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Abstract: The advancement of smartphones with multiple built-in sensors facilitates the develop-
ment of crowdsourcing-based indoor map construction and localization. This paper proposes a
crowdsourcing-based indoor semantic map construction and localization method using graph opti-
mization. Using waypoints, semantic landmarks, and Wi-Fi landmarks as nodes and the relevance
between waypoints and landmarks (i.e., waypoint–waypoint, waypoint–semantic, waypoint–Wi-Fi,
semantic–semantic, and Wi-Fi–Wi-Fi) as edges, the optimization graph is constructed. Initializing the
venue map is the single-track semantic map with the highest quality, as determined by a proposed
map quality evaluation function. The aligned venue and candidate maps are optimized while satisfy-
ing the constraints, with the candidate map exhibiting the highest degree of similarity to the venue
map. The lightweight venue map is then updated in terms of waypoint and landmark attributes, as
well as the relationship between waypoints and landmarks. To determine a pedestrian’s location on a
venue map, similarities between a local map and a venue map are evaluated. Experiments conducted
in an office building and shopping mall scenes demonstrate that crowdsourcing-based venue maps
are superior to single-track semantic maps. Additionally, the landmark matching-based localization
method can achieve a mean localization error of less than 0.5 m on the venue map, compared to 0.6 m
in a single-track semantic map.

Keywords: crowdsourcing; graph optimization; localization; mapping; multi-sensor fusion;
object detector

1. Introduction

An indoor map is crucial for user-end localization [1], indoor navigation [2], and
the drift constraint of inertial sensors [3,4]. However, because the geometric features and
signal sources in indoor environments tend to change dynamically over time, traditional
manual operation-based map construction methods encounter difficulties in updating.
Additionally, digital or computer-aided design (CAD) maps describing environments are
usually unavailable due to commercial interest or privacy [5,6]. Therefore, in both industry
and academia, the autonomous construction and updating of a high-precision and robust
venue map in unknown indoor environments has been a hot topic.

Scholars have proposed many sensor-based mapping solutions, such as lidar-based [7],
camera-based [8], Wi-Fi-based, inertial measurement unit (IMU)-based, and magnetic-
based [9], to solve the mapping problem in unknown indoor environments. Due to these
sensors’ inherent characteristics, single-sensor-based map construction methods have lim-
ited application scopes. Multipath interference and packet loss, for instance, significantly
impact the stability of Wi-Fi signals, which can result in the loss or misidentification of
Wi-Fi fingerprints. Furthermore, it is time-consuming and labor-intensive to construct
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a radio map based on offline-collected Wi-Fi data at reference points (RPs) [10,11]. The
construction of high-accuracy maps is feasible with multi-sensor fusion-based solutions
that leverage sensor complementarity. However, a single-track map based on multi-sensor
fusion contains limited space-related information about the entire scene. Three factors have
a significant effect on the accuracy of a single-track map: (1) signal stability, (2) trajectory
length, and (3) the stability of hardware devices (such as robots, smartphones, and un-
manned aerial vehicles (UAVs)). Fusing multiple single-track maps is a feasible solution for
constructing high-accuracy and wide-coverage venue maps, where the raw sensor data are
collected by a new sensing paradigm, crowdsourcing [12]. Smartphones, which are portable
smart terminals, have superior environmental perception thanks to an array of built-in
sensors, including cameras [13], IMUs, Wi-Fi signal receivers, magnetometers [9], and pho-
toelectric encoders. Due to the prevalence of smartphones, the efficiency of crowdsourcing
data collection is also enhanced. In complex environments, numerous smartphone-based
map construction and localization methods via crowdsourcing have been proposed [14],
such as CrowdInside [15], SISE [16], and Zhou et al. also proposed methods [17–19]. By
processing smartphone-collected crowdsourcing data, a map is constructed by combining
semantic/feature information with the estimated trajectories. Trajectories are estimated
using pedestrian dead reckoning (PDR) [18,20] or visual SLAM [21].

Landmarks play a crucial role in crowdsourcing-based or multi-robot cooperative
mapping, which can be used for trajectory alignment and venue characterization [22]. Se-
mantic landmarks, such as elevators, corners, stairs, and escalators, are detected by activity
detection algorithms [17] based on inertial sensors or barometers. However, an indoor
environment typically contains more than the predefined number of semantic landmarks,
such as ashcans, windows, and doors. Theoretically, as the variety of landmarks available
for object detection increases, so does the density of landmarks. Rich low- (such as colors,
contexts, and points) and high-level visual features (e.g., semantics) are presented in an
image. Moreover, due to the development of deep learning, increasingly precise object
detectors [23,24] and semantic segmentation models [25,26] are being used for semantic
landmark recognition. Landmarks can also be used as nodes of an optimization graph, such
as [17,18,27]. Since the single-track semantic maps consist of waypoints, semantic land-
marks, and Wi-Fi landmarks, we construct a novel optimization graph for map optimization
instead of other classic optimization methods, such as particle swarm optimization [28],
hybrid grey wolf optimizer [29], artificial bee colony optimization algorithm [30], and
genetic algorithm [31].

This paper proposes a crowdsourcing-based semantic map construction and updating
method for unknown indoor environments, such as office buildings, shopping malls, and
disaster-stricken houses. The constructed map can be used as a localization map for estimat-
ing a client’s location. The proposed method combines the idea of PDR-aided VI-SLAM [32],
object detection and crowdsourcing, and uses the optimization technique to fuse crowd-
sourced trajectories collected by different clients. Using images, inertial measurements,
and Wi-Fi signals constructs a single-track semantic map composed of waypoints, semantic
landmarks, and Wi-Fi landmarks. The highest-quality single-track map is used to initial-
ize the venue map to ensure mapping precision and efficacy. A candidate map for map
fusion is the single-track semantic map with the highest degree of similarity to the venue
map. Due to the vacancy of the actual azimuth of starting points, trajectories estimated by
PDR-aided visual-inertial simultaneous mapping and localization (PDR-aided VI-SLAM)
are in an inconsistent coordinate system. Consequently, the candidate and venue maps
are aligned using corresponding landmarks before employing graph optimization. The
nodes of the optimization graph are waypoints, semantic landmarks, and Wi-Fi landmarks.
And the edges are association constraints (such as waypoint–waypoint, waypoint–Wi-Fi,
and waypoint–semantic) and matching constraints (such as semantic–semantic and Wi-
Fi–Wi-Fi). The lightweight venue map is updated after graph optimization with respect
to waypoints, semantic landmarks, and Wi-Fi landmarks. To estimate the location of a
pedestrian in relation to the venue map, a local map is compared to the venue map. The
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proposed method has broad application prospects, such as indoor navigation in unknown
environments, big data intelligent recommendation, and post-disaster search and rescue.
Taking indoor navigation in unknown environments as an example, the proposed method
solves the problem of map construction for unknown indoor environments and indoor
positioning drift. By processing the data collected by different mall shoppers, a venue
map describing the whole shopping mall is constructed without any prior knowledge.
Using the proposed localization methods, a pedestrian’s location on the venue map is
estimated. After that, possible pathways from the current position to the destination
are accessible. The multi-landmark matching-based localization method improves the
localization robustness significantly.

To summarize, the main contributions of the proposed method are:

• A crowdsourcing-based semantic map construction and updating method are pro-
posed for unknown indoor environments, which can significantly reduce the cost
of map construction and updating. Particularly, the crowdsourcing data is collected
using smartphones’ built-in sensors.

• An optimization graph is constructed using waypoints, semantic landmarks, and
Wi-Fi landmarks as nodes, and the relevance between waypoints and landmarks as
edges, which improves the accuracy of venue maps.

• The real-world experimental results demonstrate that the proposed map construction
and updating method is suitable for office building and shopping mall scenes. Ad-
ditionally, venue maps have higher accuracy than single-track semantic maps when
used for localization.

The remainder of this paper is organized as follows. Section 2 reviews the related
works of the proposed method. Section 3 describes the main contexts in detail, while
Section 3.1 provides an overview of the system. Section 4 presents an analysis of experiment
results. Finally, Section 5 concludes the paper with a summary and a discussion of future
research directions.

2. Related Works
2.1. Crowdsourcing-Based Map Construction

Crowdsourcing is a feasible method for improving mapping precision [33]. Crowd-
sourcing-based CrowdInside refined the internal features of a floorplan through trace
segmentation, segment classification, and clustering. Additionally, it used the alpha shape
to obtain the overall floorplan shape [15]. SISE proposed enGraph, a new abstraction data
model for representing indoor entities and corresponding semantics [16]. In 2015, Zhou
et al. [17] developed a link-node optimization model for indoor mapping, with pathways
representing links and activity landmarks representing nodes. The activity landmarks
detected by the activity detection algorithm were grouped into distinct node clusters
based on their sequence and spatial characteristics. All the dispersed nodes were linked
with straight lines. However, many detailed features between nodes were disregarded
when using a direct connection. Humans, for instance, choose a path autonomously
based on the actual environments, such as avoiding obstacles. Therefore, trajectories
were more suitable than straight lines for describing a scene. Based on this, Du et al.
constructed a crowdsourcing-based radio map by matching the PDR-estimated trajectories
with the candidate routes based on their proposed shape context algorithm [20]. Zhou
et al. [18] proposed a method for constructing indoor maps by coupling landmarks to
PDR-estimated trajectories. Due to the redundancy of the trajectory, the alignment matrix
was calculated in an incremental manner. To reduce the redundancy of a constructed map,
trajectory segments with high similarities were fused using the Dynamic Time Warping
(DTW) algorithm [19] to evaluate the similarities. The redundant data were removed by
a coefficient weight algorithm together with the scoring matrix [34]. This paper used the
PDR-aided VI-SLAM to estimate the mapping trajectories. At the same time, the redundant
data was removed by map fusion and updating.
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Before fusion or optimization, trajectories estimated using different user-ends’ crowd-
sourcing data must be aligned due to coordinate inconsistency. Likewise, multi-platform
cooperative mapping also has a problem with coordinate initialization. Zhu et al. [22] pro-
posed the attribute similarity principle, the topology similarity principle, and the iterative
closest point (ICP) principle to evaluate the similarities between local maps to align multiple
maps. Local maps constructed by fusing heterogeneous sensor data collected by multiple
robots were shared to construct global scene maps. Yue et al. [35] proposed a probabilistic
map matching (PMM) algorithm for structural and voxel features. Pre-matching based on
structural features improved the accuracy and efficiency of voxel feature-based matching.
Additionally, they proposed an expectation-maximization approach for data association
between local maps [36]. In addition to calculating the geometry occupancy probability,
stitching the overlapping areas was a problem-solving concept [37], such as ICP for point
cloud and landmark matching [38]. Clustering was also a practicable solution for map
alignment. Shu et al. [39] proposed a trajectory segmentation and clustering algorithm
based on improved discrete Fréchet distance and entropy theory.

Landmark-based indoor map construction methods are predicated on the following
assumptions: (1) the number of landmarks exceeds the predetermined threshold, and
(2) landmarks can be detected by multiple trajectories [27]. As a result of the availability
of numerous trajectories through crowdsourcing, the landmarks detected by activity de-
tection algorithms are sparse and dispersed, which may result in map fusion or matching
failures. The object detector or semantic segmentation methods based on deep learning
have excellent detection accuracy and efficiency. Consequently, this paper employs the
YOLO V3 detector to identify semantic objects in the selected keyframes. Wi-Fi landmarks
are also extracted to increase the density of landmarks, and they can also be utilized for
fingerprinting- and landmark-matching-based localization.

2.2. Graph Optimization-Based Map Construction

Many scholars have used graph optimization to solve the problem of map construction.
The core of graph optimization was the construction of a graph, namely, an error energy
function. To construct a Wi-Fi radio map for the site survey phase, Tan et al. [40] used
PDR- and Wi-Fi-based edges to represent position constraints between two raw poses
and landmark-based edges to represent constraints for a single pose. Zuo et al. [41]
utilized a PDR algorithm to estimate the distance constraint between adjacent poses, a BLE
fingerprinting method to constrain poses with similar fingerprints, and a path-loss model to
constrain the distance between the poses and the beacons. The Global Navigation Satellite
System (GNSS) provided a large amount of high-accurate position information for multi-
platform clients in outdoor environments. GVINS was a state estimator using GNSS raw
measurements, inertial measurements, and visual images. Its constraint factors included
inertial factors, visual factors, code pseud-orange and Doppler factors [42]. Similarly, Das
et al. modeled multiple optimization graphs using visual information from a precise stereo
camera-based visual odometry, inertial information from a vehicle velocity and yaw-rate
sensor-based odometry, and GNSS information [43]. The FGO-NDT method reduced
the drift errors of systems by using a factor graph, which combined the GNSS location
and loop information [44]. GraphIPS constructed an optimization graph with location
nodes (LNs) and sensing nodes (SNs). LNs and SNs were constrained by LN-SN distance,
adjacent step distance, and nonadjacent step distance, which were calculated using received
signal strength (RSS), accelerometer, and angle-of-arrival (AoA) data, respectively [45].
Zhou et al. [18] proposed a two-step method for indoor map optimization. The first-step
optimization graph was constructed using transformation matrices as nodes and the errors
of the transformed results as edges. The second-step optimization was the pose global
optimization (PGO), which consisted of inner and outer constraints. The former denoted
the position relationship between neighbor poses, whereas the latter denoted the intersected
loop position poses (LPP) of different trajectories. The 80% error range for the two-step
optimization-based method in an application scene was about 1.7–3.5 m. A graph could
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also be used for indoor Wi-Fi radio map abstraction, where the activity landmarks were
employed as nodes, and the possible user path was employed as edges [38].

By fusing crowdsourced data into a graph-based formulation, it is possible to sig-
nificantly improve the map’s accuracy [38]. Therefore, this paper proposes a graph
optimization-based method for indoor map construction and localization. To reduce the
requirement for computing power, the highest-quality single-track map is used to initialize
the venue map. Using graph optimization, the single-track map with the highest degree of
matching to the venue map is also fused. The venue map is updated after optimization in
terms of waypoints, semantic landmarks, and Wi-Fi landmarks.

3. The Main Context
3.1. System Overview

The map construction and localization method are depicted in Figure 1 with a general
overview. It relies on smartphone-collected sensor data, including visual images, inertial
measurements (i.e., accelerometer and gyroscope measurements), and raw Wi-Fi finger-
prints. Specifically, Wi-Fi fingerprints contain the media address control (MAC) and RSS
values of access points (APs).
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Data preprocessing is the first step of the crowdsourcing-based indoor semantic map
construction and localization method. After fusing multi-sensor data, a group of single-
track semantic maps comprised of waypoints, semantic landmarks, and Wi-Fi landmarks
is constructed.

The second component involves map fusion and venue map updates. First, the
transformation matrix between the candidate and venue maps is estimated using semantic
and Wi-Fi landmarks that match. Then, optimize the aligned maps under the constraints
of association and matching. The waypoints, semantic landmarks, and Wi-Fi landmarks
serve as nodes in the optimization graph, while the association and matching relationships
between waypoints and landmarks serve as constraint edges. To reduce venue map
redundancy, the optimized venue map is updated with respect to waypoints, semantic
landmarks, Wi-Fi landmarks, and the association between them. Notably, map alignment
and fusion are performed incrementally. When a new candidate map is selected, a new
map alignment and venue map update iteration is initiated.

The final component is localization. A localization method based on landmark match-
ing is utilized to estimate a pedestrian’s location on a venue map. Wi-Fi fingerprinting
specifically determines the relationship between semantic landmarks in the local and
venue maps.

Sections 3.2–3.6 contain more detail. The proposed optimization graph is a critical insight.

3.2. Crowdsourcing Data Preprocessing

Smartphone-collected crowdsourcing data is preprocessed to construct single-track
semantic maps containing waypoints, semantic landmarks, and Wi-Fi landmarks.

The PDR-aided VI-SLAM outputs keyframes, keyframe-rate feature points, and IMU-
rate waypoints using time-synchronized monocular visual and inertial measurements
as inputs. The PDR-aided VI-SLAM uses the PDR’s velocity as an external observation
to constrain the scale drift of the conventional VI-SLAM systems [32], which is defined
as Equation (1):

vPAM
t = λPDRvPDR

t + λVIOvVIO
t (1)

where vPAM
t , vPDR

t , and vVIO
t denote a pedestrian’s velocity at time t, which are estimated

by the PDR-aided VI-SLAM (abbreviated, PAM), PDR, and visual and inertial odometry
(abbreviated, VIO), respectively. λPDR and λVIO denote the weight factor of the velocity
estimated by the PDR and VIO, respectively. Visual tracking may fail due to a change in
lighting or a lack of texture, where PDR has the greatest weight in velocity estimation,
i.e., λVIO = 1.

The PDR-aided VI-SLAM is applicable to closed-loop and non-closed-loop trajec-
tory scale correction. Experiments conducted on the self-collected and public ADVIO
datasets [32,46,47] confirmed that PDR-aided VI-SLAM provides more accurate pose esti-
mation than traditional VI-SLAM systems [32]. The front-end visual processing outputs
keyframes based on the average parallax and tracking quality principles [48]. When YOLO
V4 only detects semantic objects in the selected keyframes, the object detector’s performance
is significantly enhanced.

As summarized in Table 1, YOLO V4, a pretrained object detector, outputs the at-
tributes of semantic objects in the selected keyframes with high precision. Additionally, it
summarizes the attributes of the PDR-aided VI-SLAM-estimated feature points. By analyz-
ing their attributes, it is possible to conclude that a semantic landmark can be created using
the shared attribute of semantic objects and feature points, namely, 2D pixel coordinates.

Table 1. The attributes of semantic objects and feature points.

Attribute UTC
Time

2D Pixel
Coordinate

3D Space
Coordinate Confidence Class

Semantic Object
√ √

×
√ √

Feature Point
√ √ √

× ×
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For the (g)th keyframe, feature points satisfying the constraint of Equation (2) corre-
spond to the (l)th semantic object:

xg,l
min ≤ u f p

k ≤ xg,l
max

yg,l
min ≤ v f p

k ≤ yg,l
max

(2)

where (xmin, ymin) is the upper left vertex of the semantic bounding box, and (xmax, ymax)
is the lower right vertex. (u, v) is the pixel coordinate of a feature point.

The intersection over union (IOU) metric evaluates the coincidence degree of the (l)th
semantic object with those objects having the same class label in previously n keyframes. If
the IOU score of the (l)th semantic object exceeds the set threshold, the semantic object and
corresponding feature points are labeled with an index, which is the same as that of the
matched semantic objects in previously n keyframes. Since the bounding box is rectangular
and semantic objects are typical of irregular shapes, the bounding box contains outliers.
The R-DBSCAN algorithm is applied to filter outliers from randomly selected feature
points. The final step involves calculating the location of a semantic object relative to the
corresponding trajectory as the centroid of filtered feature points with the same index.

Wi-Fi fingerprint stability is significantly impacted by the signal multipath effect, air
humidity, and access channel occupancy [34]. Therefore, we employ a sliding window-
based Wi-Fi fusion algorithm to improve the stability of the AP. In a sliding window,
APs collected more than once are defined as shared APs, while others are defined as
unique APs. The shared and unique APs in a sliding window form a Wi-Fi landmark,
with the shared APs, fused in terms of RSS values and maturity. RSS values are used to
sort all the APs belonging to a Wi-Fi landmark. The sliding window-based Wi-Fi fusion
algorithm is an offline and efficient Wi-Fi fingerprint construction method as compared to
the manual-based method. The Wi-Fi landmark can also be used as a localization feature.

A single-track semantic map is a map that depicts the environment’s spatial character-
istics. Figure 2 depicts the association relationship between waypoints, semantic landmarks,
and Wi-Fi landmarks, where Wi-Fi landmarks have no direct association relationship with
semantic landmarks. As a result, waypoints are employed as a link between semantic and
Wi-Fi landmarks. Only waypoints, semantic landmarks, and Wi-Fi landmarks are saved in
a map file to reduce storage requirements.
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3.3. Map Alignment

All single-track semantic maps are constructed following the crowdsourcing data
preprocessing. To avoid the effect of low-quality single-track semantic maps on map fusion,
the quality of a map is evaluated using the function shown in Equation (3). Low-quality
single-track semantic maps are filtered out, and the map with the highest quality score
is chosen as the initial venue map. In Equation (3), a map quality ScoreMap is positively
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correlated with the landmarks’ quality on a map. For conciseness, the abbreviated alphabets
in the following equations are defined as follows: the waypoints are denoted as “P”, the
semantic landmarks are denoted as “S”, the Wi-Fi landmarks are denoted as “W”, the
association relationship is denoted as “A”, the matching relationship is denoted as “M”,
the venue map is denoted as “V”, the candidate map is denoted as “C”, and the local map
is denoted as “L”.

ScoreMap = µS × NS × con f + µW × NW (3)

where µS and µW denote the importance of the semantic and Wi-Fi landmarks in evaluating
the map quality, respectively. Compared to environmentally sensitive Wi-Fi landmarks,
semantic landmarks are more stable and reliable. Therefore, µS is twice as large as µW . We
also take the number of semantic landmarks NS and Wi-Fi landmarks Nw into consideration.
The map’s confidence con f is defined as:

con f =
1

NS

NS

∑
g=1

con fg (4)

For the (h)th semantic landmark of a single-track semantic map, the confidence value
con fh reflects how confident the detector is that the bounding box contains an object and
how accurate it thinks the bounding box is that it predicts.

Figure 3 illustrates the schematic diagram of map alignment. For map alignment,
the semantic landmarks (diamonds) and Wi-Fi landmarks (circles) on a candidate map
(colored green) are matched with those on a venue map (colored yellow). Map alignment is
performed in an incremental method; when a candidate map is chosen, a standalone map
alignment and venue map update are generated in one iteration.
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The matching quality of venue and candidate maps ScoreM relies on the matched
Wi-Fi and semantic landmarks, as defined in Equation (5):

ScoreM = (η1 × DisW−W + η2 × DisS−S)
−1 (5)

The weight factor of the Wi-Fi landmarks η1 and semantic landmarks η2 are preset for
evaluating the map matching quality. Considering the (m)th Wi-Fi fingerprint in a venue
map has n APs, the RSS values of the n APs are (RSS1

m, RSS2
m, . . . , RSSn−1

m, RSSn
m), and

considering the (r)th Wi-Fi fingerprint in the single-track semantic map to be matched has
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s APs, the RSS values of the s APs are (RSS1
r, RSS2

r, . . . , RSSs−1
r, RSSs

r). Suppose there
are k shared APs, k ≤ s ≤ n, the Wi-Fi Euclidean distance EucW is calculated as follows:

EucW =

√√√√ k

∑
o=1

(RSSom − RSSor)2 +
n

∑
p=n−k

(
RSSpm − RSSε

)2
+

s

∑
q=s−k

(
RSSqr − RSSε

)2 (6)

For the (n− k) unique APs in the (m)th Wi-Fi fingerprint, and the (s− k) unique
APs in the (r)th Wi-Fi fingerprint, the RSS value is unknown. Therefore, to unify RSS
sequence length, the missing RSS values RSSε of unique APs in the (m)th, and (r)th Wi-Fi
fingerprints are set as −99.

To reduce the effect of moving APs on the Wi-Fi landmark matching, the Wi-Fi se-
quence distance SeqW is calculated as [49]:

SeqW = ‖Seqm − Seqr‖2 (7)

The Wi-Fi landmark distance between the venue map and single-track semantic map to
be matched DisW is determined by the Wi-Fi Euclidean distance EucW and Wi-Fi sequence
distance SeqW simultaneously, as defined in Equation (7):

DisW = ξ1 × EucW + ξ2 × SeqW (8)

The moving APs can be detected by an AP selection algorithm [50]. Therefore, the
weight factor of Wi-Fi Euclidean distance ξ1 and Wi-Fi sequence distance ξ2 can be dynami-
cally adjusted based on the corresponding AP quality. Additionally, the matching score can
be used as prior knowledge for the subsequent iteration of selecting a candidate map.

The semantic landmarks are pre-matched based on their class attributes, establishing
a one-to-many association. Since semantic landmarks are associated with Wi-Fi land-
marks, Wi-Fi fingerprinting is used to determine a one-to-one association between se-
mantic landmarks. Additionally, the distance between semantic landmarks is calculated
using Equations (6)–(8). Utilizing pre-matching significantly improves the efficiency of
matching landmarks.

As shown in Figure 3a, a topological matching relationship is established between the
venue and candidate maps using the matched landmark pairs (i.e., Wi-Fi and semantic
landmark pairs). To align the candidate and venue maps, a transformation matrix TC

V is
estimated by minimizing the Equation (9):

∑
V

wV ×
(

LS
V − TC

V LS
C

)2
+ ∑

C
wC ×

(
LW

V − TC
V LW

C

)2
(9)

where LS
V and LW

V denote the matched semantic and Wi-Fi landmarks in a venue map,
respectively; LS

C and LW
C are the matched semantic and Wi-Fi landmarks in a candidate

map, respectively; The weight factor of the matched semantic landmarks wV is higher than
that of Wi-Fi landmarks wC in transformation matrix estimation, which is consistent with
the map quality evaluation and map matching score calculation.

3.4. Graph Optimization

Graph optimization aims to improve the maximum fit of aligned maps by optimizing
the position of waypoints and associated landmarks while satisfying association and
matching constraints. Figure 4 elaborates on the relationship between optimization graph
nodes and edges. The association constraints (solid lines) in the optimization graph
are the edges connecting waypoints and waypoints (solid green lines), waypoints and
semantic landmarks (solid red lines), and waypoints and Wi-Fi landmarks (solid blue lines).
Compared to the association constraint within one single map, the matching constraint
edges (dotted lines) connect the matched landmarks between the venue and candidate
maps, including semantic–semantic (dotted red lines) and Wi-Fi–Wi-Fi (dotted blue lines).
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Nodes are the “N”-marked groups of waypoints, semantic landmarks, and Wi-Fi landmarks
observed on maps. All the edges are marked with “E”. There are also unmatched landmarks
on the candidate and venue maps, as indicated by the dotted boxes.
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For the (i)th and (j)th landmarks in a venue or candidate map, their absolute poses Ti
and Tj are denoted by Equations (10) and (11), respectively [18]:

Ti =

[
Ri ti
0 1

]
(10)

Tj =

[
Rj tj
0 1

]
(11)

where Ri and Rj denote the rotation matrix of the (i)th and (j)th landmarks relative to the
initial pose point, respectively. ti and tj denote the translation vector of the (i)th and (j)th
landmarks relative to the initial pose point, respectively.

Therefore, the pose of the (j)th landmark relative to the (i)th landmark Tij is calculated
as follows:

Tij = T−1
i Tj =

[
RT

i Rj RT
i tj − RT

i ti
0 1

]
=

[
R
(
φj − φi

)
RT(φi)

(
tj − ti

)
0 1

]
(12)

where φi and φj are the angle of the (i)th and (j)th landmark relative to the initial pose
point, respectively.

There are two types of relationships between the (i)th and (j)th landmarks: the
association relationship and the matching relationship. If the (i)th landmark is associated
with the (j)th landmark, relative pose measurement T̃ij is:

T̃ij =

[
Rij
(
φ̃ij
)

t̃ij
0 1

]
(13)

Then, the pose error is:

T̃−1
ij Tij =

[
RT(φ̃ij

)
R
(
φj − φi

)
RT(φ̃ij

)
RT(φi)

(
tj − ti

)
− RT(φ̃ij

)
t̃ij

0 1

]
(14)

The cost function in terms of position and angle for the associated landmarks eA
ij is

defined as:

eA
ij =

[
RT(φ̃ij

)
RT(φi)

(
tj − ti

)
− RT(φ̃ij

)
t̃ij

φj − φi − φ̃ij

]
(15)
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If the (i)th landmark is matched with the (j)th landmark, the relative pose measure-
ment T̃ij is:

T̃ij = I4×4 (16)

Then, the pose error is:

T̃−1
ij Tij =

[
R
(
φj − φi

)
RT(φi)

(
tj − ti

)
0 1

]
(17)

The cost function in terms of position and angle for the matched landmarks eM
ij is

defined as:

eM
ij =

[
RT(φi)

(
tj − ti

)
φj − φi

]
(18)

Therefore, the total error estimation function f is defined as follows [40]:

f = ∑
[i,j]∈ΦP

P

eA
ij

TwP
PeA

ij + ∑
[i,j]∈ΦS

P

eA
ij

TwS
PeA

ij + ∑
[i,j]∈ΦW

P

eA
ij

TwW
P eA

ij

+ ∑
[i,j]∈ΦS

S

eM
ij

TwS
SeM

ij + ∑
[i,j]∈ΦW

W

eM
ij

TwW
W eM

ij

(19)

The importance of the association and matching constraints on map optimization is
reflected by the information matrices wP

P, wS
P, wW

P , wS
S, and wW

W , respectively. Particularly,
the matching constraints’ information matrix satisfies the following constraint:

0 ≤ wW
W ≤ wS

S ≤ 1 (20)

The graph optimization aims at finding a β f =

[
t f
φ f

]
that minimize the error function f :

β∗ = argmin( f ) (21)

Then, a Gauss–Newton algorithm [51] is used here to solve the optimization problem,
as presented in Equation (22):

βk+1 = βk − H−1∇ f (22)

where H is a Hesse matrix of function f and ∇ f is the value of function f ’s gradient vector
at point β f .

Similar to the map alignment, the graph optimization is performed incrementally.

3.5. Venue Map Updating

In the overlapped areas of the candidate and venue maps, the optimized results are
duplication. Additionally, the venue map lacks the context that is exclusive to the candidate
map. Once a new iteration of graph optimization is complete, the venue map is updated
in terms of the waypoints, semantic landmarks, Wi-Fi landmarks, and the association
relationship between them.

The waypoints on a candidate map that matches the venue map adhere to the Eu-
clidean distance principle [2] and heading principle, as shown in Equations (23) and (24):√(

xV
a − xC

b
)2

+
(
yV

a − yC
b
)2 − dε ≤ 0 (23)

hV
a − hC

b − hε ≤ 0 (24)

where
(

xV
a , yV

a
)

represents the position of a waypoint/landmark in a venue map and(
xC

b , yC
b
)

denotes the position of a waypoint/landmark in a candidate map. dε denotes
the threshold of the Euclidean distance and hε denotes the heading threshold of a camera.
Once a waypoint in a candidate map satisfies Equations (23) and (24), the maturity of the
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corresponding waypoint on the venue map, mV , is incremented by one, and its location
is updated according to Equation (25). Otherwise, the unmatched waypoints from the
candidate map are added directly to the venue map without modification to their maturity
or location. (

xV
a , yV

a

)
=
[
λV

(
xV

a , yV
a

)
+ λC

(
xC

b , yC
b

)]
/(λV + λC) (25)

In Equation (25), λV and λC denote the weight factor of the venue and candidate maps,
respectively, which are determined by the maturity of waypoints.

The landmarks on a venue map are updated, as shown in Figure 5. Similarly, un-
matched landmarks from a candidate map are added directly to the venue map with a
lower maturity level than landmarks from the previous venue map. Therefore, these land-
marks carry less weight in landmark matching-based map construction and localization.
The unique and shared characteristics of landmarks that are matched on a venue map are
updated. The class of a matched semantic landmark in a venue map cV remains unchanged.
While its corresponding confidence con f V is calculated by weighted averaging the original
confidence of the venue map con f V and the candidate map con f C. The weight factor of the
venue and candidate maps are λV

c and λC
c , respectively. Similarly, the RSS mean value of a

Wi-Fi landmark on a venue map is updated by weighted averaging the RSS value of the
venue map RSSV and the candidate map RSSC. The position of a landmark is updated as
the location of the associated waypoint. Particularly, the maturity of a landmark in a venue
map mV is continuously increased as it is matched with a landmark in a candidate map.
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Finally, after updating all of the waypoints and landmarks, the association relationship
between the waypoints, semantic landmarks, and Wi-Fi landmarks is updated.
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3.6. Localization

Additionally, the updated venue map is utilized for localization. Similar to the prepro-
cessing of crowdsourcing data, a local map is constructed by establishing an association
between waypoints, semantic landmarks, and Wi-Fi landmarks. The transformation matrix
TV

L between the local and venue maps is estimated in real-time using landmark matching.
After transformation, a pedestrian’s location at current time t on the venue map PosV

t is
calculated as follows [18]:

PosV
t = TV

L PosL
t (26)

where PosL
t denotes a pedestrian’s location on a local map.

4. Experiment and Result
4.1. Experiment Setup

A series of experiments are conducted in a Qingdao office building (Figure 6) and a
shopping mall (Figure 7) to evaluate the performance of the crowdsourcing-based indoor
semantic map construction and localization method. We only collect experimental data
from the fourth floor of the office building and a portion of the second floor of the shopping
mall because it is time-consuming to manually collect crowdsourcing data for the entire
office building and shopping mall scenes. The size of the shopping mall scene is nearly
700.0 m × 325.0 m (length × width), which is much larger than that of the office building
scene. The length and width of the office building scene are nearly 70.0 m and 56.0 m,
respectively. Four participants carrying a smartphone walked normally along predeter-
mined experimental routes to collect sensor data via crowdsourcing, including images,
IMU measurements, and Wi-Fi fingerprints. The diversity of experimental data is increased
due to the participants’ varied walking habits, step lengths, and speeds.
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We developed a client application to collect crowdsourcing data for experimental
scenes that were predetermined. The first 90% of the collected data is preprocessed in the
cloud, which was used for map construction via crowdsourcing. Localization relies on the
remaining data collected by participants along the same route. Additionally, in order to
obtain the ground truth for experimental validation, we recorded an additional reference
video, which was captured by an assisting person who walked within a short distance
from the actual collector. Before collecting the experimental data, a ground coordinate
system was established using fixed-size tiles on the ground. The reference video and the
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pre-defined ground coordinate system allowed us to determine the relative location of the
actual collector when his/her feet hit the ground.
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Figure 7. Schematic diagram of the shopping mall.

4.2. Performance Evaluation of Crowdsourcing-Based Map Construction

Office building and shopping mall scenes were used to validate the proposed semantic
map construction method. Figure 8 depicts the process of constructing and updating a
venue map, using an office building as an example scene. Figure 8a depicts the single-track
semantic maps obtained by preprocessing the crowdsourcing data. All the single-track
semantic maps are evaluated by a map quality evaluation function and sorted according to
their corresponding scores. Then, the single-track semantic map with the highest quality is
chosen as the initial venue map, as presented in Figure 8b. Using the matched semantic
and Wi-Fi landmarks between the remaining single-track semantic maps and the initial
venue map, the map matching quality is evaluated. Then, the single-track semantic map
with the highest matching quality with the venue map is chosen as the candidate map,
as presented in Figure 8c. In Figure 8d, the matched semantic landmarks between the
candidate and venue maps are connected with colored straight lines. The maps aligned
after transformation are presented in Figure 8e. In Figure 8f, graph optimization further
enhanced the fit of maps. After optimization, the venue map was updated, as presented
in Figure 8g. The updated venue map, as presented in Figure 8h, is incorporated into the
loop for the subsequent fusion and update. It is notable that, the red line denotes the initial
selection and update of the venue map, and the blue line denotes the subsequent fusion
and update of the venue map after the first iteration.

Compared to the initial venue map presented in Figure 9a, the fused venue map in
Figure 9b covers the entire fourth floor of the office building. The number of semantic
landmarks also increases from 24 to 35 after continuous fusion. As presented in Figure 9a,b,
semantic landmarks are non-uniformly scattered on the venue map, which is consistent
with the distribution of semantics on real venues. However, the distribution density
of semantic landmarks on the venue map is lower than that on real venues. There are
two reasons: (1) the training dataset cannot contain the semantic objects of all classes;
(2) limited by the accuracy of the object detection methods, many small-sized semantic
objects, such as exits, cannot be detected accurately and continuously. The trajectory after
continuous fusion is much smoother than the initial trajectory; this is because the initial
trajectory estimated by the PDR-aided VI-SLAM may be affected by scale or attitude drifts.
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The progress of constructing a venue map in the shopping mall scene is similar to
that in the office building scene. After fusing all the crowdsourcing data, the fused venue
map is presented in Figure 10b. Compared to the office building scene, the semantic
density in the shopping mall scene is much sparser for there are few identifiable semantic
objects. Particularly, the number of semantic landmarks increases from 5 to 15, and the
semantic landmarks are scattered on the venue map. The most notable feature of the
shopping mall scene is that there are lots of forks in the scene, which are marked with red
boxes. The trajectories containing different forks are accurately and smoothly spliced while
iterating. The spliced trajectory in Figure 10b reflects walkable routes and walking habits
of pedestrians, such as dodging pillars (red pentagram).
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4.3. Performance Evaluation of Localization

The localization error at the current time t errt is determined by the ground truth GTt
and the positioning result corresponding to the ground truth timestamp Post, as defined
in Equation (27):

errt = GTt − Post (27)

In this paper, we calculate the location error cumulative distribution function (CDF)
to evaluate the efficiency of the two localization methods, Wi-Fi fingerprinting-based
localization, and landmark matching-based localization. Additionally, the initial and
merged venue maps are utilized as localization maps, respectively. Figures 11 and 12
illustrate the localization error for Wi-Fi fingerprinting-based localization in the initial venue
map, landmark matching-based localization in the initial venue map, Wi-Fi fingerprinting-
based localization in the fused venue map, and landmark matching-based localization in
the fused venue map.

Compared to using the initial venue map as the localization map for the office building
scene, the localization methods have higher localization accuracy in the fused venue map,
as shown in Figure 11. Particularity, the Wi-Fi fingerprinting-based localization has an
average localization error of 1.08 m with a standard deviation of σ = 0.69 m in the initial
venue map, while its localization error in the fused venue map is 0.87 m, and the standard
deviation is σ = 0.53 m. Compared to the initial venue map, the fused venue map’s
Wi-Fi fingerprinting-based localization is 19.4% more accurate in terms of localization.
Also compared are the localization results of the landmark matching-based localization,
whose localization accuracy in the fused venue map is enhanced by over 14.2% compared
to that in the initial venue map. Figure 11 demonstrates that landmark matching-based
localization is more accurate than Wi-Fi fingerprinting-based localization. In the initial
venue map, 90% of the CDF error for Wi-Fi fingerprinting-based localization is within
approximately 2.2 m, while it is within approximately 0.7 m for landmark matching-based
localization. In the fused venue map, 90% of the CDF error for Wi-Fi fingerprinting-based
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localization is within approximately 1.55 m, while it is within approximately 0.6 m for
landmark matching-based localization.

Sensors 2022, 22, 6263 18 of 23 
 

 

 
Figure 11. CDF of the location estimation error for the office building scene. 

  

Figure 11. CDF of the location estimation error for the office building scene.

Sensors 2022, 22, 6263 19 of 23 
 

 

 

 
Figure 12. CDF of the location estimation error for the shopping mall scene. 

Compared to using the initial venue map as the localization map for the office build-
ing scene, the localization methods have higher localization accuracy in the fused venue 
map, as shown in Figure 11. Particularity, the Wi-Fi fingerprinting-based localization has 
an average localization error of 1.08 m with a standard deviation of 𝜎 = 0.69 m in the 
initial venue map, while its localization error in the fused venue map is 0.87 m, and the 
standard deviation is 𝜎 = 0.53 m. Compared to the initial venue map, the fused venue 
map’s Wi-Fi fingerprinting-based localization is 19.4% more accurate in terms of localiza-
tion. Also compared are the localization results of the landmark matching-based localiza-
tion, whose localization accuracy in the fused venue map is enhanced by over 14.2% com-
pared to that in the initial venue map. Figure 11 demonstrates that landmark matching-
based localization is more accurate than Wi-Fi fingerprinting-based localization. In the 
initial venue map, 90% of the CDF error for Wi-Fi fingerprinting-based localization is 
within approximately 2.2 m, while it is within approximately 0.7 m for landmark match-
ing-based localization. In the fused venue map, 90% of the CDF error for Wi-Fi finger-
printing-based localization is within approximately 1.55 m, while it is within approxi-
mately 0.6 m for landmark matching-based localization. 

For the shopping mall scene, compared to using the initial venue map as the locali-
zation map, the localization methods also have higher localization accuracy in the fused 
venue map, as shown in Figure 12. Particularity, the Wi-Fi fingerprinting-based localiza-
tion has an average localization error of 1.15 m with a standard deviation of 𝜎 = 0.57 m 
in the initial venue map, while its localization error in the fused venue map is 0.91 m. 
Compared to the initial venue map, the localization accuracy of the fused venue map’s 
Wi-Fi fingerprinting-based localization is improved by more than 20.8%. The localization 
results of the landmark matching-based localization are also compared, revealing that its 
localization accuracy in the fused venue map is enhanced by more than 16.0% compared 
to that in the initial venue map. Similarly, in the shopping mall scene, landmark matching-
based localization is more accurate than Wi-Fi fingerprinting-based localization. In the 
initial venue map, 90% of the CDF error for Wi-Fi fingerprinting-based localization is 
within approximately 2.0 m, while it is within approximately 1.2 m for landmark match-

Figure 12. CDF of the location estimation error for the shopping mall scene.

For the shopping mall scene, compared to using the initial venue map as the local-
ization map, the localization methods also have higher localization accuracy in the fused
venue map, as shown in Figure 12. Particularity, the Wi-Fi fingerprinting-based localization
has an average localization error of 1.15 m with a standard deviation of σ = 0.57 m in
the initial venue map, while its localization error in the fused venue map is 0.91 m. Com-
pared to the initial venue map, the localization accuracy of the fused venue map’s Wi-Fi
fingerprinting-based localization is improved by more than 20.8%. The localization results
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of the landmark matching-based localization are also compared, revealing that its localiza-
tion accuracy in the fused venue map is enhanced by more than 16.0% compared to that
in the initial venue map. Similarly, in the shopping mall scene, landmark matching-based
localization is more accurate than Wi-Fi fingerprinting-based localization. In the initial
venue map, 90% of the CDF error for Wi-Fi fingerprinting-based localization is within
approximately 2.0 m, while it is within approximately 1.2 m for landmark matching-based
localization. In the fused venue map, 90% of the CDF error for Wi-Fi fingerprinting-based
localization is within approximately 1.45 m, while it is within approximately 0.85 m for
landmark matching-based localization.

The average localization error comparison of the office building and shopping mall
scenes is summarized in Table 2. It can be conducted that, compared to the office building
scene, the proposed localization methods have higher average localization error in the
shopping mall scene, especially for the landmark matching-based localization. Particularly,
using the initial venue map as the localization map, the landmark matching-based localiza-
tion has an average localization error of 0.42 m in the office building scene, while its average
localization error in the shopping scene is 0.56 m. The localization error is increased by
0.14 m. Using the fused venue map as the localization map, the average localization of the
landmark matching-based localization in the shopping mall scene is 0.11 m larger than that
in the office building scene. However, the error between the average localization error of
the Wi-Fi fingerprinting-based localization in the office building and shopping mall scenes
is less than 0.1 m. The reason is that the semantic density of the shopping mall scene is
much lower than that of the office building scene. Additionally, since the relative location
of Wi-Fi landmarks is equal to the location of waypoints with the closest timestamp to the
Wi-Fi landmarks, it may lead to a far distance between the waypoints matching the same
Wi-Fi landmark in an empty shopping mall scene and increase the localization error.

Table 2. The average localization error comparison of the office building and shopping mall scenes.

Method Office Building (m) Shopping Mall (m)

Wi-Fi fingerprinting (initial venue map) 1.08 1.15
Landmark matching (initial venue map) 0.42 0.56
Wi-Fi fingerprinting (fused venue map) 0.87 0.91
Landmark matching (fused venue map) 0.36 0.47

5. Conclusions and Discussions

This paper proposes a crowdsourcing-based method, which solves the problem of
indoor map construction and localization for unknown environments. The method utilizes
the smartphones’ built-in sensors, such as cameras, IMUs, and Wi-Fi, so the system’s
hardware cost is not increased. Smartphone-collected crowdsourcing data is preprocessed
to construct single-track semantic maps. Those maps are evaluated using the proposed
map quality evaluation function, and the highest quality one is chosen as the initial venue
map. A candidate map having the highest matching degree with the selected venue
map is selected for map fusion. After map alignment, the candidate and venue maps
are optimized while satisfying the constraints. Inspired by the construction of single-
track semantic maps, the optimization graph is constructed using waypoints, semantic
landmarks, and Wi-Fi landmarks as nodes and the relevance between waypoints and
landmarks as constraints. The venue map is lightweight since it is updated with respect
to waypoints, semantic landmarks, Wi-Fi landmarks, and the association between them.
In this paper, the construction and update of the venue map are performed using an
incremental, iterative approach. A series of experiments are conducted in office building
and shopping mall scenes. The results indicate that the venue map constructed using
crowdsourcing data covers nearly all passed areas and can filter out incorrectly identified
semantics to improve the map accuracy. The constructed venue map can also be used for
multi-scene localization, with an average localization error of less than 0.5 m in the office
building scene and 1.0 m in the shopping mall scene.
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Since the proposed method is based on crowdsourcing, it has a high demand for sensor
data. Collecting crowdsourcing data with a single smartphone platform is time-consuming
and labor-intensive. Therefore, in the future, we will try multi-platform collaborative
mapping methods, such as smartphones, robots, and UAVs. Low-quality single-track
semantic maps can significantly reduce the venue map accuracy. Therefore, we will propose
an efficient semantic map pre-screening mechanism before map fusion. The proposed
optimization graph can be improved by using the constraints between semantic landmarks
in a single-track semantic map as an added edge. At the same time, the constraint edge
between semantic landmarks can also be utilized for landmark matching-based localization.
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