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Abstract: The new generation video coding standard Versatile Video Coding (VVC) has adopted
many novel technologies to improve compression performance, and consequently, remarkable results
have been achieved. In practical applications, less data, in terms of bitrate, would reduce the burden
of the sensors and improve their performance. Hence, to further enhance the intra compression
performance of VVC, we propose a fusion-based intra prediction algorithm in this paper. Specifically,
to better predict areas with similar texture information, we propose a fusion-based adaptive template
matching method, which directly takes the error between reference and objective templates into
account. Furthermore, to better utilize the correlation between reference pixels and the pixels to
be predicted, we propose a fusion-based linear prediction method, which can compensate for the
deficiency of single linear prediction. We implemented our algorithm on top of the VVC Test Model
(VTM) 9.1. When compared with the VVC, our proposed fusion-based algorithm saves a bitrate of
0.89%, 0.84%, and 0.90% on average for the Y, Cb, and Cr components, respectively. In addition,
when compared with some other existing works, our algorithm showed superior performance in
bitrate savings.

Keywords: Versatile Video Coding; intra prediction; template matching; linear prediction

1. Introduction

In recent years, Internet traffic comprising multimedia data has increased rapidly,
with 80% expected to be of video content in the coming years. Therefore, efficient video
compression is very important. The new generation video coding standard Versatile Video
Coding (VVC) [1] was officially released in July 2020. On the basis of the High Efficient
Video Coding (HEVC) [2] standard, VVC has introduced many advanced technologies to
further improve compression performance. Simultaneously, VVC supports a wide variety
of video types such as High Definition (HD) and Ultra HD (UHD) resolution, Wide Color
Gamut (WCG) video sequences, Virtual Reality (VR) videos, ultra-low delay applications,
and so on.

Currently, VVC continues to employ a block-based hybrid coding framework, while
most of its coding tools have been improved. In terms of block division, in addition to
the traditional Quad Tree (QT), to make the partitioning results more suitable for video
content, Binary Tree (BT) and Ternary Tree (TT) [3] have also been introduced. For intra
prediction, the angle prediction modes are more detailed, and Position Dependent Intra Pre-
diction Combination (PDPC) [4,5], Multiple Reference Line (MRL) [6,7], Intra Sub-Partition
(ISP) [8,9], Cross Component Linear Model (CCLM) [10–12], Matrix Weighted Intra Pre-
diction (MIP) [13,14] and Wide-Angle Intra Prediction (WAIP) [15–17] have been utilized
to optimize intra prediction performance. Bi-Directional Optical Flow (BDOF) [18,19],
Decoder-side Motion Vector Refinement (DMVR) [20], and Affine Motion Compensation
(AMC) [21,22] have been used to improve inter prediction precision. Multiple Transform
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Selection (MTS) [23], Sub-Block Transform (SBT) [24], and Low Frequency Non-Separable
Transform (LFNST) [25] have been employed to further eliminate frequency redundancy.
In addition, many other modules have also been optimized.

Intra prediction predicts the current pixels by using the reconstructed pixels of the
current frame to remove spatial redundancy. Recently, many works on intra prediction have
been performed. Schneider et al. [26] proposed an algorithm named Sparse Coding-Based
Intra Prediction (SCIP) to further improve the performance of VVC. To better predict the
areas with complex textures, Li et al. [27] presented an improved intra prediction mode
combination method and introduced an efficient mode coding method of syntax elements
to enhance the coding performance. Yoon et al. [28] designed a method to obtain the pa-
rameters of CCLM more precisely, which compensated for the coding loss of the simplified
CCLM mode. To fully utilize the advantages of Intra Block Copy (IBC) and palette coding,
Zhu et al. [29] designed a compound palette mode to improve the performance of VVC
on screen content coding. Since IBC cannot deal well with geometric transformations,
Jayasingam et al. [30] extended IBC to adapt contents with zooms, rotations, and stretches.
In [31], Weng et al. presented an L-shape-based iterative algorithm to improve intra predic-
tion accuracy, and a residual median edge detection method was also proposed to address
edge information. In [32], Yoon et al. exploited the number of occurrences of the modes in
the neighboring blocks to extend the Most Probable Mode (MPM). Wang et al. [33] designed
a Sample Adaptive Offset (SAO) acceleration method to reduce the complexity of VVC.
Saha et al. [34] analyzed the decoder complexity of VVC on two different platforms.

Intra prediction plays an important role in video coding, and effectively compressing
data can reduce the workload of the sensors. Although there are already some works that
have achieved good results, there have been few that have taken the different features of
different blocks and different modes into account. Hence, there is still room for further
improvement. In this paper, we propose a fusion-based algorithm. The main contributions
of our work are as follows:

(1) We proposed a fusion-based adaptive template matching method. Its core idea is adap-
tive template matching. This method sufficiently considers the influence of matching
errors on prediction results. The mode using this method is named mode 67;

(2) We designed a fusion-based linear prediction method. Its core idea is linear prediction.
This method fully considers the linear relationship between reference pixels and
the pixels to be predicted, and the correlation between different models. The mode
utilizing this method is named mode 68.

The remainder of the paper is organized as follows. Section 2 introduces the related
works. In Section 3, our proposed fusion-based algorithm is presented in detail. In Section 4,
we conduct some experiments to verify the effectiveness of our proposed algorithm, and
conclusions are drawn in Section 5.

2. Related Works

The Template Matching Prediction (TMP) algorithm is a widely used method in video
coding. The TMP algorithm takes the reference pixels of the current Prediction Unit (PU)
block as a reference template. In the reconstructed area, a certain criterion is employed to
select some candidate templates with the least error, from which the final prediction value
is obtained. To reduce the effect of compression noise, Tan et al. [35] proposed using the
average value of several candidate templates. Gayathri et al. [36] presented a region-based
TMP algorithm that could reduce the complexity and obtain good performance. In [37],
Gayathri et al. further decreased the memory requirements and number of computations
at the decoder side. Considering that only the local reference samples could not deal well
with complex areas, Lei et al. [38] designed a two-step progressive method to use both local
(derived by the high frequency coefficients) and non-local information (obtained through
TMP). These methods achieved good performance, however, simply averaging does not
take the different importance of different blocks into account, and a linear approach is not
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adaptive and does not directly consider the error. To better predict PUs with rich texture
information, we proposes a fusion-based adaptive template matching method in this paper.

Linear prediction assumes a linear relationship between reference samples and the
samples to be predicted. The final prediction value is obtained by constructing a linear
function. Typically, CCLM linearly obtains the chroma prediction value through the
corresponding reconstructed luminance samples. The process of CCLM is shown in Figure 1.
First, the co-located luminance block is down-sampled. Then, the reference pixels of the
current chroma block and the down-sampled luminance block are used to calculate the
parameters by constructing a linear function. Finally, the chroma prediction value is
obtained by a linear function.
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Figure 1. The process of CCLM in VVC.

As shown in Equation (1), predc(i, j) is the chroma pixel to be predicted, and rec
′
L(i, j)

denotes the down-sampled reconstructed luma pixel. (i, j) is the position and α, β are
the parameters.

predc(i, j) = α× rec
′
L(i, j) + β (1)

Many related works have been undertaken based on CCLM. Ghaznavi-Youvalari
et al. [39] merged CCLM with an angle mode derived from the corresponding luma
block to improve the chroma prediction accuracy. Zhang et al. [40] introduced three
methods including Multi-Model CCLM (MMCCLM), Multi-Filter CCLM (MFCCLM), and
linear mode angle prediction to further enhance the coding efficiency of CCLM. How-
ever, there have been few linear prediction optimizations for the luminance component.
In [41], Ghaznavi-Youvalari et al. presented a three-parameter linear function to improve
the intra prediction performance. The parameters of this method were obtained based
on a mean square Error (MSE) minimization approach from the reference pixels and
their locations. This method achieves good efficiency, however, when the pixel to be pre-
dicted is far from the reference samples, the prediction performance decreases with the
decline in the correlation. To address this problem, we proposed a fusion-based linear
prediction method.

3. Proposed Method

As mentioned previously, our proposed fusion-based algorithm includes two parts:
fusion-based adaptive template matching (mode 67) and fusion-based linear prediction
(mode 68). The overall flowchart is depicted in Figure 2. We termed the VVC’s original intra
prediction modes (mode 0~mode 66) as the traditional/original modes. When conducting
intra prediction, we have to first decide on whether the prediction mode is traditional. If the
mode is traditional, the original mode of the VVC is utilized to obtain the prediction pixels.
If the mode is not traditional, we then decide on whether the mode is 67 or 68. If it is mode
67, the fusion-based adaptive template matching is employed. If it is mode 68, fusion-based
linear intra prediction is used. Some modes can be selected with less distortion, called
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candidate modes, by rough calculation. Finally, the Rate–Distortion Cost (RDC) is utilized
to determine the best mode from these candidate modes. Since the decoder can perform
the same operations as the encoder to obtain the prediction and reconstructed values based
on the mode number, we do not need to send extra flag bits.
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Figure 2. The overall framework of the proposed fusion-based algorithm.

3.1. Fusion-Based Adaptive Template Matching

Usually, high correlation and similar textures are prevalent with blocks, and the TMP
algorithm can find candidate blocks with the least errors in the reconstructed area to better
predict the region with similar textures. Since it searches and compares pixel by pixel, it
usually performs well for blocks with similar textures. The process of template matching is
shown in Figure 3, in which Tr is the reference template and Ti is the candidate template.
Bp is the block to be predicted and Bi is the corresponding prediction block of Ti. wi is the
corresponding weighting factor of the candidate block. First, we find the candidate blocks
Ti through Tr in the reconstructed area, and then Bi is utilized to obtain Bp.
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Considering that the error between Tr and Ti has a large influence on the prediction
result, we used it as a key basis for weight selection. To balance the compression perfor-
mance and time complexity, we limited the searching area to 64 × 64 and chose the best
four candidate templates through the MSE minimization criteria. The MSE is obtained by:

σ2
i =

N−1
∑

j=0
(Tr(j)− Ti(j))2

N
(2)

where σ2
i is the MSE between the reference template Tr and i-th candidate template Ti. N is

the total number of pixels in Tr. If σ2
i is large, it implies that the difference between Tr and

Ti is large, and the corresponding weight is set to be small. If σ2
i is small, it implies that

the candidate template is close to the reference template, and the weight is set to be large.
Consequently, the temporary weight can be obtained by introducing a logarithm function
as follows:

λi = ln
(

1 + e−σ2
i

)
(3)

where λi is the temporary weight of the i-th candidate template. By normalization, the final
weighting factor wi of the i-th candidate template is obtained by:

wi =
λi

∑3
j=0 λj

(4)

Then, the final prediction value p(x, y) can be obtained by:

p(x, y) =
3

∑
i=0

wi × Bi(x, y) (5)

Generally, the TMP has a high time cost due to the pixel-by-pixel comparison and
error calculation. It sacrifices time in exchange for performance gains. Hence, fusion-
based adaptive template matching is only employed when the PU size is smaller or equal
to 32 × 32. Adding this limitation is important because when the PU size is large, the
TMP algorithm will trade high time complexity for coding gain, which is not worthwhile.
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Simultaneously, the texture information of large PUs is simple, so other modes can achieve
good results.

3.2. Fusion-Based Linear Prediction

Linear prediction is a simple but efficient method because there is usually a high linear
correlation between the pixels to be predicted and the reference samples. However, as the
pixels to be predicted move away from the reference pixels, the correlation between them
will weaken, and the performance of linear prediction will decline. To address this issue, we
present a fusion-based linear prediction method based on Ghaznavi-Youvalari’s work [41].

When the PU size is small, single three-parameter linear prediction can achieve good
results. However, when the PU size is large, prediction accuracy declines with the weaken-
ing in correlation. Hence, we combined the three-parameter mode with planar mode to
obtain the final prediction value. Planar mode obtains the prediction value by weighting
the pixels in the horizontal and vertical directions, where the weights are related to the
distance. The prediction process of the planar mode is shown in Figure 4.
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The prediction value of horizontal ph(x, y) is obtained by:

ph(x, y) = (lw− x− 1)× b + (x + 1)× a (6)

where (x, y) is the position of the current pixel. a, b are the reference samples and lw is the
width of PU. Similarly, the prediction value of vertical pv(x, y) can be obtained by:

pv(x, y) = (lh− y− 1)× d + (y + 1)× c (7)

where c, d are the reference samples and lh is the height of PU.
Then, the final prediction value is the average of ph(x, y) and pv(x, y).
We can see that the prediction process of the planar mode is very close to linear

prediction. Hence, the combination of planar mode and three-parameter linear mode can
partially compensate for the shortcomings of a single linear prediction and improve the
prediction precision.

When the PU size is smaller or equal to 32 × 32, three-parameter linear prediction is
used to obtain the final pixels. The linear function is constructed by:

p(x, y) = a0 × x + a1 × y + a2 (8)

where p(x, y) is the prediction value. a0, a1, and a2 are the parameters to be calculated. The
specific solution is shown in [41].
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When the PU size is larger than 32 × 32, both three-parameter linear prediction and
planar mode are utilized to obtain the final prediction value:

p(x, y) = w1 × plinear(x, y) + w2 × pplanar(x, y) (9)

where plinear(x, y) is the prediction value of three-parameter linear prediction and pplanar(x, y)
is that of the planar mode. w1 and w2 are the corresponding weighting factors. Since three-
parameter linear prediction and planar mode adopt different prediction methods and they
can provide different prediction information, they are equally important. Therefore, the
two weighting factors were both set as 0.5.

4. Experimental Results and Analysis
4.1. Experimental Environment

To verify the effectiveness of our proposed fusion-based algorithm, we implemented
it on top of VVC Test Model 9.1 (VTM9.1). Coding conditions were followed by the Joint
Video Exploration Team (JVET) Common Test Condition (CTC) [42]. Sixteen test sequences
with four kinds of resolution were utilized. The resolutions included 416 × 240, 832 × 480,
1280 × 720, and 1920 × 1080. We selected four common test QP values ∈ {22, 27, 32, 37} to
code video sequences in this work. Only the first 30 frames of each sequence were coded
with All Intra (AI) configurations due to the experimental conditions.

4.2. Compression Performance

First, we tested the compression performance of our proposed fusion-based algorithm
by comparing it with the VVC anchor. The Bjøntegaard Delta Rate (BD-Rate) method [43] was
utilized to assess the compression performance. In addition to the respective BD-Rate of the
three components, we also calculated the weighted BD-Rate of the three components by:

BDRateYUV =
(4× BDRateY + BDRateU + BDRateV)

6
(10)

where BDRateYUV is the weighted YUV BD-Rate. BDRateY, BDRateU , and BDRateV
represent the bitrate of Y, Cb, and Cr, respectively.

Considering that class F is the screen content sequence and the others are the natural
content sequence, we made a distinction between them when calculating the average BD-
Rate. If the BD-Rate is negative, it indicates that the performance of the VVC has improved.
Otherwise, the coding performance of the VVC has deteriorated. As shown in Table 1,
compared with the VVC anchor, our proposed fusion-based algorithm saved a bitrate of
0.89%, 0.84%, and 0.90% on average (up to 2.69%, 2.81%, and 2.81%) for components Y, Cb,
and Cr, respectively. Simultaneously, our algorithm was particularly efficient for sequences
such as “BasketballDrive” (1920× 1080), “BQTerrace” (1920× 1080), “Johnny” (1280× 720),
“BasketballPass” (416× 240), and so on. This is mainly because there are many similar areas
in these sequences. The correlation between blocks, and the correlation between reference
pixels and the pixels to be predicted were relatively high. For most sequences in Class C
and Class D, their texture content was very rich and the texture information varied greatly.
For these two classes, the performance of our algorithm was not particularly outstanding
since our proposed algorithm is suitable for videos with more similar texture areas. For
almost all sequences, our proposed fusion-based algorithm achieved good results, which
verified its effectiveness.
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Table 1. The performance of our proposed algorithm compared with the VVC in BD-Rate.

Class Sequence Y/% U/% V/% YUV/%

B
(1920 × 1080)

BasketballDrive −1.55 −1.46 −1.62 −1.55
BQTerrace −1.08 −1.15 −1.06 −1.08

Cactus −0.79 −0.62 −0.95 −0.79

Average −1.14 −1.08 −1.21 −1.14

C
(832 × 480)

BQMall −0.25 −0.20 −0.19 −0.23
BasketballDrill −0.41 −0.23 −0.64 −0.42

PartyScene −0.14 −0.12 −0.35 −0.17
RaceHorses 0.02 −0.03 −0.31 −0.04

Average −0.20 −0.15 −0.37 −0.22

D
(416 × 240)

BasketballPass −0.53 −1.31 −1.50 −0.82
RaceHorses −0.01 −0.18 −0.32 −0.09

BlowingBubbles 0.00 0.17 0.15 0.05
BQSquare −0.26 −0.23 −0.47 −0.29

Average −0.20 −0.39 −0.54 −0.29

E
(1280 × 720)

Johnny −2.69 −2.81 −2.81 −2.73
FourPeople −0.47 −0.55 −0.46 −0.48

KristenAndSara −0.81 −0.53 −0.10 −0.65

Average −1.32 −1.30 −1.12 −1.29

F
(1280 × 720)

SlideShow −0.72 −1.30 −0.53 −0.79
SlideEditing −2.28 −2.32 −2.32 −2.29

BasketballDrillText −0.52 −0.40 −0.47 −0.49
(832 × 480)

Average −1.17 −1.34 −1.11 −1.19

Overall Average
(Excluding D And F) −0.89 −0.84 −0.90 −0.88

Overall Average
(Including D And F) −0.81 −0.85 −0.87 −0.82

Figures 5–7 illustrate the Rate–Distortion (RD) curves of some sequences in QP 22,
27, 32, 37. The horizontal axis is the bitrate and the vertical axis is the YUV-PSNR. If the
curve of our proposed algorithm is above the VVC, this shows that the peak signal-to-
noise ratio (PSNR) of our proposed algorithm is higher than that of VVC for the same
bitrate, indicating that our proposed algorithm enhances the compression performance.
Otherwise, our proposed algorithm deteriorated the performance. In Figure 6, the blue
curve is VTM9.1, and the red one is proposed. We enlarged a small part (the position of the
green rectangle) of each curve to show the comparison of results more intuitively. Clearly,
our RD curves were higher than that of VVC. For areas with a similar texture, our proposed
fusion-based algorithm could better model the relationship between the reference pixels
and pixels to be predicted. Hence, for the same PSNR, our algorithm needs less bitrate,
which means that our proposed algorithm improves the compression performance of VVC.
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Moreover, we compared our proposed fusion-based algorithm with some existing works
to further verify the effectiveness of our work. This is detailed in Table 2. In most cases,
the performance of our proposed algorithm was superior to the others. In [28], Yoon et al.
optimized the CCLM algorithm and achieved good results, although their work only en-
hanced the channel correlation between the luminance and chroma components and did not
consider the correlation of the stronger chroma components themselves. Therefore, overall,
our algorithm performed better. In [32], Yoon et al. obtained the mode of the current PU block
through the neighboring blocks and achieved good results. However, they only considered
the correlation between the current block and its neighbors, not the correlation between the
more distant blocks and the correlation between the reference pixels and the pixels to be
predicted. Therefore, in general, our proposed algorithm has superior performance. In [26],
Schneider et al. obtained the final prediction value through sparse coding and achieved good
results, although the dictionary is finite, which limits the performance of their algorithm. Our
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proposed fusion-based algorithm calculates the corresponding prediction value according to
different PUs, which results in improved performance.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 7. The RD curves of some sequences: (a) “BasketballPass” (416 × 240); (b) “SlideEditing” (1280 
× 720). 

Moreover, we compared our proposed fusion-based algorithm with some existing 
works to further verify the effectiveness of our work. This is detailed in Table 2. In most 
cases, the performance of our proposed algorithm was superior to the others. In [28], Yoon 
et al. optimized the CCLM algorithm and achieved good results, although their work only 
enhanced the channel correlation between the luminance and chroma components and 
did not consider the correlation of the stronger chroma components themselves. There-
fore, overall, our algorithm performed better. In [32], Yoon et al. obtained the mode of the 
current PU block through the neighboring blocks and achieved good results. However, 
they only considered the correlation between the current block and its neighbors, not the 
correlation between the more distant blocks and the correlation between the reference 
pixels and the pixels to be predicted. Therefore, in general, our proposed algorithm has 
superior performance. In [26], Schneider et al. obtained the final prediction value through 
sparse coding and achieved good results, although the dictionary is finite, which limits 
the performance of their algorithm. Our proposed fusion-based algorithm calculates the 
corresponding prediction value according to different PUs, which results in improved 
performance. 

Table 2. A comparison with other works in BD-Rate. 

Class BD-Rate/% Yoon et al. [28] Yoon et al. [32] (Test 3) Schneider et al. [26] Ours 

B 
Y −0.04 −0.45 −0.33 −1.14 
U −0.74 −0.39 - −1.08 
V −0.83 −0.38 - −1.21 

C 
Y −0.07 −0.47 −0.2 −0.20 
U −0.72 −0.45 - −0.15 
V −0.85 −0.29 - −0.37 

E 
Y −0.02 −0.58 −0.3 −1.32 
U −0.29 −0.45 - −1.30 
V −0.10 −0.52 - −1.12 

Average 
Y −0.04 −0.50 −0.28 −0.89 
U −0.58 −0.43 - −0.84 
V −0.59 −0.40 - −0.90 

  

Figure 7. The RD curves of some sequences: (a) “BasketballPass” (416 × 240); (b) “SlideEditing”
(1280 × 720).

Table 2. A comparison with other works in BD-Rate.

Class BD-Rate/% Yoon et al. [28] Yoon et al. [32]
(Test 3)

Schneider et al.
[26] Ours

B
Y −0.04 −0.45 −0.33 −1.14
U −0.74 −0.39 - −1.08
V −0.83 −0.38 - −1.21

C
Y −0.07 −0.47 −0.2 −0.20
U −0.72 −0.45 - −0.15
V −0.85 −0.29 - −0.37

E
Y −0.02 −0.58 −0.3 −1.32
U −0.29 −0.45 - −1.30
V −0.10 −0.52 - −1.12

Average
Y −0.04 −0.50 −0.28 −0.89
U −0.58 −0.43 - −0.84
V −0.59 −0.40 - −0.90

4.3. Mode Using Probability

Since our new added modes were in competition with the original VVC intra prediction
modes, we calculated the using probability of our new modes, as shown in Equation (11).
Five sequences were used to conduct this experiment.

η =
Nmode
Ntotal

× 100% (11)

where η is the using probability. Nmode and Ntotal represent the using numbers of a sin-
gle mode and all modes, respectively. If η is large, it shows that compared with other
modes, our modes are chosen more often, indicating that our algorithm shows superior RD
performance.

The using probability of mode 67 (the mode using fusion-based adaptive template
matching) and mode 68 (the mode utilizing fusion-based linear prediction) in the luminance
component are illustrated in Tables 3 and 4, respectively.
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Table 3. The using probability of mode 67 in the luminance component.

Sequence QP = 22 QP = 27 QP = 32 QP = 37 Average

BasketballPass 9.54% 7.48% 5.25% 4.06% 6.58%
BQMall 1.62% 1.48% 1.54% 1.44% 1.52%
Johnny 10.14% 11.03% 10.99% 9.84% 10.50%

BasketballDrive 5.24% 7.01% 9.16% 9.37% 7.70%
BQTerrace 8.27% 7.67% 7.20% 6.22% 7.34%

Table 4. The using probability of mode 68 in the luminance component.

Sequence QP = 22 QP = 27 QP = 32 QP = 37 Average

BasketballPass 0.00% 0.00% 0.29% 0.28% 0.14%
BQMall 0.80% 0.10% 0.12% 0.08% 0.28%
Johnny 0.12% 0.13% 0.06% 0.00% 0.08%

BasketballDrive 0.08% 0.03% 0.06% 0.04% 0.05%
BQTerrace 0.22% 0.08% 0.08% 0.03% 0.10%

Both mode 67 and mode 68 were selected to some extent. Specifically, mode 67 was
often chosen because of its good performance. Its maximum using probability reached
10.50% for “Johnny” (1280 × 720). The performance of mode 68 was not as appealing
as mode 67. Since the TMP algorithm exploits the correlation between blocks and mode
68 exploits the linear relationship between the reference pixels and the pixels to be predicted,
TMP generally works better. However, for some blocks, mode 67 could not strike a good
balance between complexity and performance, while mode 68 could achieve better results.
Hence, mode 68 also made some contributions to video compression. For “BQMall”
(832 × 480), the using probability of mode 68 reached 0.28%. These results illustrate that
our proposed algorithm showed good compression efficiency.

To show the using probability more intuitively, we plotted the numbers being used in
all luma modes of the sequence “BasketballPass” (416 × 240) in QP 32 and “BQTerrace”
(1920× 1080) in QP 27, as shown in Figure 8. The X-axis is the mode number, and the Y-axis
is the number being used for each mode. We drew two dotted lines with the numbers
being used for mode 67 and mode 68, respectively, to show the comparison of the results
more intuitively. Here, the red dotted line represents the numbers of mode 67 being used,
and the green one represents the numbers of mode 68 being used. If the blue “+” is below
the red dotted line, it means that the using numbers of this mode are less than that of
mode 67. Correspondingly, if the blue “+” is below the green dotted line, it means that the
numbers being used of this mode are less than that of mode 68. In Figure 8b, there is no
red dotted line. This is because mode 67 had been used more than 1200 times and could
not be explicitly shown in the figure. Clearly, the numbers being used for mode 67 were
much higher than that of most VVC traditional modes. Although the using probability of
mode 68 was only 0.29% (“BasketballPass” in QP 32) and 0.22% (“BQTerrace” in QP 22),
the numbers being used for mode 68 were still higher than some of the original VVC intra
prediction modes.
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Table 5 shows the total using probability of mode 67 and mode 68 in the chroma
component. For the chroma blocks, the optimal mode can be mode 67 or mode 68, only
if that of the corresponding luminance block is mode 67 or mode 68 according to the
VVC prediction process. Therefore, the total using probability of our proposed modes in
the chroma component was lower than that of the luminance component. In the chroma
component, there were also correlations between the different blocks and different modes,
hence, our algorithm was still effective for the chroma components.

Table 5. The total using probability of mode 67 and mode 68 in the chroma component.

Sequence QP = 22 QP = 27 QP = 32 QP = 37 Average

BasketballPass 4.81% 2.15% 1.35% 1.31% 2.41%
BQMall 0.42% 0.26% 0.36% 0.00% 0.26%
Johnny 3.58% 3.41% 2.79% 3.54% 3.33%

BasketballDrive 2.99% 3.72% 5.33% 3.89% 3.98%
BQTerrace 4.28% 4.65% 4.69% 3.16% 4.20%

In addition, we present the modes using subjective graphs of some sequences in QP
27. Figures 9–11 show the respective results. The red rectangular boxes are the blocks that
utilized our proposed algorithm to conduct intra prediction. As can be seen, in some areas
with similar textures, our modes were more competitive. This is because the traditional
VVC intra prediction modes are more suitable for blocks with a single texture direction
or simple areas, and our proposed algorithm can partly compensate for this shortcoming.
These results further verify the good performance of our proposed fusion-based algorithm.
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5. Conclusions

In this paper, we designed an efficient fusion-based algorithm to enhance the com-
pression performance of VVC intra prediction. First, we presented a fusion-based adaptive
template matching method to better predict areas with similar texture. The error between
the reference template and candidate template was used to make the prediction results
more precise. Second, we presented a fusion-based linear prediction method to fully utilize
the correlation between the reference samples and the pixels to be predicted. This method
also compensated for the shortcomings of the single linear prediction. Experiments verified
the effectiveness of our proposed algorithm. Compared with VTM 9.1, the bitrate savings
for components Y, Cb, and Cr achieved 0.89, 0.84, and 0.90% on average, respectively. The
maximum bitrate savings were up to 2.69%, 2.81%, and 2.81% for Y, Cb, and Cr, respectively.
In addition, the comparison with other works and using probability further verified that
our proposed algorithm improved the intra prediction performance. For some classes, the
bitrate saving was not that notable. This is mainly because the VVC itself has adopted many
new techniques to optimize the performance of intra prediction, which makes it difficult to
improve the performance. In the future, we will try to further improve the performance of
intra prediction.
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