Contents:

1 User Guide 2
Installation 2
Configuration File e 2
Usage o e e e e e e e e 3
Reconnecting the Sensor e 4
Visualization e e 4
Marker Button e e e e e 4
Output File Structure e e 4

2 Developer Guide 5
Code CoNventions v v v v v v v et e e e e e e e e e e e e e e e e e 5
Checklist fornew Version e 5
Introduction e e e e e e 5
Onstartingthe App o o o o e e 6
SENSOTS . . . v o o e e e e e 6
SensorDataBus 7
DataStorage e e e e e e e e 7
Running Application in Emulator 0 oo, 7
Documentation e e e e e e e e e e e 8
Loading Data from Smartphone to Computer 8
Remove application folderondevice 9
Backup eDiary data directly onphone o oL, 9
Namingof the Phones L 9
Request balance of phoneo o oo 9
Switch Off Pin for SIM-card 9
BioHarness e 9

3 Usage in Field 9
Preparation e e e 10
Data Organisation 0 it e e e e e e e e e e e 10
GoPro e 10
BioHarness e 11
EmpaticaE4 o e e e e 11
Phone e e e 11
Storingthe datalateron e 11
Miscellaneous L e e e e e 12

4 Changelog 12
v.0.4.0 -2020-01-21 o L e e e e 12
v0.3.0-alpha - 2019-04-10. e 13
v0.2.0-2018-10-05 e 13
VO.L.O o o e 13

&HQ B NE =l 86%@13:15 &HQBNE=RLi86%@13:14

Question 1 from 4

What do you feel?

MARKER

Joy
O Sadness
O Fear
O Anger

SURVEY

BioHarness 3 BHBHT052202

36.0 % CONNECTED

Empatica E4
450% CONNECTED

Recording is running CANCEL

RECONNECT

The PDF version of this documentation can be found here .

1 User Guide

This app only works with Android 8 - Oreo (API 26 / API 27)

Installation

To install the app transfer eDiary.apk to the smartphone and use a file manager of your
choice to install it.

For the installation to work, it may be necessary to allow the installation of third party apps in
the phone’s developer options, which can be found in the settings menu.

Configuration File

Note: Modifying config.xml may lead to unexpected behavior. It is always possible auto-
matically to create a default version of this file by manually deleting config.xml from the
phone and restarting the app.

The file config.xml contains configuration parameters that are needed for the app to run. It
has to be placed in the folder eDiary and can be adapted according to specific usage require-
ments.

https://zgis.github.io/ediary-android-app/eDiaryAndroidApp.pdf

The file features the following XML elements:

<Userinterface>

Allowed values for each item of <UserInterface> are true or false.
* <SurveyIsActivated>: If survey shall be activated or not.

e <RealTimeVisualizationIsActivated>: If the visualization of the real time
data shall be activated or not. Default is false.

* <MarkerButtonIsActivated>: If a marker button shall be displayed. A marker
stores the time and the location.

<Survey>
Definition of survey questions. There are three categories for <SurveyItem>s. Each of them
needs a <Question>:

* <RadioButtonGroup> needs a set of <Answers>

* <Slider> needs a <Maximum> value, the minimal value is always 0

* <TextInput> does not need any specification (except of the <Question>), the text
length is not limited

<Sensors>

Definition of the sensor platforms for data collection.

The Empatica E4 sensors require authentication with an API key. To be able to use it to collect
measurements with the eDiary app, the API key, which can be obtained on the manufacturer’s
website using the device’s serial number, has to be entered in the <Sensor> element under
<API_key>.

Usage
When first starting the app, it will once prompt the user to allow access to the phone’s data
storage and location. These permissions must be granted in order for the app to work.

Make sure the E4 device is properly registered on the E4 developer website. Otherwise it will
not work.

Note: Internet access is necessary in order to connect to Empatica E4.

After the app has been started, make sure that the Empatica E4 sensors is connected. Turn on
the sensor by clicking 2 second on its button, please pay attention to the LEDs:

* Green: ready

* Light blue: Bluetooth connection is available

* Dark blue: sending data via Bluetooth
* Yellow: battery is low or charging
* Red: recording has started

After 20 seconds, the small LED on the sensor turns off (for power safety reason). Check the
sensor’s connection to the smartphone (displayed on the main screen). Finally, please mount
the sensor on your wrist, pull the wristband tight.

The recording starts when Start is clicked or a survey is submitted. The user can anytime
submit a survey about the current emotion, context and intensity. The recording can be stopped
by hitting the St op button. All collected data can be found in the phone’s folder in eDiary.

Reconnecting the Sensor

If the sensor connection breaks, please re-connect the sensor as follows. Restart the app or push
the Reconnect button, then turn on the Empatica E4 device again. If the sensor is connected
to the phone and you close the app, it will shut down the sensor as well.

Visualization

The real time visualization of the incoming sensor values can be accessed in the menu on the
top right (if it is activated in the config file). Warning: This feature sometimes crashes. It
should therefore be seen as experimental. It is deactivated by default, but can be activated by
editing the configuration file.

Marker Button

The marker button registers the current time and the current location. The values will be stored
in the table marker. Clicking on the marker button also starts the recording.

Output File Structure

The app writes all data in to a SQLite Database: It consists of the following tables:
* platform: Contains names and ids of all supported sensor platforms.
* sensor: Contains names, descriptions and ids of all sensors.

* sensordata: Contains timestamps, ids and values of all measurements stored on the
database.

* survey: Contains timestamps, location and results of all survey entries

* location: the locations measured by the phone. With additional metadata like vertical
accurracy, bearing, speed, ...

¢ marker: the marker entries, if the function is activated

2 Developer Guide

Code Conventions

In order to keep the project clean and consistent some rules need to be respected:
* write proper commit messages and do only commit one logical change at once

* use the default autoformat tool from Android Studio in order to keep the code formatting
consistent

* for versioning we use Semantic Versioning 2.0.0, hence tag the releases with MAJOR .
MINOR.PATCH

* Additionally add the changes to the CHANGELOG . md file which is structured using Keep
a Changelog.

* reference external libraries with Gradle and attribute them in the AboutActivity.
java, also attribute snippets from StackOverFlow (see this blogpost)

* document all changes in the source code and check properly if you did not break anything
(there are no unit tests yet). Also update both the user and the developer documentation
and the README . md

Checklist for new Version

1. Make sure everything works well and no existing features have been broken.
Document the changes, remove unused documentation

Tag your commit via: git tag v0.7.0; git push origin —--tags;
Also add the version number to the documentation.

Add the version number to the manifest of the app.

Write a CHANGELOG

A

Make a GitHub Release, attach the APK, the PDF of the documentation and a sample
SQLite file with real data (necessary for testing)

8. Update screenshots for docs and README

Introduction

This document is supposed to help understand the way this app is designed and how the imple-
mentation of processes for data collection and storage work.

Note: All Java classes mentioned here are located in the package at .ac.sbg.zgis.

https://semver.org/spec/v2.0.0.html
https://keepachangelog.com/en/1.0.0/
https://keepachangelog.com/en/1.0.0/
https://stackoverflow.blog/2009/06/25/attribution-required/

On starting the App

The entry point of the app is located in the class userinterface.EDiary. java. It starts
the user interface (Ul). Thereafter, the device starts searching for a GPS or network location.

Sensors

Starting Sensor Measurements

Each sensor class extends sensors.SensorPlatform.java and conse-
quently also IntentService, which allows it to run in a separate thread. The
startIntentServices () method initializes the SensorPlatform objects in the
SensorPlugin class, which is in turn called from the method handling the connect action
(handleConnect ()).

Handling Sensor Measurements

SensorDataCollection objects contain all new sensor data, which comprise one or mul-
tiple SensorDataEntry objects. SensorDataCollection contains information about
the sensor platform with which the data was collected and a timestamp. SensorDataEntry
contains the specific type of sensor along with the measurement result.

The sensor handler classes pass all SensorDataCollection objects to the
SensorDataBus. This class acts as a broker that hands data to other classes which
can subscribe to it using the SensorDataBusListener interface. These classes can then
perform tasks, like storing or visualizing the data.

Adding new Sensors

When adding a new sensor to the app, i.e., when integrating a new data protocol for sensor
measurements, the manufacturer’s SDK has to be included in the app’s libraries. Then a new
sensor class in the sensors package has to be created. To work properly in the app, it has
to be a subclass of sensors.SensorPlatform. In this class, the collected data has to
be passed to SensorDataBus. Also, new entries to the enums SensorPlatform and
Sensor in configuration.Constants. java have to be added, according to the new
sensor platform.

The SensorPlatform for the new sensor «class can be started from the
startIntentServices () method in sensors.SensorManager.java via an
additional Intent, according to the existing platforms.

This also requires adding the Service for the new sensor platform as an additional <service>
element in the app’s AndroidManifest .xml.

SensorDataBus

The SensorDataBus class is a central component that acts as a broker for measurement data
between the SensorPlatform implementations and components that register themselves
with a SensorDataBusListener onthe SensorDataBus.

Each of the registered listeners is informed about the new data in the onDataAvailable ()
method of the SensorDataBusListener interface. The notification of the listeners are ex-
ecuted in an own thread for each registered listener. This way, long lasting tasks in one listener
will not block the notification of the other registered listeners. Within a listener, notifications
are queued, until the handling of the previous notification is finished.

Data Storage

Local (SQLite)

The measurement data are stored locally in an SQLite database which is created on each startup
with the current timestamp as filename. In other words, a new SQLite database is created every
time a new measurement campaign is started.

After an ongoing logging process is stopped by clicking the St op button in the Ul, the remain-
ing, cached items are saved to the SQLite database.

After stopping the logging, data are still provided from the SensorPlatforms to the bus, but it is
no longer stored to disk. To start a new logging process, it is currently required to end the app’s
process and to restart it. This inconvenience will be addressed in a future version.

The SQLite storing is realised in SQLiteStorage, assisted by SensorDataDbHelper.

For the purpose of logging, SQLiteStorage registers a SensorDataBusListener
on the SensorDataBus which puts new SensorDataCollections in a
BlockingQueue that acts as a buffer between the listeners thread and the storage
thread (created internally by SQLiteStorage). This storage threads puts the new data
collections from the buffer queue to an ArrayList which is used to cache the measurements.
Once this list has reached a defined size, the contained data are written to the current SQLite
database in a transaction.

Additionally to the sensor data table in the SQLite database, tables for the platforms and sensors
are created. These tables are dynamically populated, based the Enums which are used internally
in the app and should therefore always be consistent.

Running Application in Emulator

Running the app in the emulator of Android Studio is possible, but it does make much sense, be-
cause Bluetooth devices are not supported. In order to run the app in the emulator the build.
gradle file has to be extended by this snippet (see source):

https://stackoverflow.com/a/22604347
https://mobikul.com/run-application-emulator-using-native-libraries-app/

android {

splits {
abi {
enable true
reset ()
include 'x86', 'armeabi-v7a’'
universalApk true
}
}
}
Documentation

The documentation of the eDiary app is created with Sphinx and uses the Read the Docs theme.

Installation:

pip3 install —--user Sphinx sphinx_rtd_theme

The documents are written in ReStructuredText and can be converted to HTML and PDF using
these commands:

make html; make latexpdf;

The creation of PDF requires a Latex installation. The created files can be found the folder
_build. The website of the documentation is on: zgis.github.io/ediary-android-app/ . It can
be updated by pushing the generated HTML to the branch gh-pages. It is very important
to also include a file called .nojekyl1l, because otherwise GitHub will not publish fold-
ers starting with an underscore. However, the Makefile already creates this . nojekyl1 file
automatically.

This script is useful for publishing the documentation source code:

make html
make latexpdf

WERSITE_TARGET=../../ediary—-android-app_website
cp -r _build/html/x S${WEBSITE_ TARGET

touch ${WEBSITE_ TARGET).nojekyll
cp _build/latex/eDiaryAndroidApp.pdf WEBSITE_TARGET

Loading Data from Smartphone to Computer

The the source code of the ediary is an folder called ut i1ity which contains some useful
commands for connection a computer with one or many smartphones. The documentation can
be found directly inside the file.

http://www.sphinx-doc.org/en/master/
https://github.com/rtfd/sphinx_rtd_theme
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
https://zgis.github.io/ediary-android-app/

Remove application folder on device

adb shell rm -rf sdcard/ediary

Backup eDiary data directly on phone

timestamp=$ (date +"%Y-%m-%dT%HSM")

adb shell \
mnv \
sdcard/ediary/sglite \
sdcard/ediary/S{timestamp/_sqglite

adb shell 1s sdcard/ediary/

Naming of the Phones

All phones are numbered. Their device name should be like zgis_phone_4.

Request balance of phone

e Dial x121# and the call, afterwards a SMS will be sent with the current balance. See
this Link .

Switch Off Pin for SIM-card

Settings —> Biometrics and Security —> Other Security Settings —>
Set up SIM card lock

BioHarness

BioHarness Download Section

3 Usage in Field

Some notes and best practices about using the eDiary app in practice.

https://www.yesss.at/fragen/yesss-wertkarte#faq_68
https://www.zephyranywhere.com/resources/documentation

Preparation

charge all batteries

Make sure you transport all devices, cables and accessories in proper bags (meshbags) or
boxes

ideally transport everything in a car

on the test side, make sure you have enough space for all preparations e.g. a big table
under a roof or a car, maybe even with electricity - ideally a room in a building

bring laptop(s) for storing the data and checking
store all data on the laptop and leave copies on the devices if there is enough space left
check the weather forecast and adapt accordingly

all devices have numbers. make sure participants always use the same combination of
devices. This makes the data handling easier later on.

Bring pen and paper and write down observations e.g. sensors that do not work

Powerbanks might be useful for recharging the sensors

Data Organisation

create a data structure before the field test
each folder can have a text-file where the title contains the numbers of the sensors

make sure the laptop has enough memory - consider bringing a external hard disc - ideally
encrypt it

after transfering the data from the sensors to the laptop, make sure to make the sensors
empty. This causes less confusion later on.

GoPro

screw driver might be necessary for adjusting the mounts

battery lasts only 2h, bring replacement batteries

set the required video settings. This link helps finding a good setting e.g. 720, 25fps
transfering the videos via cable is very errorness, consider bringing a MiniSD-card reader
consider naming the the GoPros or at least the Mini-SD-cards

consider writing a script that pulls the videos from GoPro (saves time)

consider switching off the red light that indicates a record - it distracts other pedestrians

10

https://de.gopro.com/help/articles/question_answer/HERO4-Black-Recording-Time-in-Each-Video-Setting

BioHarness

bring wet wipes (a.k.a. Feuchttiicher) for cleaning the devices

also bring disinfectant spray for cleaning

consider bringing extra BioHarness belts

bring extra shoulder straps - might be more comfortable for some persons
consider washing the belts, drying could be accelerated with a hair dryer

have an own table for cleaning and drying - organize this table so that you always know
which belts are ready, which ones are drying and which ones are dirty

Empatica E4

make sure the device is tight enough in order to make good measurements

It can cause troubles to connect different sensors at the same time and the same location.
Therefore it is recommended to connect the sensors one after the other and also stay away
from other Bluetooth devices (e.g. other smartphones).

Phone

Battery typically lasts long enough

mobile internet must be switched on in order to connect to E4, hence charge enough
credit on the phone

eventually bring phone credit sheets

the latest stable version of the eDiary app should be installed
delete previous measurements before the experiment

adjust the config file

make sure all settings on the phones are identical

activate bluetooth, GPS

activate wake lock (prevents falling asleep)

Storing the data later on

create one directory with the raw data
create another directory were the data is sorted
this is redundant but makes sure no data is lost

describe the data with proper README files

11

* make sure the data is properly backed up in the cloud (MyFiles, Uni Salzburg) or on an
internal shared drive

Miscellaneous

* bring signs that people can find you
* bring enough pens for the written surveys
* bring clipboards and paper for notes

* prepare food and drinks for both employess and test persons

there should not be too many people around, otherwise it is getting chaotic

bring a laptop stance - this is more convenienet if you work long time

* bring post-its for quickly writing to notes to the sensors

4 Changelog

v.0.4.0 - 2020-01-21

Added
* German translation
» Start CHANGELOG using Keep a Changelog
* Permission dialogs for enabling bluetooth and location
* Publish documentation on zgis.github.io/ediary-android-app/
* SQLite filename contains name of the phone
* Optional location status info on main screen
* Survey: FreeText can be empty
* BioHarness: display connection and battery status
* BioHarness: support pairing from inside the app
Fixed
* Survey and Marker crashing the app when location is null
* Documentation with Sphinx can again export PDF, this time using Latex

* Realtime visualization should not crash anymore

12

https://keepachangelog.com/en/1.0.0/
https://zgis.github.io/ediary-android-app/

v0.3.0-alpha - 2019-04-10

Upgraded Empatica SDK to 2.2

New implementation of Location tracking - should now work with Android 8

¢ Location is stored in an own table

Added some bash and python utilities. These help to pull the data from the phone to the
computer. Moreover some small charts are created.

v0.2.0 - 2018-10-05

* Adds an optional marker button
* Rename app to “eDiary”

* Adds visualization of real time measurements to the menu. Warning This feature crashes
sometimes and is therefore experimental

* The survey and the visualization can be hidden via an entry in the configuration file.
* Adds the possibility to have a free text as survey item.

* Converts the dropdown menu of the MultipleChoice question type to a
RadioButtonGroup(similar to a checkbox).

v0.1.0

Adds a dynamic survey to application. Before the questions were hard-coded. Now the ques-
tions can be specified in the XML config file. The app will create the database table and the
GUI for the survey.

13

	User Guide
	Installation
	Configuration File
	Usage
	Reconnecting the Sensor
	Visualization
	Marker Button
	Output File Structure

	Developer Guide
	Code Conventions
	Checklist for new Version
	Introduction
	On starting the App
	Sensors
	SensorDataBus
	Data Storage
	Running Application in Emulator
	Documentation
	Loading Data from Smartphone to Computer
	Remove application folder on device
	Backup eDiary data directly on phone
	Naming of the Phones
	Request balance of phone
	Switch Off Pin for SIM-card
	BioHarness

	Usage in Field
	Preparation
	Data Organisation
	GoPro
	BioHarness
	Empatica E4
	Phone
	Storing the data later on
	Miscellaneous

	Changelog
	v.0.4.0 - 2020-01-21
	v0.3.0-alpha - 2019-04-10
	v0.2.0 - 2018-10-05
	v0.1.0

