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Abstract: Increasing the efficiency of the quality control phase in industrial production lines through
automation is a rapidly growing trend. In non-destructive testing, active thermography techniques
are known for their suitability to allow rapid non-contact and full-field inspections. The robotic
manipulation of the thermographic instrumentation enables the possibility of performing inspections
of large components with complex geometries by collecting multiple thermographic images from
optimal positions. The robotisation of the thermographic inspection is highly desirable to improve
assessment speed and repeatability without compromising inspection accuracy. Although integrating
a robotic setup for thermographic data capture is not challenging, the application of robotic ther-
mography has not grown significantly to date due to the absence of a suitable approach for merging
multiple thermographic images into a single presentation. Indeed, such an approach must guaran-
tee accurate alignment and consistent pixel blending, which is crucial to facilitate defect detection
and sizing. In this work, an innovative inspection platform was conceptualised and implemented,
consisting of a pulsed thermography setup, a six-axis robotic manipulator and an algorithm for
image alignment, correction and blending. The performance of the inspection platform is tested on a
convex-shaped specimen with artificial defects, which highlights the potential of the new combined
approach. This work bridges a technology gap, making thermographic inspections more deployable
in industrial environments. The proposed fine image alignment approach can find applicability
beyond thermographic non-destructive testing.
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1. Introduction

Non-destructive Testing (NDT) comprises highly multidisciplinary groups of analysis
techniques used throughout science and industry to evaluate materials’ properties and
ensure the integrity of components/structures without causing damage to them [1]. In civil
and industrial manufacturing, the increasing deployment of smart/composite materials
demands high integrity and traceability of NDT measurements, combined with rapid data
throughput. Traditional manual inspection approaches are insufficient in some scenarios
since they produce a manufacturing process bottleneck [2]. Therefore, there are fundamen-
tal motivations for increasing automation in NDT. Computer-Aided Design (CAD) has been
extensively used in engineering design phases. Computer-Aided Manufacturing (CAM)
also allows large components to be produced quickly through combinations of traditional
subtractive approaches and novel additive manufacturing processes [3]. As a result, large
components with complex geometries have become very common in modern structures.
NDT inspection is still often performed manually by technicians who typically must move
appropriate probes over the contour of the part surface. Manual scanning requires trained
technicians and results in a prolonged inspection process for large samples. Automation of
NDT is required to cope with the inspection of such structures. Robotic manipulation of
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NDT sensors also plays an essential role in inspecting parts made of composite materials.
A fundamental issue with composite components is that parts designed as identical can
have significant deviations from the CAD model. Composite parts suffer from inherent but
different part-to-part springiness out of the mould, which presents a significant challenge
for precision NDT measurement deployment. While manual scanning may remain a valid
approach for some specific areas of a structure, developing reliable automated solutions has
become an industry priority to drive down inspection times and costs. An industrial robot
is an automatically controlled, reprogrammable, multipurpose manipulator programmable
in three or more axes [4]. Many manufacturers of industrial robots have produced robotic
manipulators with excellent positional accuracy and repeatability. In the spectrum of robot
manipulators, some modern robots have suitable attributes to develop automated NDT
systems. They present precise mechanics, the possibility to accurately master each joint and
the ability to export positional data at high update rates. The key challenges to face when
developing a robotic NDT system include integrating the NDT instrumentation with the
robotic manipulator, creating a suitable robot inspection path for the part under inspection,
and developing software for NDT data collection and visualisation. These challenges
have been addressed by several applications of six-axis robotic arms for the inspection of
parts through automated ultrasonic techniques [5-7]. Robotic ultrasonic inspection has
become commonplace thanks to the research investments driven by the aerospace sector
in the suitability of ultrasonic techniques to inspect critical aerospace components. Some
works have presented robotic ultrasonic inspection systems capable of achieving high data
throughputs, accompanied by bespoke software for data visualisation and analysis [5,8].
Automated geometry mapping has also been demonstrated using robotically manipulated
metrology sensors [9].

Besides these techniques, other types of inspections have not reached the same level
of robotisation; this is the case for thermographic testing, also known as thermal imaging,
infrared (IR) thermography or simply thermography. It is an NDT imaging technique that
allows the visualisation of heat temporal patterns in an object or a scene and is based on
the principle that two dissimilar materials possessing different thermophysical properties
produce two distinctive thermal signatures that can be revealed by an infrared sensor, such
as an IR thermal camera [10-12]. Although a thermographic setup in reflection mode, with
a heat excitation source and an IR camera on the same side of the part under inspection, is
not well suited to detect defects located deep in the volume of a component, it presents
some advantages over ultrasonic-based inspections. It is contactless and full-field, meaning
that the whole area of a component detectable within the field of view of an IR camera
is inspected remotely at once. Schmidt and Dutta [13] proposed using industrial robots
as manipulators to perform active thermography in 2012. The robotic manipulation of
the thermographic instrumentation can enable the possibility of performing inspections
of large components with complex geometries by collecting multiple thermographic im-
ages at given positions. Despite preliminary investigations [13,14], the robotisation of the
thermographic inspection method has not been fully exploited to date due to the lack of a
suitable approach capable of aligning automatically-collected thermographic images. The
importance of consistent registration of NDT data in CAD models is highlighted in [15].
Aligning thermographic images for NDT analysis is not trivial since accurate and consistent
pixel blending must be guaranteed and is crucial to facilitate defect detection and sizing.
Inaccurate alignment and blending may create unreal artefacts in the composite thermogra-
phy image and cause false-positive flaw detection. In this work, an innovative inspection
platform was conceptualised and implemented, consisting of a pulsed thermography setup,
a six-axis robotic manipulator and a novel algorithm for image transformation, alignment
and blending. The performance of the inspection platform is tested on a convex-shaped
specimen with artificial defects, highlighting the potential of the new combined approach.

The remaining part of this work is organised as follows. Section 2 reviews the theo-
retical principles of thermographic inspection and provides scientific literature references.
Following a detailed clarification of the origin of the misalignment in robotically-acquired
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images and the limitations of existing image alignment algorithms, Section 3 describes
the novel image alignment and blending algorithm developed by this work. Section 4
introduces the automatic thermography setup used to validate the proposed method.
Section 5 presents the experimental results. The outcomes of this work and the method’s
performance and prospects are discussed in Section 6.

2. Thermography Principles

Thermography, as introduced above, can be deployed through different techniques [16].
The essential equipment for manual (not automated) thermography includes an IR camera,
a computer to record (and sometimes process) data and a monitor to display images. The
main classification of the thermographic techniques differentiates between passive and
active techniques. Passive thermography exploits the fact that materials and structures
may naturally be at different (higher or lower) temperatures than the background. For
example, the human body is generally at a higher temperature than the ambient; hence
it is easily detected by an IR camera without additional stimulation. Conversely, an
external stimulus is needed in active thermography to produce a thermal contrast in the
object’s surface. Active techniques are particularly suited to non-destructive testing since
an object containing internal defects (such as voids, delaminations and/or inclusions
of foreign material) will require the excitation of thermal disequilibrium to produce a
distinctive surface thermal signature detectable with an IR camera. In the realm of active
thermographic techniques, pulsed thermography (PT) has broad applicability in NDT.
When an object’s surface is heated through a short (a few milliseconds) energy pulse
of light radiation, a series of thermal waves with different amplitudes and frequencies
propagate inside the object medium in a transient mode. The surface temperature is
monitored under the principle that defective areas cool down (or heat up) at a different rate
than non-defective areas [17-19]. It is known that the thermal wave originating from the
energy pulse can be decomposed into a multitude of individual sinusoidal components and
that it is possible to link temporal and frequency domains. In pulsed phase thermography
(PPT), the PT is combined with the phase and frequency concepts of lock-in thermography
(LT), where specimens are subject to a periodical excitation [12,20-22]. Flash lamps generate
a heat pulse of high intensity and low duration. The subsequent temperature decay is then
acquired over a truncation window.

Once raw data are collected, there are multiple techniques to analyse the data. One
approach consists of calculating the Discrete Fourier Transform (DFT) to evaluate the ther-
mal response’s frequency content. The phase of specific harmonic content can finally be
obtained and presented as a phasegram, an image where the scalar value associated with
each pixel represents the phase. Any discontinuity in phase contrast is either caused by the
object geometry or indicates a potential flaw. In the PPT approach, whereas deeper anoma-
lies are expected to be better contrasted in low-frequency phasegrams, high-frequency
phasegrams probe better for superficial issues. The signal normalisation inherent in evaluat-
ing the phase is also expected to reduce the counter effects of non-uniform heat deposition
and environmental reflections [23]. It must be noted that the terms phasegram(s) and
thermographic image(s) are used as synonyms in the remainder of this paper.

3. Fusion of Multiple Thermographic Images
3.1. Misalignment Issue in Robotically-Acquired Images

Robotic NDT inspections generally occur in a well-structured environment, where
the part position is precisely registered with respect to the robot reference system. Great
care is dedicated to ensuring the robot tool path is accurately referenced to the sample
reference frame to ensure effective data collection during automated inspections [24].
Despite the efforts, a deviation between the actual tool path and the ideal tool path al-
ways remains due to the following reasons: (i) the physical tolerances in the robot joints;
(ii) the geometric deviations in the mounting support of the sensing instrumentation;
(iii) the residual inaccuracy in the calibration of the part position; (iv) the deviation between
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the actual sample geometry from the part digital counterpart. For these reasons, the resul-
tant data usually reveal some imperfect alignment when they are encoded through robot
positional feedback and plotted in the form of a single map. For robotic thermographic
inspections, the problem translates to evident misalignment of the thermographic images.
The issue may be mitigated through an external metrology tracking system (e.g., a six-DoF
laser tracker), capable of measuring the position of the sensing instrumentation with respect
to an absolute reference frame. However, such metrology systems are expensive and can
increase the overall complexity of robotic inspection systems. In robotic machine vision sys-
tems, the exact position of the camera with respect to the robot mounting point is calibrated
through the hand-eye calibration method [25], which is based on the knowledge of the
camera’s intrinsic parameters, such as focal length, aperture, field-of-view and resolution,
and on the capture of a calibration pattern (e.g., a checkerboard) from different viewpoints.
However, this method is not always applicable to thermographic cameras since they do
not usually have a visible-light imaging sensor (RGB sensor). A similar method based on
calibration patterns with different thermal infrared emissivity could be adopted to calibrate
IR cameras [26]. This work developed a practical solution consisting of correcting each
image’s plotting location and its prospective aberrations to obtain a misalignment-free full-
field view of the inspected sample. The remainder of this section explains the limitations
of available image-stitching algorithms and the theoretical foundations of the proposed
method herein.

3.2. Limitations of Existing Alignment Methods

Algorithms for aligning images and stitching them into seamless photo-mosaics are
among the oldest and most widely used in computer vision. The alignment of images
requires establishing mathematical relationships that map pixel coordinates from the
unaligned images to their aligned versions. Five parametric 2D planar transformations
have been defined [27] (see Figure 1). Each one of these transformations can be described
by a transformation matrix (7(p)), with p being a vector of parameters. Pure translation
can be writtenasx’ = x+torx’ = t(p)x = [I t]-x, wherex = {x, y, 1} is the vector
of coordinates of the untransformed image pixel and x’ denotes the coordinates of the
same pixel in the transformed image, I is the (2 x 2) identity matrix, and t = [t, t,]"is
the translation vector, containing two parameters (respectively, the translation along the
x-axis and the translation along the y-axis). The Euclidean transformation is written as
x' = 1(p)-x = [R t|-x, where R is the 2D rotation matrix. Thus, Euclidean transformation
depends on three parameters: t, t,, and an angle 0 (for the rotation matrix). Euclidean
distances are preserved. The similarity transformation, also known as scaled rotation,
preserves angles between lines. It is expressed as ¥’ = [sR t]-x, where s is the scale
parameter that brings the parameter counter to four. It must be noted that s is a scalar
and the scaling operation is intended to be isotropic. The affine transform is written as
x' = 1(p)-x = A-x, where A is an arbitrary 2 x 3 matrix with six parameters. Parallel lines
remain parallel under affine transformations. Projective transformation, also known as
perspective or homography, is expressed as x’ = 7(p)-x = H-x, where H is an arbitrary
3 x 3 matrix:

hoo  hor oz
X' = |ho My hi|x @M
hao hy 1

Thus, perspective transformation requires eight parameters and preserves straight lines.
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Figure 1. The basic set of 2D planar transformations (Reprinted with permission from Ref. [28]. 2007,
now publishers inc).

Assuming the choice of a suitable motion model to transform each image, a typical
strategy to align a collection of images consists of aligning the images in pairs. In order to
align a pair of images, it is necessary to devise some methods to estimate the parameters
to apply the selected transformation to one image while the other is kept fixed. One
approach is to shift or warp the first image relative to the other and measure how much
the pixels agree. The first methods to quantitatively measure such agreement are often
called “direct methods”, based on pixel-to-pixel matching [29]. These methods are usually
slow since the number of pixel pairs to evaluate can be very large. Direct methods work by
directly minimising pixel-to-pixel dissimilarities; a different class of algorithms works by
extracting a sparse set of features and then matching these to each other [27,30,31]. Feature-
based approaches have the advantage of being more robust against scene movement,
are potentially faster, and can be used to automatically discover the adjacency (overlap)
relationships among an unordered set of images [32].

Although feature-based approaches work well to create panoramas of scenes with
enough distinguishable features, they are not suited to align multiple images for NDT
applications. Non-destructive testing aims to detect defects in parts and/or structures.
As such, besides the presence of intrinsic geometrical details (e.g., borders and corners),
most images may appear relatively featureless since the presence of defects is not the norm.
An attempt to use a feature-based alignment approach was presented in [33], where the
authors note the need to mark artificial points on the background of a test objective to
obtain the mapping matrix from two-dimensional (2D) thermal wave imaging data to the
3D spatial coordinate’s digital model. On the other hand, feature-based approaches can
also fail if plenty of spatially periodic features are present in the images, which can be
the case for industrial components due to stiffeners/stringers, heat dissipators and/or
fixturing holes. Direct methods are less prone to failure caused by a lack of image features
or abundance of periodicity since they can leverage any consistent low-contrast gradient
to find the optimum image transformation parameters. However, the scientific literature
does not show any solution readily available to work with the scalar information present
in each pixel of thermographic images. As stated above, thermographic images differ
from RGB or grayscale images since the pixel values may represent phases (expressed
in degrees or radians) and may be negative values. Moreover, the optimum solution to
align and stitch multiple thermographic images can not progress pairwise. Although it
can work only for images taken in a single row, like in the case of a horizontal panorama,
robotic thermographic inspection generally collects images through a raster tool-path,
with multiple images arranged in multiple passes. A pairwise image-stitching algorithm
would produce a visible drift between adjacent passes due to the progressive summation
of alignment errors.

3.3. Fine Pixel-Based Alignment Method

This work developed a direct method capable of simultaneously aligning multiple
images. The method is suitable to be used when the rough position of the camera (the
shooting pose of each image) is known. That is the case for robotically acquired images,
where the camera position is obtained from the robot’s positional feedback. Given a set of
images, knowledge of camera shooting poses allows skipping the search for the adjacency
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relationships among the set. Knowing the scale factor makes it possible to convert the
pixel index coordinates to real-world coordinates and identify the overlap between the
images. The scale factor can easily be calculated by measuring the size of a known object or
the known distance between two points in an image in terms of the number of pixels and
considering the actual length it represents. Therefore, the algorithm herein is specifically
targeted to perform a fine alignment of all images in the set. It is referred to as the
Fine Pixel-based Alignment Method (FiIPAM). It must be noted that FiPAM is currently
suitable for aligning multiple mosaic images of a sample surface that curves only in one
direction. Although the constraint of single direction curvature is a significant limitation,
it does not impede using FiPAM for mosaic images of any surface belonging to the large
family of cylindrical surfaces intended as “generalised cylindrical surfaces” [34]. Under
that condition, all collected images can be transposed to a planar domain. Indeed, any
cylindrical surface can be represented in the plane by “unrolling” it on a flat surface. An
additional assumption is that the part surface captured within the camera field of view
is sufficiently close to a flat plane. In other words, the ratio between the local surface
curvature and the camera field of view must be small. Figure 2 illustrates a set of nine
images used to explain the theoretical foundations of FiPAM.
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Figure 2. Schematic representation of a set of nine images used to explain the theoretical foundations
of FiPAM.

Direct methods find the optimum alignment between a pair of images by an iterative
search, where one image is transformed with respect to the other through one of the five
planar transformations. To use a direct method, a suitable error metric must first be chosen
to measure the goodness of the alignment. Given two images, with one image (Ip(x)) taken
as a reference image sampled at discrete pixel locations (xx = {xt, vk, 1}), with k being
the pixel index, we wish to find the optimum transformation parameters that align it with
the second image (I; (x)), which is kept fixed. The error metric is defined as the sum of
squared differences (SSD) of the pixel values of I; at the transformed pixel locations and
the reference values of Iy. This kind of function has been successfully used in the image
processing literature, with different aims (e.g., inpainting [35]). Given a transformation
(t(p)), with p being a vector of parameters, we have:

SSD(v(p)) = L[ (t(p)xe) — Io(x))° @)

k
The optimum set of parameters (p*) can be found by solving a least-squares problem
of this SSD function. Since the transformation allows multiple degrees of freedom (DoFs)
for the image, this is a multi-parameter problem. Therefore, a suitable search technique
must be devised. The most straightforward technique would be to exhaustively try all
possible alignments (full search). In practice, this would be too slow and is not practicable.
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Several works have developed hierarchical coarse-to-fine search techniques based on image
pyramids [27] when the approximate image alignment is unknown. In this work, since
the approximate position of each image is assumed to come from the known camera pose,
it has been decided to limit the search space by setting lower and upper bounds for the
transformation parameters.

Regarding the set of images in Figures 2 and 3 illustrates all the overlaps between
image #4 and its neighbour images. Given a positive scalar value herein named “offset” (o),
it is possible to draw shrunk overlap areas whose boundary is at distance o from the bound-
ary of the original overlap areas. The actual value to use for 0 depends on the expected
maximum entity of misalignment caused by the inaccuracy in robotic manipulation of the
camera and by the deviations in the physical camera support. Assuming these offset areas
move with image #4 and the original overlap areas stick with the parent neighbour image,
the bounds of the transformation parameters guarantee that the offset overlap areas remain
within the original overlap footprints. Generalising Equation (2) to allow simultaneous
alignment of multiple images, FiPAM is based on the following SSD function.

SSD(p) = 1. VL) %) ~ L) )]* with ) and (k€ K,). ()
® a2l
?ﬁ ’: H '@L HHE Legend

[DOoOOooOgoon T
ais|s(E/uiniu(sisainis] |§ 4,{411‘.‘”'% Imagearea @Imageindex
[ overlaparea [ Offsetoverlap area

B B =

Lo o e /QTL{OT:—«A

o I Bt |
@ @ 1 X AQ \ 1 1

Figure 3. Illustration of all overlap areas between image #4 and neighbour images. The magnified
region serves to clarify the relationship between the overlap areas and the offset overlap areas.

K; ; is the set of pixel indices that fall within the offset area, produced by the overlap
between the ith and the jth image. Assuming a set of n images, Equation (3) is the sum of
squared differences of the pixel intensity values of the jth image and the ith image. Crucially,
the overlap pixel locations of the jth image are transformed according to the transformation
matrix of the ith image (7;(p)) and the locations of the ith image are transformed according
to the transformation matrix of the jth image (7;(p)).

Now, it must be noted that the vector p includes all the parameters required in the
transformation matrices, and only a subset of it is used to compute a single transforma-
tion matrix (7;(p), withi = 1 : n). Moreover, the summation is not evaluated for j = i
(an image is always aligned with itself) and for combinations of i and j corresponding to
images that do not overlap, where K; ; is an empty set. This formulation solves a typical
problem with pixel-based methods, which is the possibility that parts of I; may lie outside
the boundaries of I;. This advantage follows directly from the constraints applied to the
search space for the transformation parameters. Another aspect to discuss relates to the
fact that the transformed pixel indices can be fractional, so a suitable interpolation function
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must be applied to evaluate the image intensities (I; and I;). This work employs bi-cubic
interpolation, which yields better results than bilinear interpolants [36]. It must be noted
that Equation (3) does not require the image pixel values to be in a specific format. Thus, it
can work with the phase values of thermographic phasegrams and images with three RGB
colour channels, although it is also possible to first transform the images into a different
colour space.

The mathematical parametric formulation of all transformation matrices pictured
in Figure 1 was implemented in FiPAM. The formulation allows maximum flexibility in
choosing the most suitable transformation for each image, meaning that all images in a
set can be aligned using the same type of planar transformation, or each image can use
a transformation of a different type. In other words, each image can be transformed by
allowing different DoFs, which relate to a different number of parameters. Automating the
selection of the optimum transformation for each image is out of the scope of this work.
In practical situations, similarity or affine transformations produce satisfactory results
if the part surface captured within the camera field of view is sufficiently close to a flat
plane. Once the optimum transformation parameters are found, the aligned version of
the ith image is computed by transforming its original discrete pixel locations with the
following equation:

x; = T(p*) % )

3.4. Image Blending

Aligning all images in a dataset is not sufficient to merge the images into a single com-
posite image. Indeed, multiple aligned images may present significant differences in pixel
intensities in overlapping areas. For RGB images, exposure differences are typically caused
by ambient light changes during image capture. In active thermographic imaging, the
same problem may be caused by the progressive increase of an object’s surface temperature
when it is subject to multiple heat pulses. Image blending is usually accomplished through
averaging the intensity of homologue/overlapping pixels or by using more sophisticated
methods, such as “Laplacian pyramid blending” [37] and “Gradient-domain blending” [38].
Although these blending methods work well and have been implemented in many variants
for consumer imaging (e.g., for panoramic image stitching), they cannot directly be used to
blend images originating from NDT inspections. Indeed, in NDT images, it is necessary
to retain the robustness of quantitative information (e.g., to perform pixel intensity com-
parisons) and avoid introducing any image processing artefacts. A typical challenge lies
in removing low-frequency exposure variations while retaining sharp intensity gradients
that may indicate the presence of small defects. In other words, it is necessary to prevent
blurring. In this work, image blending has been solved through a method that preserves
the valuable NDT information in each image. All pixel intensities in an image are offset
by a unique value to maintain gradients unaltered. To explain this approach, Figure 4a,b
provides an example of nine aligned images. The intensity discontinuity between any two
overlapping images has been purposely emphasised. These example images do not contain
high contrast features, which are typical for NDT images taken of a not-defected sample.

The idea is to shift the intensity of all pixels in an image vertically by a particular
corrective value. Thus, n being the number of images in the set, it is necessary to compute
a vector of n scalar optimum intensity correction values (¢* = [ci‘, Cop e Cfpun c,ﬂ) that
simultaneously correct all images in the set. These values may be positive or negative to
produce an increase or a decrease in image pixel intensities. Interestingly, this computation
can be formalised again through a least-squares problem of the following SSD function:

n n

SSD(c ZZZ{[ (xn) +¢;] — [Li(xw) +¢]}  with (j #i)and (h € Hy;), (5

where H; ; is the set of pixel indices that fall within the overlap between the aligned ith
and jth image. It must be noted that the formulation of this SSD function follows the same
approach used for the computation of the alignment parameters. The summation is not
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evaluated for j = 7 (no intensity self-correction is required) and for combinations of i and j
corresponding to images that do not overlap, where H; ; is an empty set. Since intensity
correction is performed after the alignment stage, Equation (5) does not perform any image
transformation. Moreover, since the problem is limited to the computation of only one
scalar parameter per image, convergence to a solution for Equation (5) is obtained faster
than for Equation (3). Once the optimum intensity correction values are found, the matrix
of corrected pixel intensities for the ith image (I;) is computed with the following equation.

Li=I+c (6)

T
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Figure 4. Exemplification of image blending, used in FiIPAM. (a) Aligned images with discontinuous
pixel intensities; (b) images after correction of discontinuities; (c) 3D plot of uncorrected pixel
intensities; (d) 3D plot of the corrected image set.

Once all images are aligned and their intensity is corrected, the final composite image
is obtained by applying the Laplacian pyramid blending, which allows a smooth transition
between images. The application of blending at the end of the procedure is admissible since
it does not introduce any image artefact when pixel intensity differences are low, which is
the case after the phase of image pixel correction.

4. Robotic Thermography Setup
4.1. Inspection System Integration

Figure 5 illustrates the automatic thermography setup used in this work. The robotic
manipulator was a KUKA KR10 R1100-2 arm [39], with a maximum payload of 11.1 kg
and a maximum reach of 1101 mm. The setup was designed to perform PPT inspection
in reflection mode, meaning that the flash lamp and the IR camera were always kept on
the same side of the part under inspection. A custom-built supporting bracket was used to
mount the flash lamp and the IR camera onto the robot and keep them in a fixed relative
position during the inspection. The support allowed adjusting the orientation of the flash
lamp to set the angular offset between the flash lamp illumination axis and the camera axis.
This adjustment is not active because an actuator does not vary it during the execution
of a robotic inspection path. However, keeping the camera focal distance constant for all
data collection poses in a path makes it possible to manually set the optimum angular
offset for any chosen camera focal distance before executing the inspection path. The
heat source was an Elinchrom Twin X4 Lamphead EL20181, capable of releasing a pulse of
4800 W /s with a duration of 5.56 ms (1/180 s), powered by two power supplies in a parallel
configuration [40]. The excitation source features a lightweight aluminium chassis, two twin
flash tubes and twin cables connected to two Elinchrom 2400 RX power packs. The presence



Sensors 2022, 22, 6267

10 of 19

of two flash tubes and two power packs allows shorter flash durations and faster recycle
times than a single flash tube connected to a single power pack, which is advantageous
for the robotisation of the thermographic inspection. The IR camera was a cooled FLIR
X6540sc IR-camera [41], equipped with a 50 mm F/2.0 lens; it has an adjustable acquisition
rate of up to 125 Hz at full frame. The camera detector consists of 640 x 512 pixels, cooled
by a Stirling thermodynamic cycle that uses an Indium-Antimonide fluid. The camera
was connected to the computer through the Gigabit Ethernet link for full bandwidth data
acquisition. The FLIR ResearchIR Max® software (version 4.40.1), running on the computer,
enabled the initial configuration of the camera and the reception of the thermographic
data during the robotic inspection. DFT was used to evaluate the frequency content of the
thermal response.

(%
Data

acquisition
triggered by
temperature
of part
exceeding a
threshold
value

Z
S
g
“é
e
G

PART UNDER
INSPECTION

ROBOT CONTROLLER ) M_P!J L

FLASHLAMP

POWER SUPPLY

ROBOT CONTROL, DATA l—
ACQUISITION AND DATA
PROCESSING

Figure 5. (a) Schematic representation of the robotic thermographic setup used in this work;
(b) Photo of the actual laboratory setup.

4.2. Sample

The sample was an epoxy specimen reproducing the curved geometry of a compressor
blade. The specimen was produced by pouring a mix of liquid epoxy resin and a hardener
into a mould. The resultant polymerised sample had one convex side, one concave side,
and a varying thickness. The curvature of both surfaces is constrained to one direction. Six
flat bottom holes (FBHs), three with square sections and three with round sections, were
machined on the concave side of the sample as artificial defects. Thus, the FBHs are not
visible from the convex side of the sample. Figure 6a,b illustrate the sample geometry, its
main dimensions, and the position and size of the FBHs. The sample was coated with
acrylic-based black matt paint to uniformise and enhance the surface emissivity, improving
the effectiveness of PT inspection. The sample was placed on the optical table at a registered
position within the working envelope of the robot arm, using a fixed custom supporting
base. The specimen was inspected from the convex side. Figure 6¢c shows the sample ready
for inspection. In order to validate the proposed alignment method, as will become clear
in the following sections, the robotic thermographic inspection was also performed by
wrapping the sample with a flexible plastic 3D printed grid (as shown in Figure 6d). The
grid square pattern had a 3 mm pitch and wire width of 0.6 mm.
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(a)

(0)

60mm
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15mm 10mm

Figure 6. (a) Picture of the sample with the indication of footprint dimensions; (b) picture of the back
wall with the indication of FBH locations and sizes; (c) sample placed on the supporting base without
grid; (d) sample with the grid.

4.3. Robot Path-Planning, Simulation and Control

Six-axis robotic arms have traditionally been used in production lines to perform
pick-and-place operations (e.g., palletising robots). In that scenario, where the exact tra-
jectory between any two consecutive poses is not too important, a robot can be manually
programmed by simply teaching the robot controller the coordinates of a few poses. Such
teaching is usually performed by manually jogging the robot to each desired pose to record
its coordinates. Then a robot programme is manually written to move the robot through
the recorded poses. More recently, accurate mechanical joints and control units have made
industrial robotic arms precise enough for finishing tasks in manufacturing operations [42].
As a result, software brands and robot manufacturers have developed many software appli-
cations to help technicians and engineers in programming complex robot tasks [43]. Using
such software platforms to program robot movements is known as off-line programming
(OLP). It is based on importing the 3D virtual model of the complete robot work cell, the
robot end-effector, and the sample(s) to be manipulated or machined. Such robotic OLP
software modules usually evolve from CAD/CAM applications, suited to programming
Computer Numerical Control (CNC) manufacturing machines.

Despite the abundance of OLP software solutions geared towards manufacturing
applications, limited solutions have been demonstrated for robotic NDT delivery [44,45].
Using commercial OLP software to generate appropriate tool paths for NDT purposes may
seem relatively straightforward at first glance, but there are several inadequacies:

e  Many commercial software applications for robotic off-line programming are expen-
sive tools, incorporating a lot of functionality specific for CAD/CAM purposes and
machining features;

e  Path-planning for automated NDT inspections is a very particular task. Conventional
OLP software has no accessible provision for tool-path customisation to accommodate
the requirements of NDT inspections;

o  Commercially available OLP software does not provide capabilities for full synchroni-
sation between robotic movements and NDT data acquisition from sensor instrumen-
tation systems (e.g., the thermographic IR camera, in this case). Such synchronisation
is fundamental to enable the possibility of positional encoding of the NDT data to
create accurate NDT maps of an inspected part [45].
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In this work, robotic path-planning, simulation and control for automated thermo-
graphic inspection were enabled through developing a bespoke MATLAB-based graphic
user interface. Figure 7 shows a screenshot of the application taken during the path-
planning phase to inspect the sample described above. This software application imports
the digital models of the robot, the thermographic instrumentation and the sample, produc-
ing a virtual representation of the inspection setup. The application was mainly developed
to enable the automated thermographic data collection required for validating the data
alignment method introduced by this work. Although it has no ambition to be a fully-
developed software tool, it contains vital features to allow flexibility and future usability.
The digital sample model is positioned in the virtual scene according to the user-specified
coordinates for the sample reference frame with respect to the robot reference system. The
set of coordinates comprises the three Cartesian coordinates of the sample origin and the
three Eulerian angular coordinates of the coordinated axes. Although the application does
not allow easy replacement of the employed thermographic instrumentation, provision
has been made to enable customisation of the IR camera focal distance. Indeed, the in-
spection resolution depends on the camera’s distance from the sample surface for a given
camera lens with a fixed focal distance. Thus, changing the camera focal distance is greatly
important to allow accurate planning and simulation of the robotic task. The indication
of the camera focal distance enables the software to compute the robot tool centre point
(TCP) coordinates. The application allowed the creation of a raster inspection tool-path
for the sample, according to the user-specified maximum spacing between consecutive
image acquisition poses (25 mm) and offset from the sample edges (10 mm), resulting
in an inspection path consisting of 15 data acquisition poses arranged in three passes
(5 poses per pass). The TCP is kept on the part surface for all poses. The z-direction of the
tool reference frame follows the surface’s normal direction to keep the camera view axis
always perpendicular to the surface. Due to the curvature of the surface, the fact that the
IR camera view axis is kept perpendicular to the surface does not guarantee that all the
infrared rays emitted by the surface are perpendicular to the camera sensor. That aspect
can be neglected by reducing the part surface area imaged from a single camera position,
which is the main reason for employing robotic thermography. The surface area imaged
from each camera position is reduced by bringing the camera closer to the part and/or
cropping the camera’s full image frame (sub-windowing). The sub-windowing also allows
higher frame acquisition rates, resulting in a better temporal sampling of the thermal wave.

Server IP
RobotIP 1

Conn.port 59152

Robot TCP parameters:
X6363mm A 0.00deg
Y. 0.00 mm B 20.00 deg
Z:67482mm  C:000deg

Discrete steps
Of @O On

Control real robot
Stop

2 Robotic termographic inspection - H2020 ERABID Project 5 x

Virtual inspection representation

Tool path detail

Robol connection e

Visited points. 1 of 15 /] Show tac path detail panel

Figure 7. MATLAB-based graphic user interface for robot path-planning, simulation and control.
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The application allows simulating the automated task workflow before sending the
path command coordinates to the connected robot. The connection between the computer
and the robot was managed through the Interfacing Toolbox for Robotic Arms (ITRA) [46].
The ITRA allowed synchronising the robotic camera manipulation and the data collection to
carry out the following steps, supported by the schematic representation given in Figure 5a:

1.  The computer sends the command coordinates of one inspection pose to the robot
controller and waits for a digital acknowledgement from it, which signals the arrival
of the robot arm at the commanded pose;

2. While the robot is at a standstill, the flashlamp power supply is triggered;

3. Inturn, the sample surface temperature rise resulting from the flashlamp heat pulse
triggers the IR camera data acquisition;

4. The computer acquires the raw camera data through the FLIR ResearchIR Max® software;

5. The previous steps repeat for the following inspection pose until all poses are visited.

Figure 8 shows the robotic inspection system at the first five path poses. A video of
the robotic data acquisition is available for download as Supplementary Material.

Pose #2 Pose #3 Pose #4 Pose #5

Figure 8. Robotic inspection system during data acquisition for the first five poses.

5. Results

Figures 9 and 10 show the sets of thermographic images acquired with the tool path
presented in Section 4.3, using a camera focal distance of 550 mm. The camera acquired
the evolution of the thermographic field for 10 s at each pose (starting from one second
before the trigger of the flashlamp). DFT was used to evaluate the frequency content of
the thermal response at 0.6 Hz. All images have the same size (192 x 224 pixels). They
relate to the images captured from the sample with and without the grid. Thus, the same
robotic tool path was repeated twice to ensure repeatability in the acquisition poses. It
must be noted how the average pixel intensity varies from image to image within each
set; for example, image #4 and image #12 respectively present significant lower and higher
average intensity than the rest of the images in the first set, respectively. Furthermore, pixel
intensity is not repeatable since differences are evident across the two sets. Any pair of
corresponding images in the two sets present a visible difference in pixel intensity.

40

Phase [degrees|

Figure 9. Set of phasegrams taken from the sample with the superposed grid.
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Figure 10. Set of phasegrams taken from the sample without the superposed grid.

Figure 11 highlights the initial estimate of the overlaps in each set of images. The
images were encoded with the camera shooting positions and scaled by the measured
resolution value. The known pitch of the grid (3 mm) was used to estimate the resolution of
the images, which was 150 pum/pixel (224444 pixels/cm?). Figure 11a,b relate to the set of
images with and without the grid, respectively. There, the image pixels were plotted with
50% transparency to allow visualising the overlaps, which are more clearly illustrated in
Figure 11c. Following the notation introduced in Section 3.3, the presented FiPAM method
was employed using a value of 1 mm for the offset (0) between the image overlap areas
and the shrunk areas. This equates to assuming that the maximum distance between a pair
of corresponding pixels in neighbour images (the misalignment) does not exceed 1 mm,
which is the case for the sets of images at hand.

]
T 113
4

® ® ® ®
(c)

Legend

|: Image area @ Image index

[[] overlap area [l Offsetoverlap area

Figure 11. Plots of scaled and encoded images. (a) Set of images taken from the sample with the grid;
(b) Images taken from the sample without the grid; (c) Overlapping areas.

As stated above, the FiPAM algorithm contains the mathematical parametric formula-
tion of all five typical 2D image transformations (translation, Euclidean, similarity, affinity
and homography), allowing aligning all images in a set with the same type of planar
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transformation or using a different type of transformation for each image. Each image
can be given a diverse set of DoFs and treated in six different ways if no transformation
(no degrees of freedom) is included as an additional option, corresponding to a total of
615 =2 4.70-10" possible diverse ways of applying FIPAM to our sets of fifteen images.

Figures 12 and 13 illustrate the results obtained with FiPAM, using the similarity
transformation for all images. The similarity transformation, which allows four DoFs
(horizontal translation, vertical translation, rotation and scaling), proved sufficient to
permit a fine alignment of all images in the given sets. In Figures 12a and 13a, whereas
the dotted blue line rectangles represent a fivefold scaled-down version of the original
images, the rectangles with a green line perimeter represent a twofold scaled-down version
of the aligned images, where the translation is magnified by a factor of 20 and the rotation
transformation is maximised by a factor of 40. These magnifications were introduced to
illustrate the computed alignment transformations for visualisation purposes. The infill
colour given to each aligned image is linked to the computed pixel intensity correction
through the indicated colour map. The resulting blended mosaic thermographic image
(460 x 800 pixels) is given in Figures 12b and 13b for the images with and without the
grid, respectively.
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Figure 12. (a) Schematic illustration of similarity transformations and pixel intensity corrections
computed through the proposed method for the set of images relative to the sample with the grid.
(b) Resulting composite mosaic thermographic image.
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Figure 13. (a) Schematic illustration of similarity transformations and pixel intensity corrections
computed through the proposed method for the set of images relative to the sample without the grid.
(b) Resulting composite mosaic thermographic image.

Although testing FiIPAM with all transformation combinations is not viable, the
method was evaluated through a representative subset by employing each of the five
possible planar transformations for all images and changing the number of images to
align; this allowed varying the problem size significantly to evaluate the execution time
of FiIPAM. The number of images considered for each type of transformation was: 2, 5,
10 and 15, corresponding to aligning the first two images, the five images collected in
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the first pass of the tool path, the images in the first two passes or all the images in the
set. As a result, the total number of DoFs considered in the alighment problem spanned
from four, for two images transformed through pure translation (two parameters per
image), to 120, for fifteen images transformed through homography (eight parameters
per image). FiPAM was implemented and evaluated through MATLAB (version 2020b),
running on a computer with an Intel® i7-6820HQ CPU (2.70 GHz, 4 Cores) and 32 Gb of
Random-Access Memory. The MATLAB implementation code developed in this work
is accessible at https:/ /doi.org/10.5281/zenodo.6817052 (accessed on 11 July 2022). The
recorded execution times are plotted in Figure 14.
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Figure 14. Execution times for alignment, pixel intensity correction and Laplacian blending.

6. Discussion

Traditional manual inspection approaches are insufficient in some scenarios. Therefore,
there are fundamental motivations for increasing automation in non-destructive testing.
Automation of NDT is required to cope with the inspection of large and/or curved geome-
tries. The key challenges to face when developing a robotic NDT system include integrating
the NDT instrumentation with the robotic manipulator, creating a suitable robot inspection
path for the part under inspection, and developing software for NDT data collection and
visualisation. Although these challenges have been addressed by several applications of
six-axis robotic arms for the inspection of parts through automated ultrasonic techniques,
other types of inspections have not reached the same level of robotisation, which is the case
with thermographic testing. This work bridges a technology gap, making thermographic
inspections more deployable in industrial environments. Furthermore, the proposed fine
image alignment method (FiPAM) can find applicability beyond thermographic NDT.

The results prove that FiIPAM enables the proper merging of multiple thermographic
images into one single mosaic image, which is easier to analyse. This is accomplished
through three steps: simultaneous alignment of all images in a set, global optimum pixel
intensity correction, and image blending. The reported composite mosaic images, in
Figures 12b and 13b, obtained through computing similarity transformations and pixel
corrections for the images acquired in this work, show a significant reduction of the
original discontinuities. Whereas the scale of the composite image relative to the sample
with the grid is immediately retrievable from the known grid pitch (3 mm), a reference
20 mm long scale bar was added to the image relative to the sample without the grid. It is
straightforward to note that the sizes of the thermographic indications correspond to the
physical sizes of the artificial FBHs. The difference in thermographic pixel intensity for
FBHs of diverse sizes is coherent with the change in the aspect ratio between heat blocking
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and leakage surface, as described in [47]. Larger FBH diameter to depth ratios produce the
emergence of localised higher intensities in the IR image sequence.

Although FiPAM execution times are machine-dependent, the patterns presented in
Figure 14 provide a helpful guideline for understanding the general trends. As expected, the
execution times for alignment, pixel intensity correction and Laplacian blending increase
with the number of images. The alignment phase execution time also depends on the type
of transformations used for the images in the set. They influence the size of the least-squares
problem and the number of transformation parameters to find through the minimisation
of the SSD function in Equation (3). Thus, for a given number of images to align, using
the same type of transformation for all images, the execution time increases monotonically,
moving from translation to Euclidean, similarity, affinity and homography transformations.
Although all possible combinations are not assessed in this work, it is not difficult to
imagine intermediate execution times for generic combinations, where not all the images
get transformed by the same transformation type. As a rule of thumb, for a given number
of images, the alignment execution time should never exceed the time relative to the case
where all images get transformed through homography, since it corresponds to the biggest
problem with the maximum number of parameters. Fluctuations in alignment execution
times can be observed for patterns relative to translation and Euclidean transformations.
They are thought to be caused by the limited DoFs allowed by these transformations,
which can cause prolonged convergence times due to the difficulty of obtaining a good
image alignment. The execution times of the pixel correction and Laplacian blending
phases depend on the number of images. The minor differences associated with the used
transformation type are thought to be caused by the different overlaps of the aligned
images, which changes the number of pixel intensity differences to compute for the SSD
function in Equation (4).

The advantages of FiPAM, described in this work, should be clear by now. One
limitation of the current implementation is that FIPAM is suitable for aligning multiple
images of a sample surface that curves only in one direction. Although this limitation does
not impede using FiPAM for generalised cylindrical surfaces, future work should focus on
extending FiPAM to operate with images encoded in three-dimensional space.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22166267/s1, Video S1: Robotic thermographic data acquisition.
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Abbreviations

The following abbreviations are used in this manuscript:

CAD Computer-Aided Design

CAM  Computer-Aided Manufacturing
CNC Computer Numerical Control

CPU Central Processing Unit

DFT Discrete Fourier Transform

FBH Flat Bottom Hole

FiPAM  Fine Pixel-based Alignment Method

IR Infrared
ITRA Interfacing Toolbox for Robotic Arms
LT Lock-in Thermography

NDT Non-Destructive Testing
OLP Off-Line Programming

PPT Pulsed Phase Thermography
PT Pulsed Thermography

RGB Red, Green and Blue

SSD Sum of Squared Differences
TCP Tool Centre Point
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