-of-freedom model and dynamic equation of “seat–
body–tire” system:

Based on the model established in Figure 2, the electromagnetic force is introduced to
establish the “seat–body–tire” model, as shown in Figure 5.
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It is assumed that the disturbances of uncertain factors such as a sudden voltage
change are ignored, that is, the seat is only subject to the excitation electromagnetic force
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F(i, δ) and the spring force and damping force given to it by the suspension. Carrying out
a force analysis on the seat, the dynamic equation in the vertical direction of the seat can be
expressed as:

ms
..
zs = ks(zc − zs) + cs

( .
zc −

.
zs
)
− F(i, δ)

mc
..
zc = kc(zt − zc) + cc

( .
zt −

.
zc
)
− ks(zc − zs)− cs

( .
zc −

.
zs
)

mt
..
zt = kt(zr − zt)− kc(zt − zc)− cc

( .
zt −

.
zc
) + F(i, δ) (6)

The calculation formula of K is as follows:

K =
µ0N2S

4
(7)

The purpose of this paper is to control the vibration displacement of the seat as
a fixed percentage of the vibration displacement of the vehicle body. Therefore, substituting
Equations (5) and (7) into (6), we obtain:

ms
..
zs = kszc + cs

.
zc − kszs − cs

.
zs − K

i2

δ2 (8)

The stroke of the armature is:

z(t) = zs − zc (9)

The initial position of the armature is z0, and hence the gap between the upper magnet
and the armature is

δu = z0 + zc − zs (10)

The magnet clearance is preliminarily set to 0.4 m, so the clearance of the lower
magnet is:

δd = 0.4− (z0 + zc − zs) (11)

When F(i, δ) > 0, the direction of the electromagnetic force on the vibration reduction
platform is downward and δ = δd. When F(i, δ) < 0, the direction of the electromagnetic
force on the vibration damping platform is upward and δ = δu. Since the value zc can be
measured in real time, δ becomes a function with variables zs and zc, i.e., δ = δ(zs).

2.3. Establishment of State-Space Equation and Feedback Linearization
2.3.1. Electromagnetic Vibration Damping Seat System Model

We select the status variable x1(t) = zs, x2(t) =
.
x1(t), where δ(x1) is a primary

function of x1, making the control quantity u = i2. Then, we have

x =
[
x1 x2

]T
=
[
zs

.
zs
]T (12)

From the equation of motion (Equation (8)):

..
zs =

kszc + cs
.
zc − ksx1 − csx2 − K i2

δ(x1)
2

m
(13)

where in order to simplify the expression, m is used to replace ms.
From the above, the nonlinear state-space equation of the electromagnetic vibration

reduction system can be obtained as follows:
.
x1 = x2

.
x2 =

kszc+cs
.
zc−ksx1−csx2−K i2

δ(x1)
2

m

(14)
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The equation of state can be reduced to:{ .
x = f(x) + g(x)u
y = h(x)

(15)

where 

f(x) =

[
x2

kszc+cs
.
zc−ksx1−csx2

m

]

g(x) =

[
0
−K

δ(x1)
2m

]
u(t) = i2

h(x) = x1

(16)

This model takes the current as input, and the open-loop structure of the system is
shown in Figure 6.
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2.3.2. Linearization Process

(1) Test relative order condition

We find the Lie derivatives of Equation (16) and obtain:

Lgh(x) = ∂h
∂x g(x) =

[
1 0

][ 0
−K

δ(x1)
2m

]
= 0

L f h(x) = ∂h
∂x f(x) =

[
1 0

][ x2
kszc+cs

.
zc−ksx1−csx2

m

]
= x2

LgL f h(x) =
∂L f h(x)

∂x g(x) =
[

0 1
][ 0

−K
δ(x1)

2m

]
= −K

δ(x1)
2m

(17)

When x1 6= ∞, the relative order is γ = 2, which is equal to the order of the system
and meets the condition.

(2) Linearization calculation:

The selected feedback rule is:

u = α(x) + β(x)v (18)

where α(x) = −
L2

f h(x)
Lg L f h(x) =

δ(x1)
2(kszc+cs

.
zc−ksx1−csx2)

K , β(x) = 1
Lg L f h(x) =

−δ(x1)
2m

K .

We set the linearized state variable as:

z =
[
z1 z2

]T (19)
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The state changes to:

z = φ(x) =
[

h(x)
L f h(x)

]
=

[
x1
x2

]
(20)

Then, we have:
z =

[
z1 z2

]T
=
[
x1 x2

]T
=
[
zs

.
zs
]T (21)

From [29]:
Az = ∂φ(x)

∂x (f(x) + g(x)α(x)) =
[

0 1
0 0

][
x1
x2

]
B = φ(x)

∂x (g(x)β(x)) =
[

1 0
0 1

]{[ 0
−K

δ(x1)
2m

]
· δ(x1)

2m
K

}
=

[
0
1

] (22)

and rank
[
B AB

]
= rank

[
0 1
1 0

]
= 2, i.e., the rank of the matrix is the order of the system

(order 2), and the system is controllable. Therefore, the linear model of the electromagnetic
vibration damping system after linearization is:

.
z =

[
0 1
0 0

]
z +

[
0
1

]
v

y =
[

1 0
]
z

(23)

where

v =
u− α

β
=

kszc + cs
.
zc − ksx1 − cs

.
x1

m
− Ki2

δ(x1)
2m

(24)

3. Design of Feedback Controller
3.1. Design of State Feedback Controller

The linearized state-space equation of the system is as follows:
.
z =

[
0 1
0 0

]
z +

[
0
1

]
v

y =
[

1 0
]
z

(25)

Since A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
, the system controllability matrix is

M =
[
B AB

]
=

[
0 1
1 0

]
, and the observable matrix is N =

[
C

CA

]
=

[
1 0
0 1

]
. Since

Rank(M) = Rank(N) = 2, the system can be both observed and controlled, and poles can
be arbitrarily assigned.

The design feedback control law is as follows:

v = Lvc −KTz (26)

The dynamic indexes of the transformation system meet the following conditions:
(1) output overshoot σ ≤ 3%; (2) peak time tp ≤ 0.15s; and (3) static error ep = 0, where,
KT =

[
k1 k2

]
, KT is the state feedback gain matrix, vc is the error between the theoretical

value and the actual value, and R is the input transformation coefficient.
The current control law can be obtained according to Equation (24):

i = δ(x1)

√
m
(

kszc + cs
.
zc − ksx1 − cs

.
x1

m
− v
)

/K (27)
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According to:  σ = e−ξπ/
√

1−ξ2 ≤ 3%
tp = π/

(
ωn
√

1− ξ2
)
≤ 0.15 s

(28)

we can obtain: {
ξ ≥ 0.74
ωn ≥ 31.39

(29)

and then take ξ = 0.75, ωn = 40. The required poles are:

s = −ξωn ± jωn

√
1− ξ2 = −30± 17.5j (30)

Since
(s + 30− j17.5)(s + 30 + j17.5) = s2 + 60s + 1206.25 (31)

we have k1 = 1206.25, k2 = 60.
The closed-loop transfer function after introducing feedback is:

G(s) =
L

s2 + 60s + 1206.25
(32)

We need the static error of the system ep = 0, in order to make the static amplification
factor equal to 1. According to the final value theorem:

lim
s→0

G(s) = lim
s→0

L
s2 + 60s + 1206.25

= 1 (33)

where L = 1206.25. In summary, we can obtain:

v = Lvc −KTz = 1206.25vc −
[
1206.25 60

][z1
z2

]
= 1206.25(vc − z1)− 60z2 (34)

The corresponding state feedback control system was built according to the established
equation, and its structure is shown in Figure 7.
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3.2. Design of Integral Sliding Mode Controller

The displacement of the actual output of the electromagnetic vibration damping
system seat is zs, and the expected output seat displacement is yd. The displacement
position error is defined as e, where

e = zs − yd (35)

We set the sliding surface [29] as:

s = c1z1 + z2 + c0

∫ t

0
(zs − yd)dt (36)

where c0 and c1 are the coefficient of the sliding mode surface and the weight of each item
in the controller.

When the system is in sliding mode motion, the following conditions are met:

.
s = c1

.
z1 +

.
z2 + c0e = c1z2 + v + c0e = 0 (37)

Then,
veq = −c1z2 − c0e (38)

where veq is called the equivalent control, and the equivalent control keeps the system state
on the sliding mode surface.

We transform Equation (37) to obtain:

.
s = c1

.
z1 +

..
z1 + c0e (39)

After a Laplace transform, we can obtain:

c1Z1(s)s + Z1(s)s2 + c0[Z1(s)−Yd(s)] = 0 (40)

and then
Z1(s)
Yd(s)

=
c0

s2 + c1s + c0
(41)

The characteristic equation of the system is obtained as:

s2 + c1s + c0 = 0 (42)

The pole assignment method is used to determine the values of c0 and c1. The assigned
poles are s1,2 = −40± j20, and the expected characteristic polynomial is

(s + 40 + j20)(s + 40− j20) = s2 + 80s + 2000 (43)

Hence, c0 = 2000, c1 = 80.
Substituting the coefficient into Equation (38) we have

veq = −80z2 − 2000e (44)

Due to the external disturbance of the system, the equivalent control cannot guar-
antee the robustness of the system, and therefore the switching control vs is introduced
here. In order to realize the sliding mode motion, the system must meet the reachable
condition s

.
s ≤ 0. We construct the Lyapunov function V = 1

2 s2. Since this function is
semi-positive definite, the reachability condition can be satisfied by requiring its derivative
.

V = s
.
s ≤ 0 [30]. Selecting the index approach rate gives

.
s = −εsgn(s)− λs (45)
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where ε and λ are normal numbers. Symbolic functions are defined as [30]:

sgn(s) =


1, s > 0
0, s = 0
−1, s < 0

(46)

Then, substituting Equation (45) into
.

V = s
.
s = −s[εsgn(s) + λs] ≤ 0 shows that

attainable conditions can be met.
According to the equality of Equations (37) and (45), we can obtain:

v = −c1z2 − c0e− εsgn(s)− λs = veq + vs (47)

where vs = −εsgn(s)− λs. Through continuous simulation and debugging, we can obtain
ε = 0.0001, λ = 500.

The corresponding sliding mode control system was built according to the established
equations, and its structure is shown in Figure 8.
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4. Establishment of Simulation Test Model
4.1. Establishment of Pavement Spectrum Model

A Simulink simulation model of road roughness based on filtered white noise was
built, as shown in Figure 9. The pavement excitation (vehicle speed: 60 km/h) for a class C
pavement was obtained according to the established pavement generation time-domain
model, as shown in Figure 10.
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4.2. Establishment of Simulation Model

We set the distance between the electromagnets to 0.4 m, the seat mass to 10 kg, the
weight of the person to 70 kg, the stiffness of the seat suspension to 35,000 N/m, and the
initial position of the seat armature to 0.22 m away from the vehicle body. When the person
sits on the seat, the armature position of the seat is 0.2 m. The control objective was to
control the seat so that its vibration displacement was 50% of the vehicle body vibration
displacement. The input is the road excitation when driving on a class C road at a speed
of 60 km/h, and the electromagnetic coefficient K of the electromagnet was set at 12. The
simulation was carried out with a fixed step length of 0.001 s, and the simulation time was
30 s. We set the external input interference acting on the seat as 800 N in amplitude, 5 s
per cycle, and 15% in pulse width. The Simulink model of the electromagnetic vibration
reduction system built based on state feedback control and integral sliding mode control is
shown in Figure 11, and the system simulation parameter settings are shown in Table 1.
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Table 1. Simulation parameters of seat suspension.

Parameters Physical Meaning Value Units

mt Tire mass 45 kg
mc Body mass 330 kg
ms Seat and human mass 80 kg
kt Tire stiffness 170,000 N/m
kc Body suspension stiffness 13,000 N/m
ks Seat suspension stiffness 35,000 N/m
cs Seat suspension damping 300 N/(m/s)
cc Body suspension damping 2000 N/(m/s)

5. Simulation Results and Discussion
5.1. Vibration Study

Research on seat vibration reduction is mostly carried out on the vertical displace-
ment and acceleration of the seat [21–23]. This paper mainly focuses on the displacement
and acceleration of the active seat suspension and discusses the two cases of no inter-
ference and interference, as shown in Figures 12–17. Combined with the analysis of the
no-disturbance data in Figures 12 and 13, it can be seen that in the case of no interference, the
two control algorithms have a good control effect on the displacement. Based on the state
feedback control, the average error between the actual value and the expected value was
−1.85848 × 10−5 m, and the variance based on the mean was 4.59371 × 10−6 m2. Based on
the integral sliding mode control, the average error between the actual value and the ex-
pected value was −1.5 × 10−5 m, and the variance based on the mean was
3.04127 × 10−6 m2. Combined with the analysis of the no-disturbance data in Figure 14,
the RMS value of the passive seat acceleration was 1.438585 m/s2. The acceleration root
mean square values of the integral sliding mode control and state feedback control were
0.478052 m/s2 and 0.426445 m/s2, respectively, and the vibration reduction effect was
increased by 66.8% and 70.4%, respectively. In the case of no interference, the sliding mode
control and the state feedback control had a good control effect on the acceleration.
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Figure 17. Acceleration comparison under the condition of interference.

According to the analysis of the interference data in Figures 15 and 16, the control of
the seat vibration displacement via integral sliding mode control was significantly better
than via state feedback control in the presence of interference forces. It can be seen from
the results in Figure 17 that the integral sliding mode control had a shorter response time
and smaller overshoot in response to external interference than the state feedback control.

In summary, considering the anti-interference effect and robustness of the integral
sliding mode control, the integral sliding mode control was preliminarily selected as the
control method of the controller.

5.2. Calculation of Electromagnet Energy Consumption

The electromagnet current values under two control states are shown in Figure 18.
Figure 18a,b, respectively, show the current values of the upper and lower electromagnets
under state feedback control without interference; Figure 18c,d, respectively, show the
current values of the upper and lower electromagnets based on the integral sliding mode
control without interference.
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Figure 18. (a) Current value of the upper electromagnet under the state feedback control without
interference; (b) current value of the lower electromagnet under the state feedback control without
interference; (c) current value of the upper electromagnet under the integral sliding mode control
without interference; (d) current value of the lower electromagnet under the integral sliding mode
control without interference.

The electromagnet coefficient of the electromagnetic vibration damping system de-
signed in this study was 12. According to Equation (7),

S =
12

π× 10−7N2 (48)

If N = 10,000 turns, then S = 0.38 m2. The vehicle battery voltage was 48 V, and the
maximum current that the battery can pass was imax = 5A. The energy consumption
of the active seat suspension is calculated on the premise that the maximum current is
not exceeded.

The power consumption of the electromagnet per hour is calculated as follows.
For the non-interference state feedback control combined with the current value in

Figure 18 and the vehicle battery voltage, it can be estimated that the energy consumption
per hour is 174,000 j, i.e., 0.048 kw·h, which fully meets the current energy consumption
requirements. For the non-interference sliding mode control combined with the current
value in Figure 18 and the vehicle battery voltage, it can be estimated that the energy
consumption per hour is 176,640 j, i.e., 0.049 kw·h, which also fully meets the current
energy consumption requirements.

In summary, the energy consumption for state feedback control and integral sliding
mode control is consistent, and both are maintained at a low level.

6. Conclusions

(1) In this paper, we took the vehicle seat as the research object and proposed an electro-
magnetic levitation active vibration reduction seat based on electromagnetic force control.
The vibration attenuation of the seat was achieved by establishing a three-degrees-of-
freedom dynamic “seat–body–tire” model, introducing electromagnetic force and applying
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methods such as integral sliding mode control. The main contribution of this paper is
the new active seat suspension structure, which represents a structural innovation. The
feasibility of this structure was proved via simulation.

(2) Comparing the acceleration and displacement of the electromagnetic levitation
active seat suspension without interference and with interference, the results showed that
the two methods of state feedback and integral synovial control had positive effects on
the vehicle seat vibration reduction. However, the electromagnetic levitation active seat
suspension based on integral sliding mode control had better anti-interference performance.

(3) The simulation was carried out on the condition that the vehicle was running on
a level C road at a speed of 60 km/h. The results showed that the energy consumption of
the electromagnetic levitation active seat suspension was low, and it had a good vibration
suppression ability.

(4) This study is not limited to the application of an active seat suspension. The method
could also be applied to the vibration isolation of ambulance stretcher beds, the vibration
isolation of truck compartments, and the vibration isolation of on-board high-precision
sensors. The control method could also be optimized further.
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