
Citation: Li, Y.; Zhou, Q.; Li, B.;

Zhuang, Y. CFRV: A Decentralized

Control-Flow Attestation Schema

Using Mutual Secret Sharing. Sensors

2022, 22, 6044. https://doi.org/

10.3390/s22166044

Academic Editor: Tomas Cerny

Received: 19 July 2022

Accepted: 11 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

CFRV: A Decentralized Control-Flow Attestation Schema Using
Mutual Secret Sharing
Yuanpei Li 1 , Qinglei Zhou 2 , Bin Li 2 and Yan Zhuang 1,*

1 School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2 School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
* Correspondence: yan.zhuang@zzu.edu.cn

Abstract: Control-flow attestation (CFA) is a mechanism that securely logs software execution paths
running on remote devices. It can detect whether a device is being control-flow hijacked by launching
a challenge–response process. In the growing landscape of the Internet of Things, more and more
peer devices need to communicate to share sensed data and conduct inter-operations without the
involvement of a trusted center. Toward the scalability of CFA mechanisms and mitigating the
single-point failure, it is important to design a decentralized CFA schema. This paper proposed a
decentralized schema (CFRV) to verify the control flow on remote devices. Moreover, it introduces a
token (asymmetric secret slices) into peer devices to make the attestation process mutual. In this case,
CFRV can mitigate a particular kind of man-in-the-middle attack called response defraud. We built
our prototype toolbox on Raspberry-Pi to formulate our proof of concept. In our evaluation, CFRV
protects the verification process from malicious verifiers and the man-in-the-middle attack. The
proposed mechanism can also limit the PKI (Public Key Infrastructure) usage to a single stage to save
the peer devices’ computational cost. Compared to related decentralized schemes, the cryptographic
operation’s duration is reduced by 40%.

Keywords: internet of things; software integrity; control-flow attestation; challenge–response

1. Introduction

The Internet of Things (IoT), mainly consisting of intercommunicating embedded
devices, is evolving rapidly in both scale and functionality. Its territory has expanded
beyond the laboratory to cyber-space infrastructure and other industrial applications.
Applications such as IIoT [1], V2X [2], edge computing [3], and smart city [4] have benefited
from the network formed by this massive quantity of embedded devices. In this surge of
IoT applications and services, devices depend on software to meet required functionality
and flexibility. However, designing a vulnerability-free program with no implementation
flaws in its life cycle is difficult. Moreover because of the limited computing resources of
embedded devices, their applicable security mechanisms are also relatively limited. Thus,
software running on IoT devices may introduce more pervasive and challenging security
issues into the cyber-physical world in this inter-connection process.

Current software exploitation approaches have evolved from code injection to code-
reuse (e.g., return-oriented programming [5]). Code-reuse attacks are an advanced ex-
ploitation technique that can bypass security mechanisms like data execution prevention
(DEP) and code signing [6]. Through this approach, attackers can construct a chain of
legitimate code snippets for malicious usage by redirecting the control flow. To cope with
these attacks, researchers have developed several code-reuse mitigation mechanisms like
control-flow integrity (CFI) [7], code-pointer integrity (CPI) [8], and control-flow attestation
(CFA) [9].

In most cases, the control flow can be considered as the reflection of software behavior.
CFA fills the gap between control flow integrity (CFI) and software remote attestation (RA).

Sensors 2022, 22, 6044. https://doi.org/10.3390/s22166044 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166044
https://doi.org/10.3390/s22166044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3647-4641
https://orcid.org/0000-0002-1156-1108
https://orcid.org/0000-0003-3455-4901
https://doi.org/10.3390/s22166044
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166044?type=check_update&version=3

Sensors 2022, 22, 6044 2 of 19

It extends this remote attestation schema from claiming the integrity of a static binary to
to determining the validity of its run-time behavior. The key security feature of CFA is a
secure control flow recording module. With hardware or software protection, this module
can securely log control flow events during the execution of the software. Since these
records cannot be tampered with without making physical damages [9], verifiers can obtain
the proof to determine whether the software behavior was integrated through examining
its records. CFA still has room for improvement in the security of its verification protocol,
since it is a newly proposed mechanism. A remote attestation schema that uses a trusted
center would risk single-point-failure [10].

To meet the needs of making inter-operations between peer devices, it is not enough
for a remote attestation schema that could not work without a central node. Moreover,
security assumption in these works—requiring a trusted center—are strict. Therefore, it
is necessary to develop a decentralized control flow attestation schema. In developing a
decentralized attestation schema, a node could be a verifier in one verification session while
being a prover in another session. With the protection of CFA, each device in the network
is able to confirm the validity of the computation result that its peer devices transfer. This
ability makes this CFA schema become more suitable for protecting software integrity in
the growing complexity of the IoT landscape. Without a trusted center that provides the
validity of the attestation request itself, a mechanism that mitigates the malicious verifier is
necessary while developing a decentralized CFA schema.

This paper develops a decentralized CFA schema called CFRV (control flow run-time
mutual validation). In addition to securely recording the control flow, it proposes a secret
slicing mechanism between peer devices to reach a mutual verification process. The prover
could determine both the origin and validity of challenges. It protects the attestation
process from a kind of MiTM attack called response defraud, launched by a malicious verifier.
CFRV, our proposed schema, can also relieve the performance burden by limiting the
public-key-usage in resource-constrained devices to a single and only crucial stage.

Our contribution is elaborated as follows:

• We patched the decentralized CFA with a secret slice mechanism. It makes the prover
able to determine the real origin of challenges and achieve mutual verification between
peer devices.

• The proposed secret slice mechanism in CFRV can also extend those schemes which
use the execution of challenges as the proof-of-execution. In the decentralized schema
that requires the prover to execute the challenges, it refuses illegal challenges that
contain attack vectors from a malicious verifier.

• Limiting PKI usage to a single phase (the registration phase) reduces the computational
burden of handling the attestation, especially for resource-constrained devices.

This paper is organized as follows: We describe the research questions for approaching
a decentralized CFA schema in Section 3. From Section 4 to Section 5—the central part
of this paper—we propose our solution. Section 4 presents an overview of our schema.
Section 5 is the methodology details to solve the research questions. The implementation of
CFRV and its safety evaluation are presented in Sections 6 and 7. We conclude our paper
with a summary of contributions, limitations, and future work in Section 8.

2. Background and Related Works
2.1. Control Flow Attestation

Control flow attestation is firstly proposed in C-FLAT, which verifies the CFI of remote
devices [9]. It tags on each control flow with an identifier sequence to record execution
paths. With hardware-based protection like Intel SGX [11,12] or ARM Trustzone [13], it
provides a secure control flow recording module on every prover to ensure that the record
of control flow could not be forged. It operates in a challenge–response pattern to make
the verifier determine the validity of remote control flow through the records in response.
The verifier sends a challenge, and the prover executes it. The tags are triggered to log
its control flow while the target software executes challenges. In this way, a device can

Sensors 2022, 22, 6044 3 of 19

obtain the necessary proof to determine the control flow integrity of its peer. It extended
remote attestation of software integrity from static binaries into its dynamic behavior with
a record. Compared to those static schemes like MAGE [10], SEDA [14], and SANA [15],
control-flow attestation is an advanced approach that proves the software integrity can be
dynamically verified. This attestation schema could divide into centralized [9,16–22] and
decentralized [23–25] approaches based on its security assumption.

Tiny-CFA [16] lowers the hardware requirements of CFA which is oriented to the
low-end sensors. ScaRR [17] extend the CFA schema’s scalability, making the attestation
suitable for complex tasks. Based on a probabilistic model, MGC-FA [18] balances the
runtime efficiency and recording granularity of target software. LiteHAX [19] is designed
to extend this attestation schema to defend against data-oriented programming (DOP)
attacks. Lo-FAT [20], ATRIUM [21], and Liu et al. [22] leverages the existing processor
features to overcome the performance overhead caused by the instrumentation of software.
In our study, we focused on securing the verification process in these related schemes. The
prover in C-FLAT [9] and Lo-FAT [20] gives its response without verifying the identity of
challenges, using the premise that there is only one trusted verifier. Without an identifi-
cation mechanism, the prover could be maliciously exploited by a device impersonating
the “trusted” verifier. Tiny-CFA also mitigates this impersonation by containing a token
in challenges.

However, the centralized schema is still vulnerable to the single-point failure [23].
A trusted center is mandatory in these centralized CFA schemes, which plays the role of
the only verifier. Once the central node is unavailable, it affects the availability of CFA in
the entire system. Not only that, but the requirement of a trusted center is hard to satisfy in
some clustered IoT devices.

2.2. Decentralized CFA

To meet the needs of remote verification in various interconnected devices, it is not
enough for an attestation schema that could not work without a central node. Koutroumpou-
chos et al. [23] decentralized the attestation and proposed a mutual verification schema
(CFPA) in edge devices through the deployment of the public key. The device in this system
could be either a verifier, prover, or both. Verifiers use its private key to sign challenges
so that a prover can determine the identity of challenges. Hristozov et al. deploy a de-
vice identifier composition engine (DICE) to securely generate control-flow proof rather
than using custom hardware extensions of the CPU architecture [24]. The verifier in their
work is not required to be a central node. With the deployment of PKI to identify each
device, this schema is suitable for the decentralized scenarios. Nevertheless, because of
the use of a public key, they claimed that this scheme is vulnerable to a malicious verifier
that launches the denial-of-service (DoS) attack. ARCADIS [25] is another control-flow
attestation scheme oriented to distributed devices. It determines whether or not run-time
attacks compromise the software of asynchronous, distributed IoT services. A verifier uses
its public key to keep the confidentiality of challenge besides its digital signature. This way,
ARCADIS protects the decentralized control flow attestation process from session hijack.
This schema could be further developed to lower the computational cost of public-key
usage on resource-constrained devices [26].

However, without a trusted center to provide the validity of the attestation request
itself, a malicious verifier could threaten the verification process between peer devices; this
applies especially for clusters in which every device is capable of launching a verification.
As declared in [24], malicious requests may harm the availability of the attestation process.
Moreover, the malicious node can launch a new verification process (to become a verifier)
to get the legal response to bypass the attestation (which it receives). We call this vulnera-
bility response defraud, which is described in Section 3.2. Moreover, the malicious verifier
conducting the response defraud with no need to conduct the session hijack or steal another’s
a private key (the impersonation). In this case, it is hard to mitigate this threat only by

Sensors 2022, 22, 6044 4 of 19

deploying the PKI. To our best knowledge, there is still a lack of effective CFA schemes
which are equipped to mitigate this threat.

2.3. Executing Challenges as a PoX

Proof of eXecution (PoX) is a mechanism that ensures the target software is indeed
executed during an attestation process. It aims to ensure all the control-flow records are
generated with the timely execution of target software [27]. The PoX of target software can
be realized by a hardware flag which is hard for an adversary to tamper with. Tiny-CFA
introduces PoX to lower the hardware requirements in CFA.

Besides keeping the records integrated, this research indicates that it is also important
to ensure that the control-flow record is actually triggered by current inputs. Under this
condition, the other approach of PoX is to use software input as the challenge and let the
prover execute it. In ScaRR [17] and Lo-FAT [20], the verifier initiates the CFA by sending
prover a program input S. To be the other kind of PoX, the verifier in these schemes only
accepts the response triggered by S. It is hard for the adversary to predict the control flow
triggered by the next challenge. Therefore, this mechanism forces the prover to execute
the challenges that the verifier sends. In this case, an attacker is prevented from replacing
the input to trigger the un-hijacked control-flow, which would allow the attestation to
be bypassed. In other words, without the PoX of input, the verifier may not be able to
cover all the execution paths of a prover. Nevertheless, if we extend this kind of PoX into a
decentralized scenario, its security insurance should be further developed.

In previous decentralized CFA research, deploying this kind of PoX (which regards
software input as a challenge) is hard. This is because, in the verification process, the prover
cannot determine the validity of the challenge. Once the verifier is no longer trustworthy,
a malicious verifier could use an attack vector as the challenge. We call this threat a poisoned
challenge, which is discussed in Section 3.1.

2.4. Research Gap

This paper formulates the root causes of these shortages in Section 3. Moreover, we
elaborate on the research gap that CFRV is designed to fix.

• Issue 1: The existence of a center node may lead to single-point failure in the network.
The whole cluster of devices is unavailable once the center node corrupts. For an
attestation schema, it is not enough in its functionality as it could only work unidirec-
tionally.

• Issue 2: In the decentralized schema, adversaries have chances to become a verifier.
Due to the potential malicious behavior of the verifier, previous decentralized control
flow attestation schemes cannot use the input as the PoX mechanism. Moreover,
the security issue caused by a malicious verifier is hard to mitigate only by an encryp-
tion process. The adversary can bypass an attestation process by using a defrauded
response from a new verification process it launches.

• Issue 3: Each node can initiate or respond to the verification in a decentralized schema.
Under this condition, the frequency of PKI usage would increase significantly com-
pared to the attestation launched only by the trusted center. Moreover, due to the
need to mitigate impersonation in the decentralized schema, PKI usage is more so-
phisticated. Although public-key algorithms for resource-constrained devices have
made great progress in the last two decades, high-frequency usage might still lead to
performance bottlenecks. In decentralized CFA schemes, the computational cost of
using the private key in every challenge–response process could be further optimized.

3. Research Questions

In decentralized verification schemes, especially CFA between peer devices, a node
could not only be the prover but also act as the verifier. As we declared before, a trusted
verifier is a strong security assumption in most cases. Therefore, verification stages where a
malicious verifier is involved might develop new threats.

Sensors 2022, 22, 6044 5 of 19

3.1. RQ1: Making the PoX Mechanism (That Requires the Execution of Challenges) Suitable for
Decentralized CFA Schema

As introduced in Section 2.3, some schemes use the execution of challenges as the
PoX. These schemes require a prover to execute the challenge to monitor the control flow
it triggers. In a centralized CFA schema, this approach of PoX is reasonable because the
verifier in their security assumptions is claimed to be a trusted center. However, this
mechanism is hard to be deployed in the previous decentralized schema if the verifier is no
longer trustworthy. In this part, we consider poisoned challenges from a malicious verifier to
be the root cause of this barrier. In Section 5, it is mitigated by the proposed secret slice
mechanism, which makes this kind of PoX suitable for the decentralized schema.

In other words, this paper regards the barrier that decentralized CFA schema cannot
use the execution of challenges as the malicious verifier could hijack a victim’s control flow
using the poisoned challenge. In Figure 1, verifier (A) and prover (C) are two innocent
devices and running the same target software, acting as peer nodes. The gray squares
indicate the normal attestation processes which are in line with previous works [17,20].
They use the execution of challenges as the PoX. The verifier (A) generates S as the input of
target software. It records those execution paths that are triggered by S in the control-flow
graph (CFG). Then, A generates challenge c by combining its verifier ID (IDv) and timestamp
(T). Prover (C) executes S to show the corresponding control flow logs, and generates the
response r which is a signed pair of challenge and execution paths, Auth. Verifier accepts
the response, if H(Exec(S)) equals to H(CFG(S)) it stored, which indicates the prover has not
been hijacked.

Target software

Verifier Prover

Target software

Generate input S Execute: Exec(S)

Measure paths:

H(CFG(S))

Log executed paths:

Auth = H(Exec(S))

Generate response rGenerate challenge c

Verification of r

c

c=IDv, S, T

r

r=Sigv(Auth,c)

Malicious verifier

c'=IDv, S', T

c'

Target software

Generate input S'Execute:

Exec(S')

Exploited
Generate

challenge c'

①

②

③

④

⑤

Normal attestation process

Poisoned challenge

(A) (B)(C)

Figure 1. The execution of a poisoned challenge may enable the hijacking of a prover’s control-flow.

In the poisoned challenge process, a malicious verifier could exploit this execution
process by injecting attack vectors as the payload in a challenge. After these poisoned
challenges are executed, software running on the victim device could be under the control of
adversaries for malicious usage. In Figure 1, B is a malicious device. À uses return-oriented
programming to generate attack vector S’. In ÁÂ, malicious B launches a verification to
C using exploit S’ as a payload of challenge c’. The prover (C) has no efficient evidence
to refuse this verification between peer devices. As a result ÃÄ, shown in red squares, its
control flow has been redirected after executing S′.

3.2. RQ2: Mitigating the ‘Response Defraud’

Undoubtedly, the verifier could reveal adversaries in a device under an attestation
process. This ability is the primary concern of CFA. However, in decentralized approaches,
the malicious node has a further strategy (response defraud) to bypass the verification. It can
launch an additional verification to defraud the legalized response from another device.

Sensors 2022, 22, 6044 6 of 19

This paper regards the response defraud as a particular kind of MiTM attack in the challenge–
response scenario. However, the key difference between response defraud and the general
MiTM attack is that the malicious verifier has no need for conducting the impersonation or
session hijack. The main purpose of a malicious verifier is not to compromise software or
steal the victim’s key but to defraud a legalized response in the new verification process.
Each pair of attestation sessions is integrated and confidential. In this case, response defraud
is hard to mitigate only by the PKI or pre-shared symmetric keys.

In Figure 2, A and C are two innocent devices, while B is malicious, with its software
control flow hijacked. In line with previous works [25], the verifier uses its private key to
sign the challenge, and the verification session is protected by symmetric encryption. In À,
A launches a remote verification to determine the control flow integrity of B. B can decrypt
the message by using their session key KAB. To defraud the legal response, in Á, B signs the
challenge using its own private key. After that, it launches the other verification to C with
the same challenge. C is unaware of the process that B is being verified by A. In this case, it
gives a response encrypted by session key KBC. The malicious node decrypts the response
using KBC and obtains a legalized response R from C. It re-encrypts it using KAC. After the
re-encryption, B sends it back to A. Due to the uncertainty of the network, it is hard for the
verifier to set a strict time limit for verification duration. The malicious device could reach
its goal once such a strategy is completed sooner than the session closed. As the device
itself is malicious, the adversary owns the key stored on B during the communication.

A

C

B

1

2

3

MsgAB={Enc[KAB:Sign(PriA:c)] || Enc[KAB:c]}; A sends MsgAB to B

Dec[KAB:MsgAB]; B got c ; Verify[PubA:Sign(PriA:c)]

MsgBC={Enc[KBC:Sign(PriB:c)] || Enc[KBC:c]}; B sends MsgBC to C

Dec[KBC:MsgBC]; C got c ; Verify[PubB:Sign(PriB:c)]; R=Exec(S);

MsgCB={Enc[KBC:Sign(PriC:R)] || Enc[KBC:R]}; C sends MsgCB to B

4

Dec[KBC:MsgCB]; Verify[Sign(PubC:R)]; B got R;

B uses R to forge R' (Fig 3)

MsgBA={Enc[KAB:Sign(PriB:R')] || Enc[KAB:R']}; B sends MsgBA to A

1

2

3

4

A uses challenge c to verify B

B forwarded it to C

C gives its response R to B

B uses R’ as its response to A

Figure 2. The response defraud in decentralized CFA schema.

Moreover, response defraud is still achievable for adversaries even if target software’s
control-flow stamps (block-ids) are randomly generated. In Figure 3, B substitutes its
control-flow stamps according to R to forge a legalized R′. This is because those stamps,
accompanied by the target software, are not directly protected by the CFA (i.e., the target
software is stored in the normal world). Its implementation detail is in Section 7.1.4.

Sensors 2022, 22, 6044 7 of 19

0x137C

0xA226

0xF968

0x3AF0

0x6719

0x9005

0x3AF0

0x6719

0x3AF0

Legend: Legal path

Illegal path

basic block

instrumented block
Input = challenge

Forged responseHijacked control-flowLegal behavior

Figure 3. Forge a legalized response(R’) after the fraud.

3.3. Motivations

In a decentralized attestation schema, each node could be a verifier in one verification
session while being a prover in another session. Without a trusted center that provides the
validity of the attestation request itself, a mechanism that mitigates the malicious verifier is
required while developing a decentralized CFA schema. Therefore, to enhance the safety of
the decentralized CFA process, CFRV tackles poisoned challenges (RQ1) and response defraud
(RQ2) by patching the secret slice mechanism and its related support onto the control
flow attestation in Section 5. It gives the evidence for a prover to determine the origin of
challenges and their validity.

4. System Model
4.1. Overview

This section is mainly about the high-level description of CFRV. Figure 4 shows
how a CFA mechanism records software execution paths with the help of ARM Trustzone.
Gray-tagged components are in line with previous work, which used them to record the
control-flow securely [9,16,20]. When the software is running in the prover, instrumented
stamps in the control-flow are passed through the trampolines to the secure world, which
are extracted by CF-logger to hash-engine (ÂÃÄ). Then, the records would be processed by
the attestation driver to generate the response Å. À and Æ are a classic challenge–response
process. In CFRV, there is no dedicated prover or verifier. We logically distinguish between
two peer devices in Figure 4 to emphasize their attestation detail. When a device becomes
the verifier, the verification engine in its secure world (V) sends a challenge. The prover
uses secure world (P) to give its response. Black-tagged components, the secret slices, can
check the challenges they receive Á. It makes the prover able to determine the validity of
challenges and which device generated this challenge.

Its main idea is that one node (i.e., one device in the network) generates a set of
challenges and distribute them secretly to other nodes. Furthermore, each node only shares
part of the challenges they generated with other nodes, but no two other nodes hold the
same challenge. When a node receives one verification request, it can immediately tell
whether the verifier is legitimate by checking the challenge distribution history. This way,
peer nodes are free from malicious verification requests. The attestation process requires
the prover to execute the software input S that the verifier sends (to generate the PoX).
In this case, CFRV is suitable for the task-splitting scenarios that require the remote device
to provide a trustful computation result (e.g., making data that remote sensors collected
trustworthy or confirming the validity of a remote procedure call).

The mechanism which enables verifiers to ascertain the execution path of target soft-
ware is in Figure 5. We stamp a message string in the control flow as the unique identifier for
each execution path. These message strings are randomly generated during the compilation
process. Once these instrumented stamps are being triggered, CF-logger in secure world (P)

Sensors 2022, 22, 6044 8 of 19

can record its execution path into a response. Thus, the run-time integrity of software can
be determined by the occurrence order of basic blocks. An unexpected record would be con-
sidered a control-flow hijack. A verifier gives its judgments based on the pre-shared secret
slices in its secure world (V). Furthermore, we clarify the relationship between the secret slicer
and other components in Figure Secretslice3-v2-part1 and Figure Secretslice3-v2-part2.

T
ra

m
p
o
lin

e
s

C
F

-L
o
g
g
e
r Secret slices(P)

Attestation Driver

Target program
(instrumented)

Secure world (P)

Verification engine

Secure world (V)

Boot loader

Hardware

Normal world

Hash engine

Secure world(P)

Normal world

Verification

engine

Secure world (V)

H
a
rd

w
a
re

Prover Verifier

①②

③

④

⑤

⑥
⑦

Pre-existing components
CFRV components

Legend:

Secret slices(V)

Figure 4. The remote verification architecture.

id=0x137c

id=0xa226

id=0xf968

Legend:
Legal execution path

Illegal execution path

Basic block

Instrumented block

Challenge

Hijacked Legal behavior

Response = Hash(Hash(id1)||id2) + LoopMetadata

id=0x137c

id=0xf968

id=0xa226

Response

C
F
A

 C
o
m

p
o
n
e
n
ts

Figure 5. Attestation to a control-flow.

4.2. Security Assumptions

The adversary is capable of control-flow hijacking attacks in related work. Similarly,
in our consideration, a control-flow hijack could be performed through code-injection
and return-oriented programming. As the trust anchor, functions deployed in the secure
world could not be disabled or modified as long as it has not been physically damaged. In
addition, we make the security assumptions that there is no malicious node while they
share secret slices. This requirement can be ensured by making devices share their secret
slices only in the stage of device installation.

Moreover, we removed the requirement that the schema needs a trusted center to
legalize challenges. Instead, we use a temporal master node that only operates in the
initialization phrase once.

5. Mutual Verification Design

This section focuses on the working principle of secret slicer. It illustrates how to
protect the CFA-based security mechanism from illegal challenges and malicious verifiers.
We design the mechanism including the following steps: insert instrumentation in the
control flow generates and then shares secret slices for mutual attestation. Thus, provers

Sensors 2022, 22, 6044 9 of 19

are able to confirm the validity of the verifier based on secret slices they hold. Therefore,
peer devices could be protected from poisoned challenges and response defraud. Table 1 is the
summary of the symbols and procedures used in this paper.

Table 1. Symbol summary.

Symbol Description Procedure Description

Ci Challenge slice Exec(c) Execute the input c
Ri Response slice Sign(KPri : m) Sign m using private key KPri
c a challenge Veri f y(KPub : m) Verify m using public key KPub
SecretCA Secret slice from C to A [ri] Generate a random number
T Time stamp Enc(K : m) Encrypt m using symmetric key K
n The number of devices Dec(K : m) Decrypt m using symmetric key K
S Software input Hash(A||B) Cryptographic hash function

5.1. Design of Secret Slices

Secret slices are a key component of the verification process. To clearly illustrate its
functionality, we present the principles of secret slices design in this part.

5.1.1. Building Secret Slices

In order to reach a mutual verification, in our schema, the set of challenges used for
verifying a particular device should be unique. In other words, every verifier has a unique
challenge set, and they do not know about others’ challenge sets. We slice these challenge–
response pairs to ensure that every challenge can only exist on one device. Similarly,
we divide the challenge–response pairs (CRPs) to make sure that every response could
only belong to one slice. This way, the prover can distinguish the one who generates the
challenge while determining its validity.

We formalize these dis-jointed sets of challenges in Equation (1).

∀Ci ⊂ C, Ci ∩ (C1 ∪ C2 ∪ . . . ∪ Cn) = ∅; ∀Ri ⊂ R, Ri ∩ (R1 ∪ R2 ∪ . . . ∪ Rn) = ∅ (1)

Moreover, we formalize its validity in Equation (2).

∀cj ∈ Ci, Exec(cj) ∈ Ri (2)

Note that we keep the functionality of every slice the same in Equation (3):

∀i, j ∈ n, Ri − Rj = ∅ (3)

In Figure 6, we form the CRPs in the following steps: the secret slicer generates a set
of test cases from the seed and records corresponding control-flow traces. The seed sets are
used for automatically generating test cases and implementing one-time challenges the ver-
ifier keeps. The slicer makes target software execute these test cases to invoke instrumented
instructions and to trigger the CF-Logger that records the control flow automatically. Then,
challenge–response pairs are generated. Note that the control flow record is not the detailed
trace of a software behavior but the result of hashing block-ids. Moreover, we assume
the slicer has a seed set provided by developers to cover all the execution paths for the
target software.

Sensors 2022, 22, 6044 10 of 19

Challenge-response Pair Secret slices for Node-C

Seed

Testcase

generator

Node-A
Node-C

Testcase generator

Seed
A-1

A-2

A-3

A-4

A-5

A-6

R-A1

R-A4

R-A6

R-A2

R-A5

R-A3

C-2

C-5

R-C2

R-C3

R-C5

Secret slices for Node-A

C-3

A-6 R-A6

A-4 R-A4

A-1 R-A1
Challenge-response

Pair

Figure 6. Building and sharing secret slices.

5.1.2. Distributing Secret Slices

Each node—an embedded device in an IoT cluster—divides its CRPs into sets of
disjoint slices based on the number of communication pairs. Figure 6 illustrates its operation
between node A and C. The slicer delivers these secret slice of node A to other node C,
as SecretAC. Only the challenges can be stored in A after the delivery, and the responses
in CRPs are removed. We define this challenge set as challenge_sliceAC. The secret slice is
a bunch of generated test cases and corresponding responses (e.g., SecretAC). The slicer
ensures that test cases make each secret slice able to cover all the execution paths. When
sharing to some other nodes, e.g., B, test cases will be picked from another CRP division,
which could also cover all the execution paths. This mechanism is guaranteed by the
design of slicers. Moreover, a certain test case could and could only be picked once. This
makes the content of a certain secret slice totally different from other slices. For example,
test cases in SecretBA and SecretBC are different. In this way, the prover A can use the
challenges_sliceAC to confirm that the challenge is actually from verifier node C when it
requires the control-flow response of A. It is vice versa for SecretCA generated by verifier C.

5.1.3. Safety

The secret slices can only be stored and used by secure world (P), which the Trustzone
protects. Challenges in the secret slices are only used for determining the validity of the
prover. Target programs in the normal world (and adversaries) cannot obtain or execute
those challenges stored in secret slices only when secure world (P) passes the challenge to
normal world. During the secret delivery phase, secret slices are protected by public-key
infrastructure (PKI). The malicious node cannot acquire others’ secret slices. In this way,
we protected the response of control-flow of A from leaking to adversaries in the prover.
Therefore, it enables the prover to distinguish masquerade challenges from a malicious
verifier, which tries to impersonate some other legal ones. In our schema, the secret delivery
works along with PKI, which is elaborated in Section 5.3.

5.2. The Mutual Verification

The verification process allows one node, which acts as a verifier, to test control-flow
integrity on the other node randomly. The verification phase, as shown in Figure 7, consists
of three following steps:

(i) The verifier A uses a random number ri to pick a Challenge–Response Pair (CRP)
[c2, R2] = SecretCA[ri] from a secret slice sent by prover as c2. Then, it sends c2 as an
attestation request to node C.

(ii) The prover ensures that c2 is actually from SecretCA by confirming c2 has actually
been shared to A in the secret-sharing stage. The prover executes the challenge c2
after the admission that it is from SecretCA. R′2 represents the hash of basic-block id
consequences of its execution path, which would then be sent to the verifier (V).

(iii) If R′2 is equal to R2 that the verifier stores, verifier (V) would confirm the prover’s in-
tegrity based on its control-flow that matches the challenge in SecretCA. The challenge
is only in SecretCA which was delivered uniquely from C to A. Therefore, the validity
of verifier A is also confirmed.

Sensors 2022, 22, 6044 11 of 19

A-1

Challenge-slices-A

Secret slices for Node-C

C-3

(Node-A) (Node-C)

Secret slices for Node-A

C-1

Challenge-slices-C

Attestation

Module

Attestation

Module

A-2

A-3

A-4

A-5

A-6

C-2

C-2

C-5

C-4

C-6

R-C2

Secure world(P)Secure world(V)

Secure world(P) Secure world(V)

Verification

Engine

Verification

Engine

Verifier Prover

C-2

C-5

R-C2

R-C3

R-C5

C-3

A-6 R-A6

A-4 R-A4

A-1 R-A1

R-A6

Figure 7. Mutual authentication using secret slices.

In this way, the prover can mitigate the poisoned challenge by checking if the challenge
existed in the secret slice. Secret slices in secure world (P) refuse to pass such a poisoned
challenge to followed components. The response defraud can also be extinguished by step (ii),
where the malicious node could be revealed when it forwards the challenge to other devices;
this is because the forwarded challenge has not been shared in secret slices. For example, A
could not use c1 to verify C. If it is used, the prover C would refuse the request from A as c1
has shared to another device.

5.3. Optimizing PKI Usage in Decentralized CFA Schema

In our solution, devices can verify each other mutually while defending the attestation
process from malicious nodes. Similar to other research, mitigating impersonation and
session-hijack, we use PKI to keep the verification confidential and integrated. Moreover,
the usage frequency of public-key could be reduced in every verification process after the
deployment of our secret slice mechanism.

Our motivation is declared as follows: (i) To identify which device sends the challenge,
the verifier uses its private key to sign the message digest. Using a private-key alone does
not guarantee confidentiality as every node holds its public key. (ii) Likewise, if we use the
private key of a verifier to identify a challenge and use symmetric encryption to keep it
confidential. It is hard for this approach to defend response defraud from a malicious verifier.
The reason has been declared in our threat model. (iii) We deploy secret slices to mitigate
such threats under the protection of symmetric keys. Therefore, the shared slices already
determine the identity of generated challenges. Before challenges are exhausted, using the
private key (for identification) in every attestation process is unnecessary. This means the
usage of PKI could be concentrated into a smaller procedure. Thus, embedded devices can
lower their computational burden to a certain extent in each verification session.

We elaborated a registration phase to protect the secret delivery in our verification
schema. It works as follows: (i) We use a temporary master node for the key exchange,
in line with public-key infrastructure; (ii) The secret slicer generates the matrix of test
cases and builds the secret by recording the corresponding control flow with the test cases.
For example, the secret slice that passed from B to A is SecretBA. After generating secret
slices, node B only keeps the challenge name and drops the response; (iii) The node delivers
secret slices to its peer. This involves digesting the secret slices, signing the message
digest with its private key, and encrypting the secret slices using their session key. Then,
the temporary master node is withdrawn from the cluster.

6. System Implementation

In this section, we describe our implementation of CFRV on Raspberry-Pi 3b with the
OP-TEE. The Raspberry-Pi series is a popular platform in the embedded devices’ ecosystem.
We use ARM Trustzone as the trust anchor, which isolates secret slices and CF-logger from

Sensors 2022, 22, 6044 12 of 19

target software by hardware support of processors. As ARM takes a major part of the MCUs
market, it is reachable for CFRV to be transplanted into real-world usage like automotive
and smart homes. We use the LLVM [28] as our compile chain for the instrumentation (the
Figure 8).

Note that, when a function is repeatedly executed, the performance impact brings by
interacting with the control-flow recording module seems unacceptable [9]. To deal with,
in line with instrumentation-based schema (like C-FLAT), we use loop-counter instead of
stamping inside the loops. In this part, we elaborate on our complete attestation schema in
the following three phases.

lea rsp, [rsp-98h]

mov [rsp+238h+var_238], rdx

mov [rsp+238h+var_230], rcx

mov [rsp+238h+var_228], rax

mov rcx, 0E31Eh

call _blk_ID_logger

mov rax, [rsp+238h+var_228]

mov rcx, [rsp+238h+var_230]

mov rdx, [rsp+238h+var_238]

lea rsp, [rsp+98h]

jmp short $+2

Instrumentation

Figure 8. Instrumentation.

6.1. Initialization

The initialization phase is to set up the attestation’s basic requirements. It includes
the compilation of target software, the instrumentation, and the generation of secret slices.
In this phase, devices are secure, as the security assumption declared that this process
happens only once on the temporally existing master node.

(i) In order to deploy an instrumentation process for identifying each control flow,
CFRV uses Clang to compile source code into its intermediate representation (IR).
Instrumentation is a way to statically make stamps on the control flow by inserting
identifiers between transfer instructions in the IR. These stamped instructions (the
block-id and jump to the trampoline) are used for recording its execution path. In
Figure 8, the block-id inserted into the IR is a 16-bit random number. Rather than
instrumenting before every block, CFRV reduces the instrumentation density as long
as the control flow record is unique. Furthermore, we use a loop-counter instead
of stamping inside the loops. Then, we build these instrumented IRs into binaries
through the LLVM backend.

(ii) The secret slicer transforms random seeds to build a set of challenge–response pairs by
covering execution paths automatically. In our proof-of-concept, we built fuzzer-like
test-cases generator based on the AFL [29]. For example, changing the precision of
floating point variables can generate different test cases. Moreover, to ensure every
slice is totally different from others, the number of devices (n) cannot be too large.
In our implementations, we regard 8 as a normal threshold of n and the size of each
secret slice is 15 kb.

(iii) The master node delivers unique binaries along with their certificates (public-key
pair) to other devices. After that, it would be excluded from the cluster as we cannot
always ensure its safety.

6.2. Registration

In this phase, peer devices exchange their secret slice under the protection of public-
key infrastructure.

(iv) Devices slice their generated test-cases into disjoint parts based on the number of
other devices (N) with a constraint that the functionalities for each slice are the same.
For example, the content of SecretBA is totally different from SecretBC as a certain test
case could and could only be picked once (Equation (1)), while the control-flow they
trigger are the same (Equation (3)). After sharing secret slices, the node B only keeps
its challenge as challenge_slices and drops the response in the secret slice.

Sensors 2022, 22, 6044 13 of 19

(v) The node delivers its secret slices under the protection of PKI that deploys in (iii). For ex-
ample, device B sends A the message which contains: Sign[KPriB : Hash(SecretBA)],
Enc[KBA : SecretBA], Enc[KPubA : KBA].

This way, devices can securely share their secret slices and session key.

6.3. Verification

The verification process allows one sensor node (the verifier) to determine the run-
time integrity of certain software on other nodes (the prover). It consists of three steps
shown in Figure 9, which corresponds to the verification phrase in Figure 10. Note that,
without secret slices, using symmetric encryption alone is vulnerable to response fraud that
we declared in Section 3.

Select: ri, T1 and

 [Ci, Ri] = Secret_BA[ri]

Compute:

 D1 = Enc[K1: (challenge || T1)]

 D2 = Hash(IDA || T1)

Select: T2

Compute:

 [C' || T1] = Dec[K1:D1]

Verify:

 |T2 – T1| < �T

 IF EXISTS C' IN Secret_BA'

Compute:

 CFH = Log[Exec(C')]

 D3 = Hash(T2, CFH)

Select: T3

Compute:

 D4 = Hash(T2 || Ri)

Verify:

 |T3 - T2| < �T

 IF (D4) EQUALS TO (D3)

M1 = (IDA, T1, D1, D2)

M2 = (IDB, T2, D3)

Sensor A (Verifier) Sensor B (Prover)

Figure 9. The verification phase.

LLVM Backend

Log what happens

in the normal

world

Clang

 Binaries

Hashed-response

 Secure_world(V)

sends a challenge
Secure_world(P)

verify the

challenge

Secret sharing

Verifiy the

response

Instrumentation

C/C++ Source Code

VerifierProver

Initialization

Registration

Verification

Figure 10. Relationship among components in CFRV.

(vi) The verifier generates a time-stamp T1 and selects a random number r1. Verifier uses
r1 to pick a Challenge–Response Pair (CRP) [c, R] = SecretBA[r1] from secret slice which

Sensors 2022, 22, 6044 14 of 19

is sent by the prover. The verifier computes D1 and D2. D1 is encrypted with their
symmetric key to secure the random challenge c. Then, it sends M1 as a verification
request to B.

(vii) The prover generates a time-stamp T2 and decrypt T1 and challenge c from D1. We use
| T2 − T1 |< ∆T to reject the time-out messages. The prover ensures that c is actually
from SecretBA shared in the registration phase. The prover uses the corresponding
software to execute challenge, c, after admitting it is from SecretBA. CFH is a control-
flow record consisting of the hashes of basic block-id consequences. Then, the prover
sends M2 to the verifier along with its loop metadata.

(viii) Verifier generates a time-stamp T3 and computes D4 = Hash(T2 ‖ R). If | T3 − T2 |<
∆T and D4 == D3, the verifier would accept prover’s integrity based on the control-
flow records which matches the response stored in SecretBA. D4 == D3 means that
corresponding control-flow is actually integrated.

7. Evaluations

In this section, we examined the performance of CFRV by analyzing our counter-
measure to the research questions and the computational cost it brings.

7.1. Safety

We evaluate the safety of the verification process in related mechanisms according
to our security assumptions. In Table 2, we list several common threats along with our
research question for evaluating decentralized approaches to control-flow attestation.

Table 2. Safety analysis of related schemes.

Scheme Single-Point
Failure Impersonation Session Hijack Poisoned

Challenge
Proof of

eXecution
Response
Defraud

C-FLAT [9] 5 - 5 -
Lo-FAT [20] 5 - 4 -

Tiny-CFA [16] 5 4 - 4 -
ScaRR [17] 5 - 4 -
CFPA [23] 4 4 4 5 5

Hristozov
et al. [24] 4 4 4 4 5 5

ARCADIS [25] 4 4 4 4 5 5

CFRV 4 4 4 4 4 4

Item ’-’ means this approach was not applicable. Item ’4’ means this threat can be mitigated.

7.1.1. Impersonation

Regardless of its performance burden, public-key usage in decentralized attestation
schema could mitigate the impersonation well. Challenges are required to be signed,
even in centralized approaches; otherwise, an impersonated verifier can compromise it.
In Table 2, the semi-circle means the verifier has not signed the challenge, or it has not
declared in the scheme. In CFRV, the challenge is uniquely specified in the secret slices to
identify each node. An unexpected challenge could not be accepted.

7.1.2. Session Hijack

In CFRV, the challenge is uniquely specified in the secret slices to identify each node.
An unexpected challenge could not be accepted. If a scheme transfers challenges in plaintext,
adversaries can modify the message or replace the payload with a poisoned challenge even
if the real verifier is trustworthy. In Table 2, semi-circles mean the response is not encrypted
by the prover or has not been declared in the scheme. The communications between peer
devices in CFRV are under the protection of symmetric encryption. Furthermore, it uses a
one-time challenge and time-stamp to defend against the replay attack.

Sensors 2022, 22, 6044 15 of 19

7.1.3. Poisoned Challenges

In decentralized approaches, a malicious device can also become a verifier in the
peer nodes. As we declared in research question 1, a decentralized CFA schema should
mitigate the poisoned challenges if the prover is required to execute challenges (to formulate
a proof-of-execution) in the decentralized schema. We build an attack vector as the payload
of verification with return-oriented programming. Our experiment shows that the software
running on a prover was compromised after executing the challenge as its CFA schema
did not check the challenge. In centralized approaches, the adversary can realize poisoned
challenge by the session hijack. It uses an attack vector to replace the challenge if the
verification request is not encrypted.

In CFRV, the prover can refuse a verification request under the protection of secure
world (P) if the challenge has not been shared before. The adversary cannot replace a
legalized challenge with a poisoned one as their confidentiality is under the protection of
symmetric encryption.

7.1.4. Response Defraud

With reverse engineering, a malicious node can launch the response defraud if it obtains
the instrumentation detail and software structure (the CFG). In most schemes, adversaries
can satisfy such requirements because instrumentation and software are stored in the normal
world (or are more weakly protected). Furthermore, instead of colliding hash results or
basic-block identifiers, enumerating the execution path of the target software would be
more achievable.

As declared in the research question 2, we examined the response defraud in a decentral-
ized schema with the following steps to bypass control flow attestations. In our experiment,
the software being verified is identical. Firstly, the adversary knows which control flow the
challenge triggers. Moreover, it gets the instrumentation detail from the normal world of
the victim. The malicious node attempts to enumerate the execution path by sequencing
hashes of block-ids compared with its response. Without instrumentation inside loops,
the complexity of a successful enumeration is no harder than finding a specific sub-graph
in a DAG (directed acyclic graph). Then, the adversary forges a block-id sequence in the
enumerated execution path. Finally, it scrabbles up its hashes’ results to complete the
response defraud. In centralized approaches, response defraud can be realized in the way of
impersonation if the verifier has not signed the verification request.

To extinguish the response defraud, CFRV enforces that challenges in one verification
process cannot be used with other devices. Once the adversary forwards a challenge to
defraud a response, the prover would reject this request; this is because the forwarded
challenge does not exist in secret slices used for another session.

7.2. Performance
7.2.1. Protocol Efficiency

We evaluate the verification duration of our schema to examine the effect of optimizing
public-key usage. The specific cryptographic algorithm chosen by each scheme is not
entirely the same (e.g., the public-key algorithm or the hash functions). In order to illustrate
the efficiency difference caused by the design of the verification protocol, we use openssl
(https://www.openssl.org/accessed on 6 July 2022) to unify the cryptographic operation
in the evaluations.

In our experiment, the timer activates when a verifier builds a challenge and ends
after the response is verified. The construction and execution time of challenges is excluded
based on our criterion.

Figure 11 shows that it is not easy for CFRV to have a clear advantage in a single-pass
verification as it takes additional time to share secret slices. If the verification repeats
more than once, as shown in Figure 12, CFRV could reveal its advantage because of the
public-key usage optimization. The cryptographic operation’s duration is reduced by 40%
compared to related decentralized schemes. It shows that the secret slices could concentrate

https://www.openssl.org/

Sensors 2022, 22, 6044 16 of 19

public-key usage into a single stage rather than using it in every verification. In this case,
this could be a better solution in control-flow attestation of embedded systems.

ARCADIS Hristozov CFPA C-FLAT MGC-FA CFRV
0

25

50

75

100

125

150

175

200

Ve
rif

ic
at

io
n

du
ra

tio
n

(m
s)

sign
ver_sign
Enc_Pk
Dec_Pri

Enc_k
Dec_k
secret_sharing

Figure 11. One round of attestation.

ARCADIS Hristozov CFPA C-FLAT MGC-FA CFRV
0

250

500

750

1000

1250

1500

1750

2000

Ve
rif
ic
at
io
n
du

ra
tio

n
(m

s)

Verification
Secret_slicing
Secret_sharing

Figure 12. Ten-round attestation.

7.2.2. Overhead

We use RIPE [30] as the benchmark and turn off the ASLR and DEP protection. In the
evaluations, we conducted 100 successful exploits on the vulnerable program. CFRV detects
no less than 98 of 100 available attacks in the default instrumentation density (30% specified
in this program). The remaining two attacks were also detected after we increased the
instrumentation density. Furthermore, in this part, we evaluate the capability that CFRV
defends against the control flow hijack and the target software’s performance burden
brought by this security mechanism. In Table 3, firstROP.c CallARG.c (https://github.com/
nalamchaitanya/ROP accessed on 6 July 2022) are two software programs commonly used
for demonstrating ROP attacks. The Encrypt.cpp, LED-controller.cpp, MotionDriver.cpp are
programs designed for embedded devices, which we set a buffer overflow in their functions
as the vulnerability. Its overhead, the extra running duration of instrumented programs, is
calculated as Equation (4):

Overhead =
Tinst − Torig

Torig
× 100% (4)

In Table 3, the experiment shows that the overhead brings by instrumentation ranges
from 1.2% to 21.8% according to its density. In other words, compared to the cryptographic
program, functions for embedded devices are simpler in structure and require less extra
code to be inserted. In this condition, instructions used for interacting normal world with
secure world account for a less proportion, so they have a relatively weaker impact on the
execution time of embedded programs. Moreover, due to the optimization of the public-key

https://github.com/nalamchaitanya/ROP
https://github.com/nalamchaitanya/ROP

Sensors 2022, 22, 6044 17 of 19

usage in the CFRV, its overall performance cost is still acceptable in the process of not
real-time or high-frequency verification.

Table 3. Performance.

Program Code
Injection JOP ROP Executable

Size Overhead

firstROP.c 4 - 4 8.7 kb 1.5%
CallARG.c 4 4 4 8.6 kb 1.2%

Encrypt.cpp 4 4 4 29.8 kb 21.8%
LEDcontroller.cpp 4 4 4 18 kb 7.2%
MotionDriver.cpp 4 4 4 17.3 kb 16.0%

Item ’-’ means this approach was not evaluated. Item ’4’ means this approach can be detected.

8. Conclusions

This paper patched the decentralized CFA schema with a secret slice mechanism to
make the prover able to distinguish the origin of a request. As a result, it can mitigate the
response defraud and make a kind of POX (that regards input as challenges) suitable for the
decentralized CFA schema. Moreover, CFRV detects no less than 98% of the code-reuse
attack without a trusted center under a low instrumentation density. In this case, CFRV
is more suitable for the decentralized scenario that requires the remote device to provide
a trustful result. We also investigated how to reduce the cryptographic operations of
decentralized CFA. Our evaluations show that limiting the PKI to a crucial stage lowers
the private key usage in every challenge–response round. The cryptographic duration
was therefore reduced by 40% compared to related decentralized schemes. Nevertheless,
concentrating the PKI usage in the registration step constrains the network to a single
boot-up operation. No new node can enter without using a trusted node to restart the
process. Extending the flexibility of this schema will be studied in our future work. As an
instrumentation-based schema, its overhead is supposed to be further reduced in future
works (e.g., to integrate a specialized hardware module to log the control flow events).
Moreover, each node in this schema needs to store and exchange the secret slices. The space
of software input cannot be too large. Furthermore, as the trust-anchor, CFRV relies on the
ARM Trustzone to provide its security feature. It is also important to harden the Trustzone
itself in the future.

Author Contributions: Y.L.: Conceptualization, Writing—Original Draft; Q.Z.: Methodology, Inves-
tigation; B.L.: Software, Validation; Y.Z.: Writing—Review & Editing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El-hajj, M.; Fadlallah, A.; Chamoun, M.; Serhrouchni, A. A Survey of Internet of Things (IoT) Authentication Schemes. Sensors

2019, 19, 1141. [CrossRef] [PubMed]
2. Muhammad, M.; Safdar, G.A. Survey on existing authentication issues for cellular-assisted V2X communication. Veh. Commun.

2018, 12, 50–65. [CrossRef]
3. Zhang, Y.; Cheng, K.; Khan, F.; Alturki, R.; Khan, R.; Rehman, A.U. A mutual authentication scheme for establishing secure

device-to-device communication sessions in the edge-enabled smart cities. J. Inf. Secur. Appl. 2021, 58, 102683. [CrossRef]
4. Verma, P.K.; Verma, R.; Prakash, A.; Agrawal, A.; Naik, K.; Tripathi, R.; Alsabaan, M.; Khalifa, T.; Abdelkader, T.; Abogharaf, A.

Machine-to-Machine (M2M) communications: A survey. J. Netw. Comput. Appl. 2016, 66, 83–105. [CrossRef]

http://doi.org/10.3390/s19051141
http://www.ncbi.nlm.nih.gov/pubmed/30845760
http://dx.doi.org/10.1016/j.vehcom.2018.01.008
http://dx.doi.org/10.1016/j.jisa.2020.102683
http://dx.doi.org/10.1016/j.jnca.2016.02.016

Sensors 2022, 22, 6044 18 of 19

5. Baudry, B.; Monperrus, M. The Multiple Facets of Software Diversity: Recent Developments in Year 2000 and Beyond. ACM
Comput. Surv. 2015, 48, 1–26. [CrossRef]

6. Kwon, B.J.; Hong, S.; Jeon, Y.; Kim, D. Certified Malware in South Korea: A Localized Study of Breaches of Trust in Code-
Signing PKI Ecosystem. In Proceedings of the Information and Communications Security—23rd International Conference,
ICICS 2021, Chongqing, China, 19–21 November 2021; Gao, D., Li, Q., Guan, X., Liao, X., Eds.; Proceedings, Part I; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 59–77. [CrossRef]

7. De Clercq, R.; Götzfried, J.; Übler, D.; Maene, P.; Verbauwhede, I. SOFIA: Software and control flow integrity architecture. Comput.
Secur. 2017, 68, 16–35. [CrossRef]

8. Rao, J.; Ao, T.; Dai, K.; Zou, X. ARCE: Towards Code Pointer Integrity on Embedded Processors Using Architecture-Assisted
Run-Time Metadata Management. IEEE Comput. Archit. Lett. 2019, 18, 115–118. [CrossRef]

9. Abera, T.; Asokan, N.; Davi, L.; Ekberg, J.-E.; Nyman, T.; Paverd, A.; Sadeghi, A.-R.; Tsudik, G. C-FLAT: Control-Flow Attestation
for Embedded Systems Software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, 24–28 October 2016; pp. 743–754. [CrossRef]

10. Chen, G.; Zhang, Y. MAGE: Mutual Attestation for a Group of Enclaves without Trusted Third Parties. arXiv 2020,
arXiv:2008.09501.

11. Bashar, G.D.; Avila, A.A.; Dagher, G.G. PoQ: A Consensus Protocol for Private Blockchains Using Intel SGX. In Proceedings of
the Security and Privacy in Communication Networks—16th EAI International Conference, SecureComm 2020, Washington,
DC, USA, 21–23 October 2020; Park, N., Sun, K., Foresti, S., Butler, K.R.B., Saxena, N., Eds.; Proceedings, Part II; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 141–160. [CrossRef]

12. Liu, S.; Song, Q.; Sun, K.; Li, Q. SGX-Cube: An SGX-Enhanced Single Sign-On System Against Server-Side Credential Leakage. In
Proceedings of the Security and Privacy in Communication Networks—16th EAI International Conference, SecureComm 2020,
Washington, DC, USA, 21–23 October 2020; Park, N., Sun, K., Foresti, S., Butler, K.R.B., Saxena, N., Eds.; Proceedings, Part II;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 275–290. [CrossRef]

13. Zhang, Y.; Qin, Y.; Feng, D.; Yang, B.; Wang, W. An Efficient Trustzone-Based In-application Isolation Schema for Mobile
Authenticators. In Proceedings of the Security and Privacy in Communication Networks—13th International Conference,
SecureComm 2017, Niagara Falls, ON, Canada, 22–25 October 2017; Lin, X., Ghorbani, A.A., Ren, K., Zhu, S., Zhang, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 585–605. [CrossRef]

14. Asokan, N.; Brasser, F.; Ibrahim, A.; Sadeghi, A.-R.; Schunter, M.; Tsudik, G.; Wachsmann, C. SEDA: Scalable Embedded Device
Attestation. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
12–16 October 2015; Ray, I., Li, N., Kruegel, C., Eds.; ACM: New York, NY, USA, 2015; pp. 964–975. [CrossRef]

15. Ambrosin, M.; Conti, M.; Ibrahim, A.; Neven, G.; Sadeghi, A.-R.; Schunter, M. SANA: Secure and Scalable Aggregate Network
Attestation. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
24–28 October 2016; Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S., Eds.; ACM: New York, NY, USA, 2016.
pp. 731–742. [CrossRef]

16. De Oliveira Nunes, I.; Jakkamsetti, S.; Tsudik, G. Tiny-CFA: Minimalistic Control-Flow Attestation Using Verified Proofs of
Execution. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France,
1–5 February 2021; pp. 641–646. [CrossRef]

17. Toffalini, F.; Losiouk, E.; Biondo, A.; Zhou, J.; Conti, M. ScaRR: Scalable Runtime Remote Attestation for Complex Systems. In
Proceedings of the 22nd International Symposium on Research in Attacks, Intrusions and Defenses, RAID 2019, Beijing, China,
23–25 September 2019; pp. 121–134.

18. Hu, J.; Huo, D.; Wang, M.; Wang, Y.; Zhang, Y.; Li, Y. A Probability Prediction Based Mutable Control-Flow Attestation Scheme
on Embedded Platforms. In Proceedings of the 18th IEEE International Conference On Trust, Security In addition, Privacy In
Computing In addition, Communications/13th IEEE International Conference On Big Data Science In addition, Engineering,
TrustCom/BigDataSE 2019, Rotorua, New Zealand, 5–8 August 2019; pp. 530–537. [CrossRef]

19. Dessouky, G.; Abera, T.; Ibrahim, A.; Sadeghi, A.-R. LiteHAX: Lightweight hardware-assisted attestation of program execution.
In Proceedings of the International Conference on Computer-Aided Design, ICCAD 2018, San Diego, CA, USA, 5–8 November
2018; Bahar, I., Ed.; ACM: New York, NY, USA, 2018; p. 106. [CrossRef]

20. Dessouky, G.; Zeitouni, S.; Nyman, T.; Paverd, A.; Davi, L.; Koeberl, P.; Asokan, N.; Sadeghi, A.-R. LO-FAT: Low-Overhead
Control Flow ATtestation in Hardware. In Proceedings of the ACM 54th Annual Design Automation Conference, Austin, TX,
USA, 18–22 June 2017; pp. 1–6. [CrossRef]

21. Zeitouni, S.; Dessouky, G.; Arias, O.; Sullivan, D.; Ibrahim, A.; Jin, Y.; Sadeghi, A.-R. ATRIUM: Runtime attestation resilient
under memory attacks. In Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
2017, Irvine, CA, USA, 13–16 November 2017; Parameswaran, S., Ed.; IEEE: Piscataway Township, NJ, USA, 2017; pp. 384–391.
[CrossRef]

22. Liu, J.; Yu, Q.; Liu, W.; Zhao, S.; Feng, D.; Luo, W. Log-Based Control Flow Attestation for Embedded Devices. In Proceedings
of the Cyberspace Safety and Security—11th International Symposium, CSS 2019, Guangzhou, China, 1–3 December 2019;
Proceedings, Part I; Vaidya, J., Zhang, X., Li, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 117–132. [CrossRef]

http://dx.doi.org/10.1145/2807593
http://dx.doi.org/10.1007/978-3-030-86890-1_4
http://dx.doi.org/10.1016/j.cose.2017.03.013
http://dx.doi.org/10.1109/LCA.2019.2935445
http://dx.doi.org/10.1145/2976749.2978358
http://dx.doi.org/10.1007/978-3-030-63095-9_8
http://dx.doi.org/10.1007/978-3-030-63095-9_18
http://dx.doi.org/10.1007/978-3-319-78813-5_30
http://dx.doi.org/10.1145/2810103.2813670
http://dx.doi.org/10.1145/2976749.2978335
http://dx.doi.org/10.23919/DATE51398.2021.9474029
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2019.00077
http://dx.doi.org/10.1145/3240765.3240821
http://dx.doi.org/10.1145/3061639.3062276
http://dx.doi.org/10.1109/ICCAD.2017.8203803
http://dx.doi.org/10.1007/978-3-030-37337-5_10

Sensors 2022, 22, 6044 19 of 19

23. Koutroumpouchos, N.; Ntantogian, C.; Menesidou, S.-A.; Liang, K.; Gouvas, P.; Xenakis, C.; Giannetsos, T. Secure Edge
Computing with Lightweight Control-Flow Property-based Attestation. In Proceedings of the 2019 IEEE Conference on Network
Softwarization (NetSoft), Paris, France, 24–28 June 2019; pp. 84–92. [CrossRef]

24. Hristozov, S.; Heyszl, J.; Wagner, S.; Sigl, G. Practical Runtime Attestation for Tiny IoT Devices. In Proceedings of the 2018
Workshop on Decentralized IoT Security and Standards. Internet Society, San Diego, CA, USA, 18 February 2018. [CrossRef]

25. Halldórsson, R.M.; Dushku, E.; Dragoni, N. ARCADIS: Asynchronous Remote Control-Flow Attestation of Distributed IoT
Services. IEEE Access 2021, 9, 144880–144894. [CrossRef]

26. Wang, W.-C.; Yona, Y.; Wu, Y.; Diggavi, S.N.; Gupta, P. SLATE: A Secure Lightweight Entity Authentication Hardware Primitive.
IEEE Trans. Inform. Forensic Secur. 2020, 15, 276–285. [CrossRef]

27. Nunes, I.D.O.; Eldefrawy, K.; Rattanavipanon, N.; Tsudik, G. APEX: A Verified Architecture for Proofs of Execution on Remote
Devices under Full Software Compromise. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), San
Diego, CA, USA, 12–14 August 2020; pp. 771–788.

28. Lattner, C.; Adve, V.S. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In Proceedings of the
2nd IEEE / ACM International Symposium on Code Generation and Optimization (CGO 2004), San Jose, CA, USA, 20–24 March
2004; pp. 75–88. [CrossRef]

29. American Fuzzy Lop Fuzzer (Afl). Available online: https://github.com/google/AFL (accessed on 24 March 2022).
30. Wilander, J.; Nikiforakis, N.; Younan, Y.; Kamkar, M.; Joosen, W. RIPE: Runtime intrusion prevention evaluator. In Proceedings of

the 27th Annual Computer Security Applications Conference on—ACSAC ’11, Orlando, FL, USA, 5–9 December 2011; p. 41.
[CrossRef]

http://dx.doi.org/10.1109/NETSOFT.2019.8806658
http://dx.doi.org/10.14722/diss.2018.23011
http://dx.doi.org/10.1109/ACCESS.2021.3122391
http://dx.doi.org/10.1109/TIFS.2019.2919393
http://dx.doi.org/10.1109/CGO.2004.1281665
https://github.com/google/AFL
http://dx.doi.org/10.1145/2076732.2076739

	Introduction
	Background and Related Works
	Control Flow Attestation
	Decentralized CFA
	Executing Challenges as a PoX
	Research Gap

	Research Questions
	RQ1: Making the PoX Mechanism (That Requires the Execution of Challenges) Suitable for Decentralized CFA Schema
	RQ2: Mitigating the `Response Defraud'
	Motivations

	System Model
	Overview
	Security Assumptions

	Mutual Verification Design
	Design of Secret Slices
	Building Secret Slices
	Distributing Secret Slices
	Safety

	The Mutual Verification
	Optimizing PKI Usage in Decentralized CFA Schema

	System Implementation
	Initialization
	Registration
	Verification

	Evaluations
	Safety
	Impersonation
	Session Hijack
	Poisoned Challenges
	Response Defraud

	Performance
	Protocol Efficiency
	Overhead

	Conclusions
	References

