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Abstract: This work presents a novel methodology to implement a fuzzy inference system (FIS) to
overcome the measurement ambiguity that is typically observed in interferometric sensors. This
ambiguity occurs when the measurand is determined by tracing the wavelength position of a peak
or dip of a spectral fringe. Consequently, the sensor measurement range is typically limited to the
equivalent of 1 free spectral range (FSR). Here, it is demonstrated that by using the proposed method-
ology, the measurement range of this type of sensor can be widened several times by overcoming the
ambiguity over some FSR periods. Furthermore, in order to support the viability of the methodology,
it was applied to a couple of temperature interferometric sensors. Finally, experimental results
demonstrated that it was possible to quintuple the measurement range of one of the tested sensors
with a mean absolute error of MAE = 0.0045 °C, while for the second sensor, the measurement range
was doubled with an MAE = 0.0073 °C.

Keywords: optical sensors; interferometry; optical filters; temperature sensors; Fabry–Perot
interferometer; fuzzy logic

1. Introduction

Sensors based on interferometric filter heads have been widely used for a long time,
and these can be used in a broad range of applications. In the literature, sensors can be
found for measuring physical variables such as pressure [1–3], temperature [4–6], refractive
index [7–10], curvature [11–13] and displacement [14]. Moreover, in many of these sensors,
the characteristics of their reflection or transmission intensity distribution spectra are
affected by changes in the measurand. Therefore, it is quite popular to monitor one
spectral feature to establish relationships between it and the measurand. For instance, in
some sensors, their corresponding spectra present changes in the amplitude of fringes
as the measurand is varied. For this kind of sensor, the spectral feature that can be
monitored is the peak or the dip amplitude of one fringe. Some examples of this case are
the refractive index sensors proposed by [8–10], where authors were able to define the
RI as a function of the dip of one fringe. Moreover, there are other sensors in which the
position of spectral fringes is shifted as the measurand is varied. For these kinds of sensors,
it is quite popular to take the wavelength position of a fringe peak or dip as the spectral
feature of reference to determine the measurand [1,4,15]. For instance, Novais et al. in
2018 presented a sensing arrangement for detecting water–glycerin mixtures. Their sensor
was based on a Fabry–Perot interferometer (FPI) which was formed by an air micro-bubble
fabricated at the tip of a single mode fiber (SMF). Moreover, the reflection spectrum of
the FPI exhibited a spectral shift depending on the overall effective refractive index of the
mixture. For the mentioned sensor, the authors were able to establish linear relationships

Sensors 2022, 22, 6331. https://doi.org/10.3390/s22176331 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176331
https://doi.org/10.3390/s22176331
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5480-3384
https://orcid.org/0000-0002-5545-6852
https://orcid.org/0000-0002-9320-7021
https://orcid.org/0000-0001-6176-1071
https://doi.org/10.3390/s22176331
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176331?type=check_update&version=2


Sensors 2022, 22, 6331 2 of 18

between the wavelength positions of some fringe peaks and the water mass fraction in
glycerin [15]. Another interesting sensor capable of measuring pressure or temperature
has been proposed by Zhang et al. in 2021 [1], in which both parameters are described as
linear functions of the wavelength positions of some dips. In the reported spectra of that
work, it can be clearly observed that the wavelength position of one dip is shifted to the
right as the temperature increases, but when it reaches a certain level, the dip wavelength
practically returns to its initial position. This is a normal effect observed in FPI sensors,
and it is due to the fact that a particular fringe has been shifted more than 1 free spectral
range (FSR), reaching the spectral region of a neighbor fringe. Its effect raises an ambiguity
problem, since the wavelength position of a fringe peak or dip can be the same for different
temperature levels. Consequently, when the single wavelength position is considered as
the spectral feature, the measurement range is usually limited by 1 FSR period. In another
example, a pressure sensor based on a double FPI arrangement at the tip of an SMF has been
presented by Zhu et al. in 2021 [2], in which the overall reflection spectrum is formed by the
superposition of two interference spectra. Moreover, the authors computed the envelope
of the overall spectrum and traced the wavelength position of one dip. Afterwards, the
pressure was described as a linear function of the wavelength position of the envelope dip.
In another work, a gas pressure sensor, based on an interferometric head at the tip of an
SMF, was presented by Liu et al. in 2021 [3]. In that sensor, the overall reflection spectrum is
formed by the superposition of different spectra, and therefore, the authors applied low and
high-pass filters in order to separate its components. In this way, they obtained two spectra,
which were called the resonant and the interference spectra. Afterwards, the gas pressure
was a function of the refractive index of the gas and the temperature. Hence, the wavelength
position of one fringe peak of the resonant spectra and one from the interference spectra
were traced. Later, they used these wavelength shifting with a two-parameter sensitivity
matrix to determined RI and temperature simultaneously. Moreover, authors described
that the measurement range will be limited to 1 FSR by the ambiguity. Therefore, they
suggested the use of an additional demodulating stage based on fiber Bragg grating, which
will be keeping working continuously (24 h), in order to be able to overcome this ambiguity.
In this way, they were able to perform correct measurements outside the 1 FSR limit, and
consequently, in practice, the measurement range was widened.

Here, it is important to point out that different techniques of artificial intelligence have
been become quite popular due to their potential to solve complex and nonlinear models.
Particularly, in the literature, there can be found several works reporting the use of machine
learning techniques to enhance particular characteristics of photonic systems [16] and
optical sensors [17]. As an example, Manuel et al. in 2022 used a support vector machine to
overcome the intensity ambiguity observed when the refractive index is determined based
on the Fresnel reflection occurring at the tip of a fiber [18]. In a further example, recently,
researchers proposed a method based on an ensemble of artificial neural networks (ANN)
to widen the measurement range of a temperature sensor. In that work, they required
ensembles with more than 40 ANNs members to be able to double the measurement range
of the sensor with a mean absolute error (MAE) = 0.17 °C [19]. Moreover, fuzzy inference
systems (FIS) are another powerful option to solve complex problems. In the literature,
there can be found applications of FIS in practically all fields. For example, they have
reported FIS for applications such as the prediction of powerful earthquake parameters [20],
the assessment of indoor air quality in operation rooms [21], and the prediction of cloacal
temperature of broiler chickens [22]. Optical-related applications have been reported as
well by Wang et al. in 2021, who implemented a hybrid method based on Taguchi and
fuzzy logic to effectively optimize the characteristics of a composite optical receiver [23].
Additionally, a similar Taguchi–fuzzy logic hybrid approach has been proposed to optimize
the mechanical properties for cutting polyester fiber with ultraviolet (UV) light [24].

In this work, we present a novel methodology to implement an FIS to overcome the
ambiguity that will be observed when spectral fringes are shifted more than 1 FSR. Con-
sequently, by using this methodology, the measurement range of interferometric sensors
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can be widened several times. Moreover, we presented the procedures followed to form all
required membership functions to implement the FIS. Furthermore, in order to support the
viability of the proposed methodology, we applied it to two temperature interferometric
sensors. These sensors were numerically simulated and experimentally implemented, and
from their corresponding spectra, different spectral features were extracted. Additionally,
it is shown that the number of spectral features that will be considered as inputs of the
FIS will depend on the interferometric filter design and on how many times the measure-
ment range will be widened. Based on experimental results, it is shown that by using the
proposed methodology for one of the sensors, the temperature was correctly determined
over 2 FSR periods when only two spectral features were considered. For this case, the
measurement range was doubled, and the estimated temperatures presented a mean ab-
solute error (MAE) = 7.4 × 10−3 °C and a mean squared error (MSE) = 8.1 × 10−8 (◦C)2.
Additionally, for the second sensor, its measurement range was quintupled, since it was
possible to overcome the ambiguity within 5 FSR periods. For this case, we considered
five spectral features as inputs of the FIS, and the estimated temperatures presented an
MAE = 4.5 × 10−3 °C and an MSE = 3.0 × 10−5 (◦C)2. As can be expected, the results
obtained when the methodology was applied over the synthetic datasets were also success-
ful and presented better MAE and MSE figures. Finally, it should be pointed out that this
methodology has the advantage that can it be applied to enhance the measurement range
of similar interferometric sensors without the need to change their physical setups.

2. Optical Sensing Setup

The implemented optical sensor setup is shown in (Figure 1a). Here, the light reflected
by the interferometric optical filter is recorded by an optical spectrum analyzer (OSA).
Moreover, as it can be appreciated (Figure 1a), the filter design is based on a three-layer
stack deposited at the tip of a single mode fiber (SMF). From these, the thickness and the
refractive index of the polymer (PL) and the silicon (Si) layers are affected by temperature.
Consequently, the overall reflection spectrum of the filter is temperature dependent. Simu-
lated and experimentally measured reflected intensity distribution spectra of the sensor
considering different interferometric filters and temperatures are presented in Figure 1b,c.
Here, the design of both filters is the same, but the thickness of the Si and PL layers are
different. The mathematical model and the fabrication procedure of these filters have been
discussed in detail previously [25].

1500 1505 1510 1515 1520

wavelength (nm)

0

0.2

0.4

0.6

0.8

 R

(b)

P1

P2 P3

P4

P5
P1

P2

P3
P4

P5
FSR

S(9) S(38) E(9.2) E(38.3)

1500 1505 1510 1515 1520

wavelength (nm)

0

0.1

0.2

0.3

 R

(c)

P1 P2 P3
P4

P1 P2 P3
P4

FSR

S(22) S(37) E(22.3) E(36.9)

..

Figure 1. (a) Sensing arrangement and the interferometric filter head; simulated (S) and measured (E)
reflected intensity distribution spectra of (b) sensor 1 and (c) sensor 2 at different temperatures.

The fabrication procedure of the interferometric optical filter consisted mainly of the
following steps: (a) a ferrule sleeve that matches a single mode pigtailed ferrule (Thorlabs
SMPF0215-FC) was in-house fabricated; (b) a segment of a double-sided polished silicon wafer
was fixed at the bottom of the ferrule sleeve, and it was kept in a vertical position by means
of a ferrule clamp; (c) the single-mode pigtailed ferrule with a 0º face and an antireflection
coating was introduced by the top side of the ferrule sleeve; (d) the experimental setup shown
in Figure 1a was implemented in order to monitor the reflection spectrum; (e) the position
of the pigtailed ferrule within the sleeve was controlled with a three-axis translation stage
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(Thorlabs RB13M/M); (f) by displacing the pigtailed ferrule, a cavity between its face and
the silicon wafer is formed; (g) the length of the cavity was estimated by measuring the
FSR of the fringes of the reflection spectrum; (g) once the desired cavity length is set, the
liquid cyanoacrylate polymer is dropped by the top side of the ferrule sleeve in such a way
that it flows to the bottom filling the cavity; (h) the polymer is cured in a few minutes at
ambient temperature. Following this process, the layer thicknesses of the fabricated filters
were, for filter 1: d1 = 0.3229, d2 = 37.02 and d3 = 84.95 µm, while for filter 2: d1 = 0.3229,
d2 = 149.80 and d3 = 6.15 µm. Moreover, the thermo-optic and thermo-expansion coefficients
of layers 2 and 3 were ρ2 =0.4 × 10−4 K−1, ρ3 = 1.88 × 10−4 K−1, γ2 = 198 µm/(mK) and
γ3 = 2.6 µm/(mK), respectively. Finally, the refractive indexes of the layer’s materials were
n0 = 1.44, n1 ≈ 1.2, n2 = 1.45, n3 ≈ 3.4 and n4 = 1 at 398 K.

The reflection spectrum of these filters will be composed by the superposition of
spectra which occur due to multiple reflections within the Fabry–Perot cavities. Moreover,
as the temperature increases, spectral fringes will shift to the right, and consequently, for
a given temperature level, these will reach the position of their neighbor fringes. For
instance, in Figure 1c, it can be clearly seen that fringe P1 at 37 °C almost reaches the
position that has the fringe P2 at 22 °C. In practical applications, these filters can be used as
temperature sensors, since a relationship between the wavelength position of one fringe
and the temperature can be established. However, the main disadvantage of these sensors
will be their nominal measurement range, which will be limited to 1 FSR (Figure 1). In
order to avoid this limitation, a novel methodology based on fuzzy logic is proposed, and it
will be tested considering the simulated and experimentally measured spectra of these two
sensors. Furthermore, Figure 2 presents a graphical comparison between some simulated
and measured spectral features of the two optical filters.
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Figure 2. Graphical comparison between a few simulated and measured: (a,d) wavelength peak
positions, (b,e) peaks amplitudes, (c,f) amplitude ratios of filters 1 and 2, respectively; in (b) A4–A6
are shifted right 1 unit for clarity purposes.

3. Methodology for Predicting the Measurand Based on Fuzzy Logic
3.1. Fuzzy Inference Systems

In many real applications, the information that describes the corresponding processes
is incomplete or it has uncertainties. These kinds of situations usually are observed in
processes that involve humans due to our inherent cognitive processes [26]. The fuzzy sets,
introduced by Zadeh (1965) [27], are a powerful alternative to represent and to manipulate
these kinds of imprecise data. Additionally, fuzzy logic is a set of mathematical principles
that provides a conceptual framework to deal with the problem of uncertainty and lexical
imprecision [20,26].

Moreover, a fuzzy inference system (FIS) is an intelligent technique that usually
is suitable for dealing with applications where uncertain or approximate reasoning is
observed and for systems for which its mathematical model is difficult to derive [21,26]. In
general terms, an FIS allows to map an input space into an output space by using fuzzy
logic. The general structure of an FIS is formed by the following modules:

(a) Fuzzification interface: contains the fuzzification operators that will be used to trans-
form the crisp values of the inputs variables into fuzzy sets.

(b) Fuzzy rule-base or knowledge base: a collection of fuzzy rules that can characterize
the overall behavior of a fuzzy system when these are combined with sentences such
as the connective also [26].



Sensors 2022, 22, 6331 5 of 18

(c) Fuzzy inference machine: a mechanism that allows the modeling of the reasoning
process based on the interpolation between the outputs of all fuzzy rules [28]. In
this way, the fuzzy output corresponding to the fuzzified inputs can be determined.
Moreover, the Mamdani, Tsukamoto, Sugeno and Larsen inference mechanisms are
some of the most popular [26].

(d) Defuzzification interface: this module transforms the fuzzy output obtained by the
inference machine into a crisp value, which usually is the overall output of an FIS [26].

Now, based on this conceptual frame, we can define that in our sensor, the measurand
will be determined by implementing a fuzzy inference system (FIS). In our methodology,
the FIS was composed by two fuzzy inference subsystems; this was useful to simplify the
overall procedure. The first fuzzy inference subsystem (FIS1) is intended to determine
the period of the FSR corresponding to a given combination of input variables, and it is
based on a Mamdani inference mechanism. The second fuzzy inference subsystem (FIS2)
will predict the final sensor output, which in our case will be temperature, based on the
output of the FIS1 and the wavelength positions (Wx) of one or more fringe peaks. The
FIS2 is based on the Tsukamoto mechanism. The main block diagram of the proposed
methodology is presented in Figure 3.

Figure 3. Block diagram of the proposed FIS.

In order to explain the methodology we will take as a case of study the simulated
dataset of observations for the filter 1. For this case, the wavelength positions (Wx) and
the amplitude (Ax) of fringes P1 to P6 as a function of the temperature are presented in
Figure 4a,b, respectively. Here, it can be observed that practically within the temperature
range 0 ≤ T ≤ 70 °C, there are two periods of FSR. At the point where a change occurs
in the FSR period, it can be observed that there is a kind of discontinuity in the trace of
the wavelength positions (Figure 4a). Moreover, regarding the amplitude of fringes, not
all have a clear and simple pattern, as in the case of wavelength positions. However, for
this filter, it can be observed that the amplitude of peak A1 > A2 during the first period
of FSR (pFSR), while A1 < A2 for the second pFSR. By taking advantage of this feature,
the amplitude ratio r12 = A1/A2 can be computed and considered as a spectral feature
(Figure 4c). There are other amplitude ratios that satisfy the condition to be ≥1 during one
pFSR and <1 within the other pFSR (i.e., r13). However, it must be pointed out that not
all the ratios satisfy this condition: for instance, r14 (Figure 4c). Here, a spectral feature
such as r12 can be useful to determine the period of FSR, and therefore, it can be considered
as good input of the FIS1. However, in some cases, it is not possible to find one variable
that satisfies this condition, and therefore, a combination of more spectral features must
be considered. In our methodology, once the correct period of the FSR (pFSRo) is known,
the final output can be estimated by considering the wavelength position of one or more
spectral fringe peaks. For clarity purposes, in the next sections, the procedure described
will be followed to implement each one of the fuzzy inference subsystems (FIS1 and FIS2).
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Figure 4. Simulated (a) peak wavelength positions, (b) peak amplitudes (c) amplitudes ratios as a
function of temperature of sensor 1. In (b), A4–A6 were shifted 1 unit to the right for clarity purposes.

3.2. Fuzzy Inference Subsystem 1 (FIS1)

The FIS1 will interpret the values presented at input variables, and based on a set
of fuzzy rules, it will estimate a value to the output variable. The inputs of FIS1 will be
some spectral features that can help us determine the correct FSR period. In our case,
these variables were some amplitude ratios and the centroid of the reflected spectrum.
Moreover, this FIS1 will infer the correct period of the FSR (pFSRo) that corresponds to
the temperature of the filter based on the input values. In order to implement this FIS1,
it is important to build some membership functions depending on the inputs and output
variables. Moreover, it is important to know the inference mechanism that will be used.
Therefore, in the next subsections, these issues will be explained.

3.2.1. Membership Functions Used to Fuzzificate the Input Variables

In general, all membership functions used to fuzzificate the inputs of FIS1 were built
by using the procedure described in Algorithm 1.

Algorithm 1 Procedure for building the membership functions to fuzzificate the inputs
variables of FIS1

1. Initialize a counter of input variables (n = 1);
2. Define one spectral feature that will be considered as an input, it will be identified

as In. For instance, I1 = r12(A1, A2);
3. Set the number of regions (N) in which the universe of discourse of the input

variable will be partitioned;
4. Locate within the observations dataset the maximum value of the input variable

and set its upper limit unmax = 1.05 × Inmax;
5. Declare the universe of discourse of the input variable, as Un = [0, unmax];
6. A set of N membership functions (MFI1

n, . . ., MFIN
n ) are formed based on the

following definitions:

MFI1
n(In) = (−∞,−∞, tc1 − ∆In, tc1 + ∆In)

MFI2
n(In) = (tc1 − ∆In, tc1 + ∆In, tc2 − ∆In, tc2 + ∆In)

...
MFIN−1

n (In) = (tcN−1 − ∆In, tcN−1 + ∆In, tcN − ∆In, tcN + ∆In)
MFIN

n (In) = (tcN − ∆In, tcN + ∆In,+∞,+∞, )

(1)

where tci are the corners of the membership functions and can be evaluated as
tci = iInmax/N;

7. Save the set of membership functions for this input variable.
8. If the first fuzzy logic stage considers another input variable, increment the counter

n = n + 1 and repeat steps 2 to 8.
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3.2.2. Membership Functions Related to the Output Variable of FIS1

The number of the period of FSR will be the single output of the FIS1, and it will be
represented by the variable pFSR. Hence, it is needed to define its associated membership
functions. Firstly, based on the experience that we have of the sensor behavior, it needed a
membership function for each FSR period observed within a given measurement range.
The procedure to build these membership functions is described in Algorithm 2.

Algorithm 2 Procedure for building the membership functions related to the output variable
of FIS1

1. Declare the overall measurement range, for example Tmin ≤ T ≤ Tmax;
2. Declare the number of periods of FSR (K) that can be observed within the given

measurement range;
3. Set the universe of discourse of the output variable (pFSR) as [0,K];
4. The number of partitions of the universe of discourse is defined as K;
5. The K membership functions will have trapezoidal form, with a width of 1, and can

be described as:

MFO1
1(pFSR) = (−∞,−∞, 1 − b1, 1 + b1)

MFO2
1(pFSR) = (1 − b1, 1 + b1, 2 − b1, 2 + b1)

...
MFOK−1

1 (pFSR) = (K − 2 − b1, K − 2 + b1, K − 1 − b1, K − 1 + b1)
MFOK

1 (pFSR) = (K − 1 − b1, K − 1 + b1,+∞,+∞)

(2)

As an example of the application of Algorithm 2, let us consider the case of filter 1.
Here, by plotting the wavelength positions of the fringe peaks, it can be observed that all
these traces present a discontinuity at 40 °C. This implies that two FSR periods occur over
the measurement range 0 ≤ T ≤ 70 °C, and therefore, K = 2. The first FSR period occurs
within the range 0 ≤ T ≤ 40 °C, while the second FSR period occurs when 40 < T ≤ 72 °C.
Therefore, following Algorithm 2, the universe of discourse of the output variable can be
set as UpFSR = [0, 2], and it will be partitioned into K = 2 regions. Finally, a set of K = 2
trapezoidal membership functions, (MFO1

1 and MFOK
1 ), were formed by using definitions

expressed in Equation (2) with a coefficient b1 = 0.05 (Figure 5b).
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Figure 5. (a) Membership functions that will fuzzificate the input variable r12 of filter 1; (b) Mem-
bership functions related to output variable (period of FSR) of FIS1; (c) Example of a membership
function of the consequence for a particular value of r12o at its centroid.

3.2.3. Fuzzy Rules, Inference Mechanism and Deffuzzification of FIS1

Based on the knowledge about the behaviour of the sensor, a set of Q IF–THEN
fuzzy rules must be defined. Moreover, for the FIS1, these rules were evaluated by us-
ing a Mamdani implication operator. In this way, for each one of the Q fuzzy rules, a
membership function of consequence is obtained. Once all membership functions of con-
sequences (MFC1

1 , . . ., MFCQ
1 ) have been evaluated, these are aggregated by using a max

operator. This aggregation operation will generate an overall membership function for
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the consequence (MFC); this process can be expressed by using Equation (3). Finally, the
MFC was defuzzified by means of the center-of-area or centroid [26] in order to obtain the
deterministic value of the output (p f sro) of the FIS1.

MFC(pFSR) = max[MFC1
1(pFSR), . . . , MFCQ

1 (pFSR)] (3)

As an example of the application of these steps, let us continue with the case of filter 1.
For this case, two rules (Q = 2) can be defined, straightforward relating the values of
variable r12 with the period of FSR. These rules are listed in Table 1. Moreover, following
Mamdani’s implication operators, the rules can be computed as:

MFC1
1(pFSR) = min(max(MFI1

1 (I1o), MFI2
1 (I1o), . . . , MFI5

1 (I1o)), MFO1
1),

MFC2
1(pFSR) = min(max(MFI6

1 (I1o), MFI2
7 (I1o), . . . , MFI10

1 (I1o)), MFO2
1),

(4)

where max and min are the maximum and minimum operators, respectively. In order to
evaluate numerically these rules, let us consider a particular observation of our synthetic
dataset, which contains the data listed in Table 2. Afterwards, all MFCQ

1 functions are
aggregated by using a max operator to generate the overall membership function for the
consequence MFC (Figure 5c). Finally, it is defuzzified by evaluating the center-of-area
or centroid; for this example, it is obtained that p f sro = 1.5. This result indicates that the
reflection spectrum has been shifted more than 1 FSR period when the temperature of the
filter was increased by 59 °C.

Table 1. Example of fuzzy rules of FIS1. These were defined for sensor 1.

Number of Rule Rule Description

1 IF r12o is (MFI1
1 or MFI2

1 or MFI3
1 or MFI4

1 or MFI5
1 ) THEN MFO1

1

2 IF r12o is (MFI6
1 or MFI7

1 or MFI8
1 or MFI9

1 or MFI10
1 ) THEN MFO2

1

Table 2. Example of an observation of the synthetic dataset of filter 1.

W1 (nm) W2 (nm) W3 (nm) W4 (nm) W5 (nm) W6 (nm) r12 Tre f

1502.13 1505.58 1509.73 1513.97 1517.50 1520.91 1.379 59

3.3. Fuzzy Inference Subsystem 2 (FIS2)

In FIS2, the wavelength positions of N fringe peaks (Wx) of the interference spectrum
and the p f sro (output of FIS1) are inputs variables. Furthermore, the FIS2 output will be
the estimated temperature (Test). Here, it is important to point out that within a segment
corresponding to each period of FSR, the wavelength positions shifts in a monotonic
way with respect to temperature (Figure 4a). Therefore, by taking advantage of these
characteristics, it is possible to fuzzificate an input Wx with a set of monotonic membership
functions. In our case, these functions were built following Algorithm 3.
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Algorithm 3 Procedure for building the membership functions of FIS2

1. Initialize the counter j = 1;
2. Define the x fringe peak (Px) for which its wavelength shifting (Wx) will be consid-

ered as an input of this FIS stage;
3. Locate all temperature intervals corresponding to each one of the K FSR periods

observed within the overall temperature range. It can occur for more than one FSR
period (for instance, see Figure 6a);

4. Split the original dataset observations into K groups (OG1 . . . OGK). Observations
corresponding to each FSR period must be in a particular OG group; it can be
described as:

OGx1 = [Tx f sr(0) ≤ T ≤ Tx f sr(1), Wx f sr(0) ≤ Wx ≤ Wx f sr(1)]
...
OGxK = [Tf sr(K−1) ≤ T ≤ Tx f sr(K), Wx f sr(k−1) ≤ Wx ≤ Wx f sr(K)]

(5)

5. Fit temperatures and wavelength positions of each one of the OGxK group obser-
vations. Here, a set of K two columns datasets [Tx1, Wx1], ..., [TxK, WxK] will be
formed corresponding to each one of the FSR periods;

6. Normalize the column TxK of each dataset in such a way that it has values between
(0, 1], and label them as αx1, ..., αxK.

7. Update the K datasets in the form [Tx1, Wx1, αx1], ..., [TxK, WxK, αxK].
8. Build a set of K membership functions to evaluate the consequence of each rule in

the form:
m f tx1 = [Tx1, αx1]
...
m f txK = [TxK, αxK]

(6)

9. Within the K column arrays of WxK, locate the minimum (Wxmin) and the maximum
(Wxmax) wavelength positions of fringe peak Px;

10. Define a new universe of discourse for the wavelength positions of fringe peak Px
as UWx = [Wxmin − ∆Wx, Wxmax + ∆Wx];

11. Build K new membership functions by using the expression:

m f wxK =


αxK(1) if Wx ≤ Wx f sr(k−1)
αxK(Wx) if Wx f sr(k−1) < Wx ≤ Wx f sr(k)
1 if Wx > Wx f sr(k)

(7)

12. Save all membership functions and label them as: MFWj = m f wx1 ,..., MFWj+K−1
= m f wxK, and MFTj = m f tx1 ,..., MFTj+K−1 = m f txK.

13. If the wavelength positions of another fringe peak will be considered as an input,
then increment the j counter to j = j + K and repeat steps 2 to 12.

As an example of the application of Algorithm 3, the membership functions for the
case of the synthetic dataset of sensor 1 will be built. Here, the wavelength positions W2
of the fringe peak P2 will be considered as the input of FIS2. Moreover, as was discussed
previously, there occur two FSR periods for the temperature range 0 ≤ T ≤ 70 °C. The
first FSR period will occur when the temperature is within the range from Tf sr(0) = 0
and Tf sr(1) = 40 °C. The second FSR period will be within Tf sr(1) = 40 and Tf sr(2) = 70 °C
(Figure 6a). Therefore, for this case, K = 2 and consequently, all observations are divided
into groups OG1 and OG2 (Figure 6a). Later, observations of each group were fitted to
obtain datasets [T21, W21] and [T22, W22]. Afterwards, the column arrays TxK of the dataset
were normalized between (0,1] to form the column αxK and the K dataset [T21, W21, α21]
and [T22, W22, α22]. Now, the minimum and maximum wavelength positions of fringe P2
were localized between the W2K columns of the datasets to set the universe of discourse for
this input as UW2 = [W2min − ∆W2, W2max + ∆W2] = [1504.24,1508.85], here ∆W2 = 0.1 nm.
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Taking as a reference this universe of discourse and by using Equation (7), the functions
m f w21 and m f w22 were formed (Figure 6b). Later, membership functions m f t21 and m f t22
were built as described by Equation (6) (Figure 6c). Finally, these functions were saved as
MFT1 = m f t21 and MFT2 = m f t22, and the final counter’s value was set to j = 2.
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Figure 6. (a) Wavelength positions W2 of peak P2 as a function of temperature, and observations
forming two groups corresponding to each one of the observed FSR periods; (b) membership functions
m f w2K used to fuzzificate the wavelength position (W2) of fringe’s peak P2; (c) membership functions
w f txK(T) to evaluate the fuzzy rules consequences.

Inference Mechanism Used in FIS2

The implication in FIS2 was evaluated with the Tsukamoto inference mechanism [26].
Here, the set of membership functions MFWj formed by means of Algorithm 3 were
used to fuzzificate the wavelength positions of fringes that were considered as inputs.
Additionally, in order to fuzzificate the other input of FIS2, the period of FSR (p f sro), the set
of membership functions MFO1 formed with Algorithm 2 and described in the FIS1 section
was used. Moreover, the MFTj membership functions, formed with Algorithm 3 will be
used to evaluate the consequences of the rules. Afterwards, as usual, a set of j IF–THEN
fuzzy rules must be defined. Later, each one of these rules can be evaluated numerically by
firstly determining its corresponding firing levels [26], which can be obtained by:

αj = min[MFOτ
1 ( f sro), MFWj(Wxo)] (8)

where τ = mod((j−1)/k)+1. Moreover, the relationship between the j-th estimated temper-
ature and the firing level αj for each fuzzy rule is given by:

MFTj(Testj) = αj (9)

Finally, according to the Tsukamoto inference mechanism, all the rules’ consequences
are aggregated, and its corresponding discrete center-of-gravity can be computed by using
Equation (10) [26]:

Test(Wxo, f sro) =
∑

j
h=1 Testhαh

∑
j
h=1 αh

(10)

As an example of the application of this inference mechanism, let us continue using
the data of the particular observation of the synthetic dataset of filter 1 and given in Table 2.
For this observation, the wavelength positions of the peak x = 2 is W2o = 1505.58 nm, and
it will be one of the two inputs of FIS2. This input will be fuzzificated with the mem-
bership functions MFW1 and MFW2, and it will be obtained that MFW1(1505.58) = 0.159
(Figure 7b) and MFW2(1505.58) = 0.633 (Figure 7e). Moreover, the second input variable
of FIS2 is the pFSRo obtained in FIS1; for this particular observation, it was obtained
previously that pFSRo = 1.5. This input is fuzzificated with the membership functions
MFO1

1(pFSRo) = MFO1
1(1.5) = 0 (Figure 7a) and MFO2

1(pFSRo) = MFO2
1(1.5) = 1 (Figure 7d).

Afterwards, the firing levels and the consequences for each fuzzy rule (Table 3) can be
calculated. Here, firing levels are computed by using Equation (8), and it is obtained
for the rule 1 that α1 = min(MFW1(1505.58), MFO1

1(1.5)) = min(0.159,0) = 0 (Figure 7b).
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Similarly, the firing level corresponding the second fuzzy rule is α2 = min(MFW2(1505.58),
MFO2

1(1.5)) = min(0.633,1) = 0.633 (Figure 7d). Later, the output of each fuzzy rule is calcu-
lated by using Equation (9). For the first fuzzy rule, we obtain MFT1(Test1) = MFT1(0 °C)
= α1 = 0 (Figure 7c), and for the second fuzzy rule, MFT2(Test2) = FMT2(59.005 °C) =
α2 = 0.633 (Figure 7f). All fuzzy rules outputs are aggregated and deffuzified by using
Equation (10), and for this particular example, it is obtained that:

Test(1505.58, 1.5) =
Test1α1 + Test2α2

α1 + α2
=

(0 × 0) + (59.005 × 0.633)
0 + 0.633

= 59.005 ◦C (11)
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Figure 7. Example of the membership functions built with Algorithm 3 for the case when W2 is
considered as the input and the inference mechanisms procedure. (a,d) membership functions used
to fuzzificate the input variable pFSRo; (b,e) membership functions used to fuzzificate the input
variable W2, for the particular value of (W2o); at the right shows the corresponding firing levels for
this case (α1 and α2); (c,f) membership functions MFT1 and MFT2 used to evaluate the consequences
of the two fuzzy rules.

For the observation considered in this example, the reference temperature was 59 °C
(Table 3), and therefore, the absolute error (AE) of the estimated with the proposed FIS was
0.005 °C. The result for this example shows the viability of the proposed methodology to
estimate the temperature over more than one period of FSR, overcoming the 2π ambiguity.

Table 3. Definition of the fuzzy rules of FIS2.

Number of Rule Rule Description

1 IF [(W1o is MFW1) AND ( f sro is MFO1
1)] THEN MFT1

...
...

j IF [(W1o is MFWj) AND ( f sro is MFOτ
1 )] THEN MFTj

4. Results

This section presents the results obtained when the proposed methodology was ap-
plied to synthetic and experimental datasets of two different filters. Both synthetic datasets
were formed by extracting features of simulated filter spectra, which were computed by
using the mathematical model proposed previously by [25]. Experimental datasets were
formed with data extracted from measured spectra [25].
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4.1. Filter 1: Synthetic Dataset

This dataset contains 71 observations, covering the temperature range from 0 to 70 °C,
with steps of 1 °C. Moreover, in each observation, the wavelength positions of six peaks
(W1 to W6) were registered, as were the ratio of amplitudes of peaks 1 and 2 (r12) and finally
the reference temperature (Tre f ). An example of one row (observation) of the dataset is shown
in Table 2. Now, according to the methodology, FIS1 must provide the number of FSR periods
(pFSRo) corresponding to the value of the input r12. FIS2 is the one that determines the overall
estimated temperature (Test) based on the combination of inputs values. In the proposed
methodology, the inputs of FIS2 are pFSRo and one or more wavelength positions of different
peaks. In our case, the Test was determined considering different combinations of wavelength
positions as inputs. For each combination, the mean absolute error (MAE) and mean squared
error (MSE) between the Tre f and Test were evaluated. Here, it was considered that those
combinations presenting the lower MSE are the better choices to estimate the temperature.
Table 4 lists the five combinations of inputs that better estimated the temperature. For this
dataset, input combinations C1, C2 and C3 produced quasi perfect fits (Figure 8a) with MAE
and MSE values of practically zero. Moreover, with inputs combinations C4, C5 and C6, the
MAE is < 0.0035 °C, which is considerably low, and the corresponding AE and SE distributions
for the five inputs combinations are shown in Figure 8b,c, respectively. From these numerical
results, it can be observed that all observations were correctly processed by our proposed
methodology, and it allowed us to estimate correctly the temperature over two FSR periods.

Table 4. MAE and MSE obtained for different combinations of inputs in the FIS for synthetic and
experimental datasets of sensor 1.

Synthetic Dataset Experimental Dataset
Case Label Inputs MAE (◦C) MSE ((◦C)2) Inputs MAE (◦C) MSE ((◦C)2)

C1 W4, r12 4.2 × 10−14 1.2 × 10−25 W2, W6, r12 7.4 × 10−3 8.1 × 10−5

C2 W6, r12 4.2 × 10−14 1.2 × 10−25 W5, W6, r12 7.4 × 10−3 8.1 × 10−5

C3 W4, W6, r12 4.2 × 10−14 1.3 × 10−25 W2, r12 7.5 × 10−3 8.4 × 10−5

C4 W3, W4, W6, r12 3.4 × 10−3 1.2 × 10−4 W5, r12 7.5 × 10−3 8.4 × 10−5

C5 W1, W4, r12 2.2 × 10−3 1.2 × 10−4 W2, W5, r12 7.5 × 10−3 8.4 × 10−5
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Figure 8. (a) Reference and estimated temperatures obtained with the methodology for the synthetic
dataset of filter 1; (b,c) corresponding AE and SE distributions obtained with different inputs combinations.

4.2. Filter 1: Experimental Dataset

In this second case, the proposed methodology was applied to a dataset formed with
experimental data. In general terms, the filter spectrum can be well described by the
mathematical model used to form the synthetic dataset analyzed in the previous section.
However, experimental spectra show slight differences in amplitudes (Figure 9b) and
wavelength positions of the fringe peaks (Figure 9a). In this dataset, only 29 observations
were registered for temperatures within 9 and 70 ◦C. The proposed methodology is robust
to these small variations, since it does not depend directly on precise values of the peak
amplitudes; here, the general behavior of the amplitude ratio r12 is more important. From
Figure 9c, it can be observed that r12 < 1 within the first pSFR period (T ≤ 40 ◦C). In



Sensors 2022, 22, 6331 13 of 18

contrast, r12 > 1 within the second pSFR period (40 < T ≤ 70 ◦C). These are the same
characteristics observed in the simulated case, and therefore, it is possible to use the same
fuzzy rules and the membership functions formed for the FIS1 of the synthetic dataset
of this filter. Moreover, Algorithm 3 must be performed in order to fit the wavelength
positions and temperatures for each one of the FSR periods and obtain the membership
functions MFW1, MFW2, MFT1 and MFT2. Later, the fuzzy rules described in Table 3
were evaluated by using Equations (8) and (9). Finally, the estimated temperatures were
determined by means of Equation (10) and by considering combinations of wavelength
position of different peaks. For this experimental sensor, the best estimation was obtained
when the variables W2, W6 and r12 (case C1) were considered as inputs of the system.
For case C1, the MAE = 7.4 × 10−3 ◦C, while the MSE = 8.1 × 10−5[◦C]2. Furthermore,
the MSE and MAE for the other four inputs combinations are listed in Table 4, while
their corresponding AE and SE errors are presented in Figure 9b,c, respectively. Finally,
these results show that the proposed methodology is able to determine correctly and with
relatively high precision the temperature over two FSR periods. This means that it is
possible to widen the typical measurement range of similar interferometric sensors.
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Figure 9. Measured (a) peak wavelength positions, (b) peak amplitudes, (c) amplitudes ratio r12 as a
function of temperature of sensor 1. In (b), A5–A7 were shifted 1 unit to the right for clarity purposes;
(d) comparison between Test and Tre f ; (e) AE and (f) SE distributions for Test obtained considering
different input combinations cases.

4.3. Filter 2: Synthetic Dataset

The dataset for this case was formed by simulating the spectra of filter 2 for temper-
atures between 0 ≤ T ≤ 70 ◦C with steps of 1 ◦C. From simulated spectra, we extracted
the features: wavelength positions of 10 peaks (W1 to W10), the amplitude ratios r15, r16, r58
and the centroid of the spectrum (cenS). Moreover, when the temperature is plotted as a
function of the wavelength peak positions, it can be clearly observed that five FSR periods
occur within this temperature range (Figure 10a). The first FSR period occurs between
0 ≤ T < 2 ◦C, the second between 2 ≤ T < 22 ◦C, the third between 22 ≤ T < 42 ◦C, the
fourth between 42 ≤ T < 62 ◦C and the fifth between 62 ≤ T ≤ 70 ◦C. Therefore, this sensor
is more complex than sensor 1 analyzed previously, since now, it is required to determine
correctly the temperature over five FSR periods. Here, the methodology described previ-
ously will be applied exactly in the same way as for filter 1. The main difference lies in the
number of inputs needed to estimate the temperature. In our case, r15, r16, r58 (Figure 10b)
and cenS (Figure 10c) were selected as inputs of FIS1. The membership functions used to
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fuzzificate these inputs were built following Algorithm 1 of the methodology. The universes
of discourse of variables r15, r16 and r58 were partitioned into 10 regions, while the universe
of discourse of variable cenS was partitioned into five regions. Moreover, the universe of
discourse of the output variable of FIS1 was set as UpFSR = [0, 5], and it was partitioned to
form five membership functions following Algorithm 2. In order to apply the inference
mechanism of FIS1, a set of 19 fuzzy rules were defined and are listed in Table 5. These
rules allowed us to determine correctly the period of FSR (pFSRo) for each observation
of the dataset. Later, pFSRo is used as an input of FIS2 in combination with one or more
peak’s wavelength positions. After, membership functions required to implement FIS2
were built following Algorithm 3, and finally, the temperature was estimated by using
the Tsukamoto inference mechanism described previously. For the synthetic dataset of
sensor 2, the best temperature estimations were obtained when variables combinations
C1, C2 and C3 were considered. For these cases, the corresponding MAE and MSE were
practically zero (Table 6), showing a quasi perfect fit between Test and Tre f (Figure 10d).
Moreover, Figure 10e,f show the AE and SE distributions obtained for five different input
combinations. These results are important because they demonstrate that by applying
this methodology, the measurement range can be increased by a factor of 5, since it can
determine the temperature over at least five FSR periods.
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Figure 10. Simulated (a) peaks wavelength positions, (b) some amplitude ratios and (c) centroid of
the spectrum as a function of temperature of sensor 2; (d) comparison between Test and Tre f ; (e) AE
and (f) SE distributions of the for Test obtained considering different input combinations.

Table 5. Inference Rules of the FIS1 for Sensor 2.

Synthetic Dataset Experimental Dataset

Number
of Rule r15o r16o r58o cenSo pFSR r15o r16o r58o cenSo pFSR

R1 MFI6
1 MFI9

2 MFI1
3 MFI5

4 MFO1
1 MFI9

1 MFI18
2 MFI4

3 MFI3
4 MFO2

1

R2 MFI4
1 MFI7

2 MFI3
3 MFI5

4 MFO2
1 MFI9

1 MFI19 OR 20
2 MFI4

3 MFI4
4 MFO2

1

R3 MFI4
1 MFI8

2 MFI2
3 MFI2

4 MFO2
1 MFI9

1 MFI21
2 MFI3

3 MFI5
4 MFO2

1

R4 MFI4
1 MFI9

2 MFI2
3 MFI3

4 MFO2
1 MFI9

1 MFI21
2 MFI4

3 MFI4
4 MFO2

1

R5 MFI5
1 MFI9

2 MFI2
3 MFI3 OR 4

4 MFO2
1 MFI9

1 MFI26
2 MFI4

3 MFI3
4 MFO2

1
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Table 5. Cont.

Synthetic Dataset Experimental Dataset

Number
of Rule r15o r16o r58o cenSo pFSR r15o r16o r58o cenSo pFSR

R6 MFI5
1 MFI10

2 MFI2
3 MFI4

4 MFO2
1 MFI10

1 MFI18
2 MFI4

3 MFI3 OR 4
4 MFO2

1

R7 MFI3
1 MFI5

2 MFI4
3 MFI4 OR 5

4 MFO3
1 MFI10

1 MFI19
2 MFI3

3 MFI4
4 MFO2

1

R8 MFI3
1 MFI6

2 MFI4
3 MFI4

4 MFO3
1 MFI10

1 MFI19
2 MFI4

3 MFI3
4 MFO2

1

R9 MFI4
1 MFI6

2 MFI3
3 MFI1 OR 2

4 MFO3
1 MFI10

1 MFI20 OR 24
2 MFI3

3 MFI5
4 MFO2

1

R10 MFI4
1 MFI7

2 MFI3
3 MFI2 OR 3

4 MFO3
1 MFI11

1 MFI20
2 MFI3

3 MFI5
4 MFO2

1

R11 MFI4
1 MFI8

2 MFI2
3 MFI3 OR 4

4 MFO3
1 MFI12

1 MFI21
2 MFI3

3 MFI5
4 MFO2

1

R12 MFI3
1 MFI4

2 MFI5
3 MFI4

4 MFO4
1 MFI7

1 MFI11
2 MFI7

3 MFI5
4 MFO3

1

R13 MFI3
1 MFI5

2 MFI4
3 MFI1 OR 2

4 MFO4
1 MFI7

1 MFI12
2 MFI7

3 MFI5
4 MFO3

1

R14 MFI3
1 MFI5

2 MFI5
3 MFI1

4 MFO4
1 MFI7

1 MFI14
2 MFI6

3 MFI2
4 MFO3

1

R15 MFI3
1 MFI6

2 MFI4
3 MFI2

4 MFO4
1 MFI7

1 MFI15
2 MFI6

3 MFI1
4 MFO3

1

R16 MFI4
1 MFI6

2 MFI3
3 MFI3

4 MFO4
1 MFI8

1 MFI12
2 MFI6

3 MFI5
4 MFO3

1

R17 MFI4
1 MFI6

2 MFI6
3 MFI2

4 MFO4
1 MFI8

1 MFI13
2 MFI5

3 MFI1
4 MFO3

1

R18 MFI3
1 MFI4

2 MFI6
3 MFI1

4 MFO5
1 MFI8

1 MFI19
2 MFI4

3 MFI4
4 MFO3

1

R19 MFI3
1 MFI4

2 MFI7
3 MFI1 OR 3

4 MFO5
1 MFI8

1 MFI17 OR 19
2 MFI5

3 MFI3
4 MFO3

1

R20 MFI9
1 MFI13

2 MFI5
3 MFI2

4 MFO3
1

R21 MFI9
1 MFI16

2 MFI4
3 MFI4

4 MFO3
1

R22 MFI10
1 MFI17

2 MFI4
3 MFI5

4 MFO3
1

R23 MFI7
1 MFI9

2 MFI9
3 MFI4

4 MFO4
1

R24 MFI7
1 MFI11

2 MFI7
3 MFI1

4 MFO4
1

R25 MFI7
1 MFI12

2 MFI6
3 MFI2

4 MFO4
1

R26 MFI7
1 MFI13

2 MFI6
3 MFI3

4 MFO4
1

R27 MFI7
1 MFI14

2 MFI5
3 MFI3

4 MFO4
1

R28 MFI8
1 MFI14 OR 17

2 MFI5
3 MFI4

4 MFO4
1

R29 MFI6
1 MFI8

2 MFI12
3 MFI1

4 MFO5
1

R30 MFI6
1 MFI9

2 MFI11
3 MFI1

4 MFO5
1

Table 6. MAE and MSE obtained for different combinations of inputs in the FIS for synthetic and
experimental datasets of sensor 2.

Synthetic Dataset Experimental Dataset
Case Label Inputs MAE (°C) MSE ((°C)2) Inputs MAE (°C) MSE ((°C)2)

(r15, r16, r58,
cenS)

(r15, r16, r58,
cenS)

C1 W9 0 0 W3,W4,W9 4.5 × 10−3 3.0 × 10−5

C2 W10 0 0 W2, W4, W9 4.5 × 10−3 3.1 × 10−5

C3 W9, W10 0 0 W3, W9 4.8 × 10−3 4.0 × 10−5

C4 W4, W9, W10 3.7 × 10−4 5.0 × 10−6 W4, W9, W10 5.0 × 10−3 4.6 × 10−5

C5 W5, W9, W10 3.8 × 10−4 5.3 × 10−6 W2, W9 5.4 × 10−3 7.5 × 10−5

4.4. Filter 2: Experimental Dataset

For this case, the experimental sensing arrangement was implemented with the filter 2,
and there were recorded 40 spectra between the temperature range from 9 ≤ T ≤ 70 °C. From
these spectra, we extracted the W1 to W10 (Figure 11a), r15, r16, r58 (Figure 11b) and cenS
(Figure 11c) features to form the observations of the dataset. Here, when the wavelength
positions of fringe peaks are traced as a function of the temperature, it can be observed that
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these behave in general terms, as it was described by the simulated results presented in the
previous section. Moreover, for the temperature range used in our experiments, there can
be observed four FSR periods (Figure 11a) that match with four of the periods described
for the synthetic case, these are: the second between 2 ≤ T < 22 °C, the third between
22 ≤ T < 42 °C, the fourth between 42 ≤ T < 62 °C and the fifth between 62 ≤ T ≤ 70 °C.
Therefore, the system was evaluated in a similar way as in the case of the synthetic dataset
of this sensor. Here, to fuzzificate the inputs variables r15, r16 and r58, their corresponding
universes of discourse were partitioned into 26 regions. The universe of discourse of the
variable cenS was partitioned into five regions. Afterwards, their corresponding membership
functions there were formed by performing Algorithm 1. Moreover, the universe of discourse
of the output variable of FIS1 was partitioned in five regions (one for each FSR period),
and its corresponding membership functions there were built executing Algorithm 2. The
period of FSR (pFSRo) was determined by evaluating the fuzzy rules listed in Table 5 and by
applying Mamdani’s inference mechanism. Afterwards, the membership functions required
to implement FIS2 there were formed by means of Algorithm 3. Finally, the temperature
was estimated considering different combinations of inputs of FIS2. Here, the best case (C1)
was obtained when W3, W4, W9, r15, r16, r58 and cenS there were selected as inputs. For case
C1, the MAE = 0.0045 °C and MSE = 3 × 10−5[°C]2. Moreover, other inputs combinations
produced similar MAE and MSE values (Table 6), and the quality of the fit can be appreciated
in Figure 11c. Moreover, AE and SE distributions for five different inputs combinations are
shown in Figure 11e,f, respectively.
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Figure 11. Experimentally measured (a) peaks wavelength positions, (b) some amplitude ratios and
(c) centroid of the spectrum as a function of temperature of sensor 2; (d) comparison between Test and
Tre f ; (e) AE and (f) SE distributions of the Test obtained considering different input combinations.

5. Discussion

In this work, we presented a methodology, based on a fuzzy inference system, which
can make it possible to perform measurements with an interferometric sensor abroad the
typical limit of 1 free spectral range. The relevance of this methodology is that the typical
2π ambiguity of interferometric sensors can be overcome, which is not possible when the
typical way of establishing a relationship between the measurand and wavelength position
of one fringe’s peak or dip is used. In order to demonstrate the viability of the methodology,
two temperature sensing arrangements were implemented. For implementing each sensor,
different interferometric filters were used. The spectra of these filters were both simulated
and experimentally measured at different temperatures. From these spectra, some features
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were extracted to form a synthetic and experimental datasets for each sensing arrangement.
Furthermore, it was demonstrated that by using the methodology presented in this work,
it was possible to determine temperature over five FSR periods for sensor 2, which implies
that its measurement range was increased by a factor of 5. For sensor 1, the temperature was
successfully estimated over 2 FSR periods, meaning that its corresponding measurement
range was doubled. These results also support the fact that the measurement ambiguity
can be overcome within a large number of FSR periods by only considering more spectral
features as input variables of the FIS. Finally, it was shown that the estimation of the
temperature is relatively high, since for sensor 1, the temperature within 2 FSR periods was
determined correctly with an MSE = 8.1 × 10−5[◦C]2. For sensor 2, the measurement range
was quintupled: the MSE = 3 × 10−5[◦C]2. Finally, for future work, we will analyzed the
potential of this methodology to enhance the sensor sensitivity and to sensing different
parameters simultaneously such as temperature and refractive index.
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