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Abstract: Performance measures are crucial in selecting the best machine learning model for a given
problem. Estimating classical model performance measures by subsampling methods like bagging
or cross-validation has several weaknesses. The most important ones are the inability to test the
significance of the difference, and the lack of interpretability. Recently proposed Elo-based Predictive
Power (EPP)—a meta-measure of machine learning model performance, is an attempt to address
these weaknesses. However, the EPP is based on wrong assumptions, so its estimates may not be
correct. This paper introduces the Probability-based Ranking Model Approach (PMRA), which is a
modified EPP approach with a correction that makes its estimates more reliable. PMRA is based on
the calculation of the probability that one model achieves a better result than another one, using the
Mixed Effects Logistic Regression model. The empirical analysis was carried out on a real mortgage
credits dataset. The analysis included a comparison of how the PMRA and state-of-the-art k-fold
cross-validation ranked the 49 machine learning models, an example application of a novel method
in hyperparameters tuning problem, and a comparison of PMRA and EPP indications. PMRA gives
the opportunity to compare a newly developed algorithm to state-of-the-art algorithms based on
statistical criteria. It is the solution to select the best hyperparameters configuration and to formulate
criteria for the continuation of the hyperparameters space search.

Keywords: machine learning; model performance assessment; model selection; hyperparameters
tuning; model performance measures; Elo-based Predictive Power; mixed effects logistic regression

1. Introduction and Literature Overview

Model performance assessment plays a crucial role in machine learning. The applied
comparison procedure matters during model selection for a given problem, in hyperparam-
eters tuning, and while testing the newly proposed algorithm. Depending on the character-
istic of the problem and expected properties, different measures are applied [1]. Among
those most commonly used in recent years are: Accuracy [2], F1 [3], cross-entropy [4],
AUC [5] for classification and RMSE [6], MSE [7], MAE [8] for regression. The classic
approach divides available datasets into train, validation, and test sets. A disadvantage
of this method is that obtained measure estimate has a high variance. In order to reduce
it, subsampling methods are applied. Cross-validation and bootstrap aggregating (bag-
ging) are most often used. In [9], it is claimed that many commonly used subsampling
schemes suffer from substantial negative bias when considering AUC in the small-sample
setting. The variance of the obtained results is also an important issue. In [10], it is shown
that there exists no universal (valid under all distributions) estimator of the variance of
cross-validation.

In [11], the authors described the two most often used approaches to calculate AUC
and different measures over folds: pooling and averaging. In pooling, the results obtained
in each fold are joined into one set on which the AUC measure is calculated. Averaging
assumes the calculation of the mean value of AUC measures obtained in all folds. Parker
et al. show in their study on low-signal simulated data and Van’t Veer breast cancer
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dataset that pooling may cause substantial biases due to comparing observations from
different test samples [12]. They explain why using k-fold cross-validation modifications:
Balanced cv, Stratified cv, Balanced leave-one-out cv reduce the bias for small datasets. In [13],
Varoquaux states that the use of cross-validation on small sample datasets leads to large
error bars. The simulation that was carried out in a biological context on small sample data
showed that the cross-validation approach provides inaccurate results—with, e.g., a 10%
error bar for accuracy measure on a sample with 100 observations. In [14], Krzanowski
proposed an approach that combines the advantages of pooling and averaging—Leave-pair-
out cross-validation (LPOCV). It involves calculating AUC values for each positive-negative
pair. The final AUC value is obtained by averaging through all of these pairs. Efficient
LPOCV implementation was developed by Pahikkala et al. [15]. The Leave-one-out cross-
validation (LOOCV) is equivalent to LPO for measures other than AUC The limitation of
both algorithms is their complexity—the required number of training rounds is of the order:
O(n2), O(n) for LPOCV and LOOCV respectively, where n is a number of observations.
Therefore these approaches may be applied only to small datasets. LPOCV and LOOCV,
similarly to pooling, make maximal use of the available dataset. However, these methods
are not perfect—in [16], Gronau et al. show their limitations.

An essential aspect of the model selection process is testing the significance of the
performance difference between two models. In [17], the authors conducted an extensive
review of the statistical methods used for model selection. They described several methods
to compare algorithms, including fitting and evaluating models via cross-validation. The
first of the presented methods to test performance difference significance is the difference of
the proportions test. This involves comparing confidence intervals of two accuracies using a
z-score. However, Dietterich in his simulation study states that this test tends to have a high
false positive rate [18]. Instead, Dietterich recommends using McNemar’s test [19]. The
test statistic is calculated from the number of observations for which models’ predictions
were different. p-values are calculated based on the Chi-square distribution. When the
number of differences in predictions is relatively small, the Chi-squared distribution may
be imprecise. In this case, the binomial test is recommended.

Methods mentioned above: Difference of proportions test, McNemar’s test and Binomial test
all assume specific threshold level, which determines the models’ confusion matrix. What
is more, these methods compare two models. Comparison of multiple models’ performance
can be made using Cochran’s Q test. It verifies the null hypothesis that accuracy of n models
is equal, but it does not indicate which models differ [20].

Resampling-based testing procedures are also of practical importance for the model
selection problem. One of them is Dietterich’s 5 × 2-Fold Cross-Validated Paired t-Test that
assumes performing 5 iterations of 2-fold cross-validation [18]. The more robust alternative:
Combined 5 × 2 cv F-test was proposed by Alpaydm [21]. In [22], the authors presented
machine learning models comparison methods, which are most commonly used in practice.
Beyond the above-mentioned 5 × 2-Fold Cross-Validation Paired t-Test and McNemar’s test
there is paired Student’s t-test described with further correction proposed in [23]. Although
the approaches discussed above give accurate results, they are not often used. They are an
addition to the classical approach of averaging and are not directly embedded in it.

Elo-based Predictive Power (EPP)—a measure introduced in [24] is the answer to these
drawbacks of classical approaches to model performance assessment. It assumes that the
performance of every pair of models is compared. The outcome of the comparison is the
input to the logit model. The logit model coefficients indicate the predictive ability of the
analyzed models. This approach is novel as it considers all models at once in comparison.
Furthermore, the estimated values of the measure are interpretable and it is possible to
use a statistical test to investigate the significance of the difference between two models’
performance. However, the EPP does not consider the lack of independence of comparisons
made on the same subsample. Therefore, its estimates are based on fundamentally flawed
assumptions, underestimating results variance, which makes its indications potentially
unreliable. EPP aggregates relative information about models’ pairs comparison and turns
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it into one value per model describing their predictive power. The different approach to
decision making in context of subjective information is presented in [25,26].

The aim of this article is to introduce the Probability-based Models Ranking Approach
(PMRA), a method of evaluating the performance of a machine learning model, which
makes it possible to interpret the difference in the performance of 2 models and to test
the statistical significance of this difference, the method is also more reliable than the
state-of-the-art averaging approach. PMRA is a modification of the EPP that retains its
advantages over the state-of-the-art approach and, at the same time, addresses its main
disadvantage. Using a mixed effects model gives a more realistic estimate of the variance,
which allows greater confidence in indications of statistical tests stating whether two
models’ performances are significantly different or not. In the study, PMRA is practically
applied to the results of various machine learning models obtained on the Multifamily
mortgages dataset describing real credits acquired by Fannie Mae in the years 2000–2020.

The paper is organized as follows: in the next section, the main limitations of the
subsampling approach to model performance assessment are described. In Section 3,
EPP measure construction, based on the logit model, is presented with its weaknesses.
Then conception of the Probability-based Models Ranking Approach (PMRA) using mixed
effects logistic regression is introduced. There is a discussion of statistical tests that can
be used in the PMRA—Wald and Likelihood-ratio tests. Then we described possible
practical applications of this method in hyperparameters tuning and in models’ ranking
creation. Section 4 contains empirical analysis. It begins with the used dataset description,
then PMRA and state-of-the-art averaging approaches are compared in the most common
practical applications. Finally, the EPP and PMRA approaches are compared, showing the
practical advantages of PMRA over EPP.

2. Weaknesses of Classical Model Assessment Methods Based on Cross-Validation

The most commonly used subsampling methods of evaluating model performance are
cross-validation and bootstrap aggregating (bagging). The idea behind both of them is to
generate from whole dataset (X, Y) n subsamples (X1, Y1), . . . , (Xn, Yn). Cross-validation
assumes dividing (X, Y) into n equal parts and placing in each subsample all of them except
one [27]. Bagging involves generating new training datasets, by sampling from (X, Y)
uniformly and with replacement (some observation may be chosen multiple times) [28].
Then the algorithm is trained on each dataset and tested on observations not belonging
to it. Values r1, . . . , rn of one of classical measures (e.g., AUC, F1 for classification, MSE,
MAE for regression) are obtained and then averaged.

r̄ =
r1 + . . . + rn

n
(1)

The resulting value r̄ stands for model performance over a dataset. Inequality between
two models’ average results is the basis of the statement that one model can learn depen-
dencies between independent and dependent variables better than the other one [29]. In
this section, we will present four main weaknesses of using this classical approach for the
AUC measure example.

2.1. Lack of Interpretability

Most commonly used performance measures are interpretable. For example, AUC
represents the probability that a model assigned a higher probability of belonging to a
positive class to a randomly chosen positive example than to a randomly chosen negative
example [30]. Therefore, the difference between the two models’ performances may be
interpreted. However, for many classic measures, the subsampling approach, assuming
averaging measure values obtained in specific samples, suffers from biases [31]. This
problem is particularly relevant for small sample problems [9]. The reasons mentioned
make it impossible to rely on the interpretation of the results.
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2.2. Lack of Statistical Tools to Measure the Statistical Significance of Results Differences

For many performance measures, it is possible to test the significance of the difference
between two models’ performances. However, making conclusions about the significance
of performance difference based only on the obtained average value of this measure is a
more complex issue. For example for AUC, there are statistical tests to conclude about
equality of two AUC results [32,33]. However, their use to compare mean AUC would be
incorrect as they are based on ROC curve analysis. As described in the literature overview—
the most commonly used methods (Paired t-test, 5 × 2 folds cv) are imperfect due to their
pairwise character.

2.3. Sensitivity on Outliers

Conclusions based on cross-validation average AUC can also be misleading when one
of the model’s obtained AUC scores stands out greatly from the others. It may result in
having such a strong impact on mean AUC that it does not reflect the expected relation
between the two models’ results. The model which performs worse in most cases may
be considered better because of just one outlying observation. Figure 1 presents results
obtained by 2 models in 5-fold cross-validation. M1 model’s results are better in 4 of 5 folds.
The extraordinarily high result of model M2 on the fourth fold overstates its mean AUC so
that it is higher than the mean AUC of M1. Similarly, in the cross-validation, presented in
Figure 2, the surprisingly low score of model M1 in the fourth fold underscores its mean
AUC so that it is lower than the mean AUC of the M2 model.

Figure 1. Example AUC scores of 2 models obtained in 5-fold cross-validation.

2.4. Ignoring in Analysis Variance of Outcomes in Specific Folds

Measuring the model’s performance using cross-validation assumes simple averaging
of obtained scores from all test folds—the result from each fold is taken with equal weight.
However, distributions of models’ results may differ between folds. Variance in one fold
may be several times higher than in the other. The omission of this factor in the analysis
may distort the results. Figure 3 presents the diversity of 49 models AUC results among
10 folds. Results were calculated on the credit-risk dataset. The highest standard deviation
(8th fold) is over 3 times higher than the lowest (5th fold).
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Figure 2. Example AUC scores of 2 models obtained in 5-fold cross-validation.

Figure 3. Distribution of 49 models AUC performances among folds obtained from 10-fold cross-
validation on credit risk dataset.

Not taking diversity of other models’ performances in the fold may lead to a paradoxi-
cal situation, where 2 models ranked similarly get considerably different mean AUC values,
depending on whether the folds where they scored well had high or low variance. Quantile
and AUC results of 2 models presented in Table 1 illustrate this situation. In 2 folds of
cross-validation M1 and M2 placed in 60 and 75 percentile. M1 and M2 performed the
same, comparing their results to other models. However, their average AUC values differ.
The reason for that is different variance in 1st and 2nd fold.
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Table 1. Example AUC and percentile results of 2 models in 2 folds.

Model Fold AUC Result Percentile

Model 1 1 0.75 60
2 0.8 75

Model 2 1 0.8 75
2 0.7 60

Listed weaknesses of classical subsampling performance assessment methods mean
one cannot be sure of their reliability in ordering models. Moreover, these methods do not
provide sufficient statistical tools to distinguish between models with better and those with
poorer performance in practical applications. The answer to the described challenges are
measures based on the probability of win—EPP and PMRA presented in another section.

3. Probability Measures of Model Performance

In order to resolve classic subsampling approach weaknesses mentioned in Section 2,
it is recommended to use measures based on the estimation of the probability that one
model will achieve better results than another. This section begins by introducing Elo-based
Predictive Power measure proposed in [24], which initiated a probability-based approach
to the model performance assessment. Further, it is shown how the EPP measure addresses
four disadvantages of classic performance measures listed in Section 2. Then Probability-
based Models Ranking Approach is introduced, which is the EPP extension resolving its
crucial weaknesses. The section concludes with a description of the possible applications
of probability model performance measures.

3.1. Elo-Based Predictive Power (EPP)

Assume M = {M1, . . . , Mm} is a set of machine learning algorithms with fixed
hyperparameters, which were evaluated in k-fold cross-validation. The EPP approach is to
assign them scores β1, . . . , βm representing their predictive power. The higher score, the
better model is assessed. This measure is constructed so that difference between 2 models’
scores is interpretable. From value of βi − β j difference of Mi, Mj models’ scores probability
that model Mi performance expressed in classic measure value beats Mj performance, can
be calculated. EPP scores can be estimated as coefficients of a following logistic regression
model with intercept β0 = 0.

ln (
pi,j

1− pi,j
) = β1x1 + β2x2 + . . . + βmxm (2)

where:
xa = 1a=i − 1a=j;
pi,j—probability, that model Mi gets better result than model Mj.

Logistic Regression Model is estimated on cross-validation results dataset transformed,
so that it reflects effect of comparision of every pair of models. Details about dataset
transformation are described in Section 3.3 From the model’s formula we may obtain the
exact probability value:

pi,j =
eβi−β j

eβi−β j + 1
. (3)

Such constructed EPP score addresses four classic model performance measures
weaknesses listed in Section 2.

1. Lack of interpretability: EPP score is interpretable. It gives a clear answer about the
probability of one model obtaining better results than another.

2. Lack of statistical tools to measure statistical significance of results differences:
EPP scores are logistic regression coefficients estimates. To check if two models’
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performance difference is significant we can use Wald or Likelihood Ratio tests. They
are able to verify linear null hypotheses like: H0 : βi − β j = 0, which implies pi,j =

1
2 .

3. Sensitivity on outliers: The outstanding result of the model in one of the folds, of
course, will positively impact the assessment of its performance. Nevertheless, the
decision will be based on the relation observed in the majority of folds.

4. Omitting in analysis variance differences between folds: Data from every fold have
an equal impact on fixed effects estimation. The key impact on the EPP score has
not the exact value of the measure, but the order of results, those models obtained in
specific folds.

The EPP approach is innovative and appears to improve our ability to analyze the
model’s performance. However, it has one major drawback. One of the logistic regres-
sion assumptions is the independence of observations. This assumption is not satisfied
because all n(n−1)

2 observations expressing models’ comparisons made in one fold are not
independent. As a result, variance-covariance matrix estimates may be inconsistent [34],
which results in underestimated p-value in Wald and LR tests. This may cause one model’s
performance to be mistakenly considered better than another. As a result, the use of specific
algorithms may be rejected, even though they are not significantly weaker.

3.2. Probability-Based Models Ranking Approach

As a solution to the main EPP problem, we propose a Probability-based Models Rank-
ing Approach, which is a modification of the EPP approach. The probability of model Mi
overcoming model Mj (i < j) is estimated using generalized mixed effects model with
logit as a link function in version defined by formula [35]:

ln(
pi,j

1− pi,j
| f old = k) = β0 +

n

∑
s=1

βs ∗ Xs + uk + ε (4)

where:
xa = 1a=i − 1a=j;
pi,j—probability, that model Mi gets better result than model Mj;
β0, . . . , βn—fixed effects coefficients;
uk—random intercept depending on number of fold;
ε—random error.

u1, . . . , uk ∼ N (0, Σ2
intercept) .

ε ∼ N (0, σ2) .

From such a formulated model, we can easily calculate probabilities of results between
models Mi and Mj. We calculate the expected value of both sides of the formula.

exp(ln(
pi,j

1− pi,j
| f old = k)) = exp(β0 +

n

∑
s=1

βs ∗ Xs + uk + ε) (5)

ln(
pi,j

1− pi,j
) = β0 + βi − β j (6)

pi,j =
exp(β0 + βi − β j)

1 + exp(β0 + βi − β j)
(7)

3.2.1. Statistical Tests

Two statistical tests may be helpful to verify linear hypotheses on the values of fixed
effects—Likelihood Ratio Test (LR test) and Wald Test. They both allow us to test whether
a set of s independent linear hypotheses is true. The null and alternative hypotheses for
both of them are:

H0 : Kβ = c (8)
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H1 : Kβ 6= c (9)

where:
K—known, full rank matrix, rank(K) = s;
β—vector of fixed effects.

The Likelihood Ratio Test (LRT) compares two nested models—general and restricted.
They are built on the same data, but some fixed effects are omitted in the restricted one.
Therefore, the model without the considered effect is a special case of the model with this
effect [36]. Test may be applied when both models were fitted using maximum likelihood
estimation. The LR test statistic is as follows [37]:

LR = −2(l(β̃, Σ̃|y)− l(β̂, Σ̂|y)) (10)

where (β̃, Σ̃) are estimations of fixed effects and their variance-covariance matrix in re-
stricted model. (β̂, Σ̂) are estimations in the general model.

The Wald test statistic w given in [37]:

[Kβ̂− c]T [KF−1
β̂

KT ][Kβ̂− c] (11)

Fβ̂ can be either observed and expected information matrix evaluated in β̂:

Fβ̂ = −∂2l(β̂, Σ̂|y)
∂β∂βT |β=β̂ (12)

or

Fβ̂ = E(−∂2l(β̂, Σ̂|y)
∂β∂βT |β=β̂) (13)

Both tests statistics w and LR are chi-square distributed with rank(K) degrees of
freedom. The Wald test is a quadratic approximation to the log-likelihood function by
a second-order Taylor expansion and is an approximation to the LR statistic. p-values
obtained for the LR test are more exact than the p-values obtained for the Wald test. The
disadvantage of the LR test is that both the restricted and the unrestricted models have to
be fitted, whereas, for the Wald test, only the unrestricted model is needed. With increasing
sample size, the log-likelihood becomes approximately quadratic so that both tests are
asymptotically equivalent [37].

In the Probability-based Models Ranking Approach, either Wald or LR tests can
be applied to test hypotheses of two kinds. The first one has the following null and
alternative hypotheses:

H0 : β0 + βi − βj = 0

H1 : β0 + βi − βj 6= 0

what is equivalent to:

H0 : pi,j =
1
2

H1 : pi,j 6=
1
2

It allows us to verify hypotheses about the equality of two models’ performances.
Another application of LR and Wald tests in PMRA includes testing the following null and
alternative hypotheses:

H0 : βi1 = . . . = βil = 0

H1 : ∃k ∈ {1, . . . , l} : βk 6= 0

It allows us to test whether a group of fixed effects is significant or can be deleted from
the model. Removing the insignificant fixed effect corresponding to a given model from the
mixed effects model causes a slight change in the estimate of the performance of that model.
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In return, reducing the complexity improves the precision of estimates of fixed effects and
variance for the best models (which estimates are crucial in most practical applications).

3.2.2. Model Estimation

The described mixed effects model may be estimated using the lme4 package [38].
Coefficients are estimated with maximum likelihood fitting. The approximation algorithm
assumes that the Penalized Least Squares method has been used multiple times.

Data matrix from transformed dataset described in Section 3.3 does not have a full
columnar rank because the sum of all fixed effects columns is equal to the zero vector.
Hence, it is necessary to choose izero ∈ {1, . . . , n} for which βizero = 0 is assumed. This does
not affect the results because the coefficients’ values are relative. Using the weakest model
as model zero is recommended. Then, the subsequently applied procedure eliminating
insignificant fixed effect has no negative impact on the estimates of the best models. After
the first model estimation, fixed effects, whose coefficients are statistically equal to zero,
should be eliminated. There are several methods of choosing a set of insignificant variables.
They differ in their accuracy and computation time. The algorithms below are ordered
from the slowest but most accurate to the fastest but least accurate.

1. Rigorous backward approach

(a) sort fixed effects of current model by coefficients’ p-value obtained in Wald test
(H0 : βi = 0) in descending order.

(b) try to eliminate any of fixed effects from current model, beginning from these
with highest p-value. Use Likelihood Ratio Test to test joint significance of fixed
effects: Xi1 , . . . , Xil , Xk, where Xi1 , . . . , Xil are already eliminated fixed effects
and Xk is currently inspected fixed effect (H0 : βi1 = . . . = βil = βk = 0)

(c) if any fixed effect was eliminated get back to point (a) with restricted model,
finish otherwise.

2. Accelerated backward approach: The same as Rigorous backward approach, but in
point (b), consider eliminating only fixed effects whose p-value is above a certain
assumed confidence level α.

3. Heuristic backward approach: Until we get the model for which all coefficients are
significant, eliminate the fixed effect with the highest Wald Test p-value.

The Accelerated backward approach seems to be a good compromise between speed
and accuracy.

3.3. Data Preparation

Data on which probability measures of model performance are based is the result of a
cross-validation process with itemized test folds numbers on which assessment was made.
The form of the data is as follows:

(Model, Fold, AUC) (14)

Example input dataset is presented in Table 2. In the preparation process, the form
of the data must be changed to fit the EPP and PMRA models. The new form does not
contain exact information about the AUC value. It only provides information for each pair
of models, which one performed better (has a higher AUC value). If in k-th fold models
(Mi, Mj) (i < j) scored (AUCMi ,k, AUCMj ,k) the following observation will be added to
new dataset.

(X1, X2, . . . , Xm, Fold, Result) (15)

where:

Xs =


1 if s = i
−1 if s = j
0 otherwise

(16)
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result =

{
1 if AUCMi ,k > AUCMj ,k

0 otherwise
(17)

Fold = k (18)

Table 3 shows example dataset from Table 2 after transformation. In first fold occurs:

AUCM1,1 > AUCM2,1 > AUCM3,1

therefore, the first 3 rows of the transformed table encode the following information:

AUCM1,1 > AUCM2,1
AUCM1,1 > AUCM3,1
AUCM2,1 > AUCM3,1

If the input data are results of n models obtained in k-fold cross validation, then the
table we have at the beginning is (m ∗ k)× 3 and after-transformation table is m(m−1)

2 ∗ k×
(m + 2).

Table 2. Input dataset.

Model Fold AUC

M1 1 0.785
M2 1 0.743
M3 1 0.721
M1 2 0.727
M2 2 0.672
M3 2 0.746

Table 3. Transformed dataset.

X1 X2 X3 Fold Result

1 −1 0 1 1
1 0 −1 1 1
0 1 −1 1 1
1 −1 0 2 1
1 0 −1 2 0
0 1 −1 2 0

3.4. Comparision of PMRA to EPP

The Probability-based Models Ranking Approach is a modification of the innovative
Elo-based Predictive Power (EPP) approach introduced in [24]. Modified model loses
some of EPP’s features to address its weaknesses and improve its efficiency in some of
the applications.

The main problem with EPP is that one of the logistic regression assumptions—
independence of observations—is not satisfied. The results of n models in each fold
of input dataset generates n(n−1)

2 observations expressing model comparisons. These ob-
servations are not independent. As a result, the estimated variance-covariance matrix is
underestimated. This makes the EPP tend consider models that have statistically equal
performances as different. An attempt to solve this problem is implementing random
effects in the Probability-based Models Ranking Approach. Random effects cluster the
results obtained in the same fold. As a result, the estimate of the variance-covariance
matrix of fixed effects is more accurate. PMRA allows us to rely on statistical tests’ p-values
and make decisions in the model selection process based on statistical criteria rather than
arbitrarily established conditions.
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Another difference is that PMRA contains the procedure of eliminating fixed effects
corresponding to models statistically equal to model zero. This General to Specific approach
may distort estimates of the probability of a win for models corresponding to deleted fixed
effects. However, the model becomes less complex, and the coefficients’ variance decreases.
PMRA enables better estimation of the probability of win and equal performance tests
p-values for models which rated best (in most applications, we are usually more interested
in proper performance evaluation of models at the top of the ranking than those from
the bottom).

The different design of the Probability-based Models Ranking Approach means that,
unlike EPP, it does not have the convenient property that performance can be specified by a
single number. Moreover, it cannot be used to compare results from different datasets. What
PMRA gives in return is a better estimation of the variance-covariance matrix resulting
in better estimates of p-values in tests for equality of two models. This makes PMRA
equality of performance of two models reliable in contrast to EPP. In summary, the PMRA
is a modification of the EPP lacking its universal properties. In return, its indications are
reliable, what enables using it in practical applications.

3.5. Probability Measures Applications

Thanks to the described advantages over EPP, PMRA is suitable for practical applica-
tions. Its interpretability and statistical properties constitute advantages over the classical
subsampling approach in problems of hyperparameter tuning and creating a ranking
of models.

3.5.1. Application in Models Ranking Building

Result of Probability-based Models Ranking Approach estimation may be basis for
creation of {M1, . . . , Mm}models ranking in 2 steps.

1. Probability matrix calculation

M1 M2 . . . Mm
p1,1 p1,2 . . . p1,m
p2,1 p2,2 . . . p2,m
. . . . . . . . . . . .

pm,1 pm,2 . . . pm,m


M1
M2
. . .
Mm

Probabilities values can be estimated as desribed in Equation (7). In case fixed effect
corresponding to i-th model was eliminated, assume βi = 0

2. Assigning places 1, 2, . . . , m in ranking to models Mi1 , Mi2 , . . . , Min so that:
for each k, l ∈ {1, 2, . . . , m} : k < l occurs: pik ,il >

1
2

Theoretically, it may happen that models cannot be ranked in this way because several
of them form a cycle in which each model beats the next with a probability higher
than 0.5 e.g., pik ,il >

1
2 , pik ,il >

1
2 , pik ,il >

1
2 . However, such a case rarely occurs in

practice and usually means that the models are insignificantly different. Therefore in
this case, these models get the same ranking number.

3.5.2. Application in the Process of Hyperparameters Tuning

There are many hyperparameters tuning methods like: grid search, random search,
bayesian optimization [39] or gradient-based optimization [40]. Probability-based Models Rank-
ing Approach may provide valuable information supporting model selection decisions
during these procedures. Regarding the example of the iterated grid search [41]: while
tuning 2 hyperparameters α, γ whose values come from the interval [0, 1] the grid Ω of
m ∗ n potential parameters sets is created:

Ω1 = A× B (19)

where A, B are sets of potential values of α, γ respectively. For each hyperparameters set a
model performance is calculated using cross-validation and the best one (a, b) is chosen.
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After that, another grid of values in neighbourhood of best set is created and the process is
repeated until we decide the result will not improve significantly by further tuning.

Ω2 = {(a± εi, b± δj)} (20)

Probability-based Models Ranking Approach may be helpful in two ways:

1. It can indicate which hyperparameters set is the best of considered in the iteration and
estimate the probability of overperforming other models by it. Using statistical tests, it
can be determined which of the different hyperparameters’ sets was not significantly
worse than the best and should be included in another search iteration.

2. It can also be a basis for formulating stop conditions for a further grid search. If
changes in parameters cause performance changes that are not statistically significant,
a continuation of the search is pointless. For example, conditions of this kind may be
used: Stop further search if significantly better hyperparameters set was not found in last
k iterations.

4. Real Data Application

Probability-based Models Ranking Approach may have several applications in the
selection of machine learning model. PMRA may be used to create an interpretable ranking
of models solving a specific task. It allows us to check which algorithms are best suited to
this particular problem. When the algorithm is chosen, PMRA may be helpful in the hyper-
parameters tuning process. Probability-based Models Ranking Approach gives statistical
tools to select the set of optimal parameters and to set up stopping conditions, which will
limit computation time to the necessary minimum. This section describes these applications
using results obtained on a processed dataset containing real mortgage credit repayment
history. Credits included in this dataset describe multifamily loans (5+ residential units)
acquired by Fannie Mae (https://multifamily.fanniemae.com/news-insights/multifamily-
wire/fannie-mae-multifamily-reports-q1-2022-financial-results, accessed date: 1 April
2021) in years 2000–2020.

4.1. Dataset Description

The dataset on which the probability-based models were built consisted of AUC
measures of 49 different models obtained from 10-fold cross-validation. In the study, the
following algorithms were used:

1. Ada Boost (10 hyperparameters sets),
2. K-Nearest Neighbors (9 hyperparameters sets),
3. Decision Tree (10 hyperparameters sets),
4. Random Forest (10 hyperparameters sets),
5. XGBoost (10 hyperparameters sets).

These algorithms were trained and tested on the Fannie Mae Multifamily Mortgages
dataset. Fannie Mae is USA Government Sponsored Enterprise operating on the sec-
ondary mortgage market. After preprocessing, the dataset counted 224,988 observations of
62 features and default flag (dependent binary variable) describing 54,160 credits acquired
in the period 2000–2020. The default rate was around 1%. Data included repayment history,
property information, loan repayment terms, and information about the borrower’s cash
flow. Tables 4 and 5 present 10 variables with the highest discriminatory power.

https://multifamily.fanniemae.com/news-insights/multifamily-wire/fannie-mae-multifamily-reports-q1-2022-financial-results
https://multifamily.fanniemae.com/news-insights/multifamily-wire/fannie-mae-multifamily-reports-q1-2022-financial-results
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Table 4. Top categorical variables.

Variable Name Definition Levels Gini

payment_status Status of the mortgage loan payment
Current
30–59 days delinquent
60–89 days delinquent

0.46

in_mbs Information whether it belongs to MBS
YES
NO 0.20

Table 5. Top numeric variables.

Variable Name Definition Min Mean Max Gini

business_cycle Business cycle indicator 2000.17 2012.83 2020.67 0.34

loan_acq_LTV
Unpaid principal balance
to the value of all
underlying properties.

0 64.81 276.20 0.35

90_days_DELIQ_6 M
How many months in the
last 6 M was the credit
delinquent at least 90 days

0 0.01 6 0.32

DSCR
A ratio of underwritten net
cash flow to an actual debt

0.39 1.78 85.72 0.29

DTB_interest_rate
Difference between reference
rates and current credit rates

−2.23 4.39 9.72 0.26

reference_rate_origin
Interbank credits rates at
credit origination date

0.07 1.85 6.54 0.25

reference_rate
Reference interest rate
at reporting date

0.05 1.10 6.54 0.22

months_on_book
Number of months since
credit was granted

0 45.72 236 0.21

4.2. Application in Models Ranking Building

The crucial step in solving any problem with machine learning is selecting a model
appropriate to the given problem. As described in Section 4.1, 5 algorithms, each with
several hyperparameters sets were tested on a real mortgage credits dataset. Their results
were analyzed using PMRA and averaging approach. The use of PMRA allowed us to
obtain the probability of winning in the comparison of each pair of models, as well as
statistically testing whether the models’ performances are significantly different. The esti-
mated probabilities and Wald test p-values for top 10 models comparisons are presented in
Figures 4 and 5. Average AUC and Probability-based Models Ranking Approach rankings
calculated on real data are presented in Tables 6 and 7 respectively. The top 2 models in
both rankings are the same, but in further places, differences are visible. Model RF9 is best
in both rankings. Nevertheless, applying the Wald test on 5% confidence level shows that
XGBoost configurations, which took places 2–4, are statistically equal to it. The estimated
probabilities confirm that. The probability of an RF9 win against XGB6 is only 0.505. This
suggests that both algorithms, Random Forest and XGBoost, should be considered in
further analysis. It is worth noticing that three different XGBoost’s hyperparameters sets
were recognized as equal to the best model. It indicates that XGBoost in this application
will be a stable solution—its results will not deteriorate significantly when changing the
hyperparameter values.
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Table 6. Mean AUC ranking.

Model AUC

1 RF9 0.938
2 XGB6 0.933
3 RF8 0.932
4 XGB7 0.931
5 XGB9 0.929
6 XGB0 0.929
7 XGB3 0.926
8 XGB4 0.924
9 RF5 0.920
10 XGB5 0.920

Table 7. PMRA ranking.

Model P. of Win against Top Model Wald p-Value

1 RF9 - -
2 XGB6 0.495 0.948
3 XGB9 0.388 0.093
4 XGB7 0.386 0.088
5 RF8 0.355 0.031
6 XGB0 0.369 0.051
7 XGB3 0.309 0.003
8 RF2 0.276 <0.001
9 XGB4 0.286 0.001

10 RF5 0.231 <0.001

Figure 4. Probabilities of win estimated by PMRA for top 10 models.

Some models are ranked differently in terms of mean AUC and PMRA rankings. For
example, model XGB5 has a slightly higher mean AUC compared to the RF2 model (0.920
vs. 0.918) while Probability-based Models Ranking Approach classified RF2 considerably
higher than XGB5 (pRF2,XGB5 ≈ 0.605) Wald Chi-square test rejects null hypothesis that
models’ performances are the same with p-value = 0.04 Comparison of the results models
obtained in the specific folds, shown in the Figure 6, leads to the conclusion that in 6
out of 10 of them, RF2 performed better, but at the same time, the XGB5 average AUC is
higher. This fact is a consequence of simple averaging approach weaknesses mentioned
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in Section 2—outliers impact and not including standard deviation differences between
folds in analysis. The most significant performance difference in favor of XGB5 occurred in
fold 7. It can be considered an outlier because the AUC value obtained in this fold by RF2
significantly deviates from others obtained in most other folds. Moreover, the outstanding
performance of RF2 in fold 5 was overshadowed by the lowest standard deviation of results
in this fold, as presented in Figure 7. AUC difference is nearly 3 times lower than in
the mentioned 7th fold, but performance measured with quantiles, which is presented in
Figure 8 is comparable. The above example confirms the Probability-based Models Ranking
Approach’s advantages over the classical averaging approach in crucial aspects listed in
the Section 2.

Figure 5. Wald test p-value, where null hypothesis is that two models have equal performances.

Figure 6. Comparision of RF2 and XGB5 models AUC performance across folds.
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Figure 7. Standard deviation of the models’ performances across folds.

Figure 8. Comparision of RF2 and XGB5 models AUC performance quantiles across folds.

4.3. Application in Hyperparameter Tuning

After choosing the right algorithm for the problem, the next step is to tune its hyper-
parameters. The probability-based Models Ranking Approach may also be helpful in this.
Parameters max_depth and colsample of XGBoost [42] algorithm were tuned. The initial
grid was:

M× C (21)

where:
M = {4, 8, 12, 16} (max_depth parameter values);
C = {0.25, 0.5, 0.75} (colsample parameter values).

In each iteration, the algorithm was trained with the hyperparameters’ sets that were
located around the best set and those that the Probability-based Models Ranking Approach
recognized as statistically equal to the best one. In each successive iteration, the range from
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which new sets of parameters were selected decreased twice. The Wald test was used with
a 10% significance level to test the significance of the difference between the two models’
performance. The assumed condition to stop further search was that the best model after
n + 2 iterations is not significantly better than the best model after n iterations. The stop
condition was fulfilled after the 4th iteration. Figures 9 and 10 present hyperparameters
sets which were tested after 2 and 4 iterations. Those recognized as best or not significantly
different from best are highlighted on the plot by their shape.

Figure 9. Hyperparameters sets analyzed in 2 iterations.

Figure 10. Hyperparameters sets analyzed in 4 iterations.
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4.4. Comparision of Probability-Based Models Ranking Approach and EPP

The EPP and Probability-based Models Ranking Approach were estimated on a credit
dataset described in Section 4.1 to check if the obtained probabilities of win and statistical
tests p-values confirm expected differences between models. Figures 11 and 12 present
probabilities of wins estimated in both approaches for the top 10 models. As expected, the
differences are small.

Figure 11. Probabilities of win estimated by PMRA for top 10 models.

Figure 12. Probabilities of win estimated in EPP approach for the top 10 models.

The Wald test was performed for every pair from the top 25 models to verify the
null hypothesis that their performance is equal. Figure 13 presents obtained p-values for
both PMRA and EPP, depending on the estimated win probability. It can be observed that
for pairs of models whose estimated probability is approximately equal to 0.5, p-values
obtained from EPP are slightly higher than those from PMRA. Nevertheless, it does not
affect model selection decisions because these p-values significantly exceed usually used
confidence levels. When the win probability is more deviated from 0.5, EPP p-values are sev-
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eral times higher than those obtained in the Probability-based Models Ranking Approach.
These results are consistent with the theoretical expectations—the EPP model assumes
independence of observations, which are, in fact, dependent and therefore underestimates
the variance-covariance matrix. It results in the higher p-values obtained in statistical tests.
Modification introduced in the Probability-based Models Ranking Approach allows for
more realistic variances values. It means that the EPP approach may incorrectly reject
the null hypothesis, that performance of the two models is equal, while PMRA indicates
that there is no reason to reject it. Inference from EPP indications may lead to the false
conclusion that it is not worth using a particular algorithm for the problem, even if it was
not significantly worse. This unnecessarily limits the range of algorithms available.

Figure 13. Distribution of the obtained p-values in the Wald test according to the probability of
winning for PMRA and EPP.

5. Discussion

The subsampling methods of the model performance assessment have several weak-
nesses which make their indications insufficient for most practical applications: (i) they
are not interpretable (ii) there is no possibility to statistically test the equality of 2 models’
performance (iii) they are not outliers resistant (iv) they do not consider the diversity of
different models’ performances on a specific subsample. Our novel Probability-based
Models Ranking Approach addressed all these issues. In recent years, many articles have
been published showing alternative approaches to the assessment of model performance
addressing these issues. As explained in Section 2 the main cause of (i) and (ii) is the bias
of the value of the performance metric obtained in the subsampling averaging process. As
studies [9,13] prove, bias is particularly large for small-sample problems.

Efforts of some of the newly proposed methods have been focused on reducing the
bias of algorithm’s estimated prediction error. Parker et al. show in their study how
applying of sample balancing and stratification in methods like Balanced cv, Stratified cv,
Balanced leave-one-out cv causes a reduction of averaging bias for small datasets. Another
commonly used methods of model performance estimation are Repeated cross-validation [43],
Leave-pair-out cross-validation (LPOCV) [14] and Leave-one-out cross-validation (LOOCV) [44].
These methods (especially LPOCV and LOOCV) appear to give the most reliable results
possible, but they require fitting the model to data a great many times. This excludes them
from applications where the number of calls may be large, such as tuning hyperparameters.
The use of these methods is therefore limited to a narrow group of problems, where model
fitting time is relatively short. Probability-based Models Ranking Approach’s aim is not
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to estimate the exact value of the metric of the model’s performance. It is not a necessary
feature for every performance assessment procedure (e.g., hyperparameter tuning). Instead,
PMRA indicates models’ relative performance based on statistical criteria. The specifics of
the time-complexity of PMRA and the methods mentioned above are different. In the case
of PMRA, the execution time increases significantly, primarily as the number of models
participating in a comparison grows, while for bias reduction methods the factor having
the strongest impact on computation time is the number of models’ fits to data.

Other methods attempting to address the weaknesses of classical model performance
measures are focused on the statistical aspect of models’ comparison. There is a number
of testing procedures determining whether sub-sampling results support the conclusion
that the performance of the 2 models differs significantly. Among them 5 × 2-Fold Cross-
Validation Paired t-Test [22] and Combined 5 × 2 cv F-test [21] gained the most importance in
practical applications. Results provided by these methods may be a valuable decision crite-
rion in the model selection process. Although the above-mentioned methods are reliable,
they do not use the full potential of subsampling results. The Probability-based Models
Ranking Approach, when used for the creation of models’ ranking or for hyperparameters
tuning, compares not only the relative results of 2 analyzed models, but also the results of
every other model, fitted to the same subsamples. Thanks to this, PMRA provides a precise
and reliable estimate of the probability of win and p-value in the statistical test for two
models’ performance equality.

6. Conclusions and Further Development

In this paper, we identified the most critical weaknesses of subsampling methods,
like cross-validation and bagging in the model performance assessment process. Then we
presented Elo-based Predictive Power—an innovative performance measure that attempts
to respond to the problems of the classical approach. It is interpretable and allows the
significance of the difference between 2 models to be tested. Despite its considerable advan-
tages, it has one crucial drawback—p-values calculation is based on incorrect assumptions.
Further, we introduce the Probability-based Models Ranking Approach—a modified ver-
sion of EPP. This approach loses EPP’s universality but is based on correct assumptions,
and, thanks to that, its indications are reliable.

The basic properties of the Probability-based Model Ranking Approach are its inter-
pretability and the possibility of statistical testing of differences between models’ perfor-
mance. PMRA may be used to create an interpretable ranking of algorithms to select the one
that is most appropriate to the problem. Ranking creation also enables verification of the
performance of the newly developed model against a group of state-of-the-art algorithms.
PMRA ranking allows us to check whether a new model brings any new quality or its
improvement is insignificant.

After the algorithm selection, PMRA may be helpful in the hyperparameters tuning
process. It indicates places in the hyperparameters space where it is worth continuing
the search and allows to determine the stop conditions reducing the search time to the
necessary minimum. PMRA properties may be used to create more complex criteria for
tuning continuation depending on the probability of result improvement, statistical tests,
and expected computation time. The application of PMRA in developing such criteria is a
field for further research. Further research is also needed to examine a reasonable number
of folds to apply the PMRA approach and its stability for various numbers of folds.

The results obtained in the study confirm the claims made about the advantages
of PMRA over the state-of-the-art averaging approach. However, the results have their
limitations. Firstly, the analysis considered multiple machine learning models, but they
were trained on a single dataset. This does not negatively influence the validity of findings;
however, consideration of a wider range of various datasets would have allowed us
to determine in which context PMRA brings the most valuable insight. Secondly, the
empirical analysis conducted in Section 4 focused on the qualitative factor. It examined
individual cases where the indications of the PMRA measure differed from the state-of-the-
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art averaging approach and confirmed that the differences were due to the advantages of
the new approach over the benchmark subsampling. What was missing, however, was
a quantitative study—an examination of how often the two approaches differ in their
results—to rank the models differently when creating the models’ ranking, and determine
how often parameter tuning leads to similar results in both cases. Conducting the above
analysis would have made it possible to determine in which conditions—sample size,
number of fitted models—the potentially time-consuming PMRA offers added value over
the benchmark approach in model performance assessment.
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