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Abstract: The application of emerging technologies, such as Artificial Intelligence (AI), entails risks
that need to be addressed to ensure secure and trustworthy socio-technical infrastructures. Machine
Learning (ML), the most developed subfield of AI, allows for improved decision-making processes.
However, ML models exhibit specific vulnerabilities that conventional IT systems are not subject
to. As systems incorporating ML components become increasingly pervasive, the need to provide
security practitioners with threat modeling tailored to the specific AI-ML pipeline is of paramount
importance. Currently, there exist no well-established approach accounting for the entire ML life-cycle
in the identification and analysis of threats targeting ML techniques. In this paper, we propose an
asset-centered methodology—STRIDE-AI—for assessing the security of AI-ML-based systems. We
discuss how to apply the FMEA process to identify how assets generated and used at different stages
of the ML life-cycle may fail. By adapting Microsoft’s STRIDE approach to the AI-ML domain, we
map potential ML failure modes to threats and security properties these threats may endanger. The
proposed methodology can assist ML practitioners in choosing the most effective security controls to
protect ML assets. We illustrate STRIDE-AI with the help of a real-world use case selected from the
TOREADOR H2020 project.

Keywords: artificial intelligence security; threat modeling; vulnerability assessment

1. Introduction

Machine Learning (ML) plays a major role in a wide range of application domains.
However, when ML models are deployed in production, their assets can be attacked in
ways that are very different from asset attacks in conventional software systems. One
example is training data sets, which can be manipulated by attackers well before model
deployment time. This attack vector does not exist in conventional software, as the latter
does not leverage training data to learn. Indeed, the attack surface of ML systems is
the sum of specific attack vectors where an unauthorized user (the “attacker”) can try to
inject spurious data into the training process or extract information from a trained model.
A substantial part of this attack surface might lie beyond the reach of the organization
using the ML system. For example, training data or pre-trained models are routinely
acquired from third parties and can be manipulated along the supply chain. Certain ML
models rely on sensor input from the physical world, which also makes them vulnerable
to manipulation of physical objects. A facial recognition camera can be fooled by people
wearing specially crafted glasses or clothes to escape detection. The diffusion of machine
learning systems is not only creating more vulnerabilities that are harder to control but can
also—if attacked successfully—trigger chain reactions affecting many other systems due to
the inherent speed and automation.The call to improve the security of Artificial Intelligence
(AI) systems [1] has attracted widespread attention from the ML community, which has
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given rise to a new vibrant line of research in security and privacy of ML models and
related applications. The ML literature is now plentiful with research papers addressing
the security of specific ML models, including valuable survey papers discussing individual
vulnerabilities and possible defensive techniques. However, existing work mainly focuses
on ingenious mechanisms that allow attackers to compromise the ML-based systems at
the two core phases of the learning process, that is the training and the inference stages.
In this work, we focus on the distinct, though related, problem of defining a practical
methodology for assessing ML-based systems’ security. We approach the problem from
the point of view of the security practitioner who has to deal with ML-based systems
rather than from the one of the AI expert dealing with security. We argue that, given the
current variety and scope of threats and attacks to ML models, there is some confusion
about what exactly the security analyst is expected to do to alleviate them. The goal of
this paper is to describe an asset-centered methodology for identifying threats to ML-based
systems. Our proposal is based on STRIDE [2], a well-known and widely used approach
to threat modeling originally developed by Microsoft. STRIDE has been identified by
independent agencies like the European Union Agency for Cybersecurity (ENISA) as a
promising starting point for AI threat modeling. We argue that our extension to the original
STRIDE provides an ML-specific, security property-driven approach to threat detection which
can also provide guidance in selecting the security controls needed to alleviate the identified
threats. This paper is an extended version of the paper entitled “STRIDE-AI: An Approach
to Identifying Vulnerabilities of Machine Learning Assets” presented at the 2021 IEEE
International Conference on Cyber Security and Resilience (CSR) [3].

The paper is organized as follows. In Section 2, we review existing work in the field of
adversarial machine learning and ongoing research on threat modeling AI/ML systems.
Section 3 describes the different stages of our reference ML life-cycle architecture and the
relevant ML assets generated therein. In Section 4, we illustrate how to apply the Failure
Mode and Effects Analysis approach to AI-ML systems, providing facilitation questions
and sample answers along with failure modes specific to ML data, model, and artefact
assets. Section 5 describes the methodology (STRIDE-AI) we propose to identify threats to
ML assets. Section 6 applies STRIDE-AI to a real-world use case selected from the AI-ML
applications developed in the TOREADOR H2020 project, with a focus on data and model
assets. Finally, Section 7 presents comments and discussions on the proposed security
methodology, while Section 8 concludes our work and proposes future research directions
motivated by our efforts toward advancing the development of secure ML-based systems.

2. Related Work

Supervised machine learning models are known to be vulnerable to attacks based on
training examples crafted or manipulated by attackers. This type of adversarial exploitation
is well documented for various applications. These include antivirus engines, autonomous
bots, visual recognition and social networks, among others [4–8]. These attacks have
motivated research on ML security [9–12], establishing the novel research field of Adversarial
Machine Learning (AML), which lies at the intersection of machine learning and computer
security. An overview of the evolution of active research in this area over the last ten years
can be found in [13], where the authors presented a historical picture of the work related to
the security of machine learning from a technical perspective. To summarize their findings,
current ML security research aims to address the following issues: (i) identifying potential
weaknesses of ML-based systems, (ii) devising the corresponding adversarial attacks
and evaluating their impact on the attacked system, and (iii) proposing countermeasures
against the considered attacks. The issue of adversarial attacks has recently attracted a
considerable interest, resulting in the publication of a number of papers proposing novel
types of attack and defense mechanisms for specific ML algorithms [14–18]. This line of
work, which mainly focuses on identifying data-, model-, and system- oriented attacks
and defenses [19–21], represents one of the two core branches into which research in the
field of ML security can be divided. Researchers in this first area typically address the
security concerns with a narrow focus on the specific type of compromise to be achieved
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or addressed, neglecting a thorough investigation of secure development practices that
incorporate identification of both ML-specific and traditional system threats [22,23].

Another emerging research line focuses on threat analysis techniques that can sup-
port security expert’s understanding of how ML-based systems may fail. Some recent
work explore the applicability of threat modeling methodologies traditionally used in the
software engineering area to ML-based systems’ security. These works associate threats
to artefacts produced at the different stages of ML models’ life-cycle, from requirements
analysis to system maintenance (see Section 1). Wilhjelm et al. [24] apply a traditional
threat modelling method together with the corresponding attack libraries to understand
the security of ML-based systems at the requirements phase. In order to rank the impact of
the identified threats, the authors make use of a bug bar [25] for associating severity levels
to threats. Our own recent work [26] focuses instead on the ML models’ maintenance stage,
proposing a metric based on the notion of a “gold standard” data set for assessing ML
models’ degradation in production. Bitton et al. [27] perform a systematic ML-oriented
threat analysis for the Open Radio Access Network (O-RAN) architecture, identifying
potential threat actors in the O-RAN ecosystem and mapping them to the capabilities
needed by the attacker. The study by Chen and Ali Babar [28] presents a holistic view of
system security for ML-based modern software systems. The architectural risk analysis for
ML security [29], proposed by the Berryville Institute of Machine Learning, is designed for
use by developers, engineers, and others creating applications and services that rely on
ML models. Specifically, the Berryville analysis lists 78 risks identified using a generic ML
system as an organizing concept, and then identifies the top ten.

The well-known MITRE Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK) framework [30] was created by MITRE to document adversary tactics and
techniques based on real-world observations. The MITRE framework provides a common
taxonomy of adversarial actions understood by both offensive and defensive sides of cy-
bersecurity, and can be used as a tool to analyze adversary behavior. Complementary
to the MITRE ATT&CK framework is MITRE ATLAS (Adversarial Threat Landscape for
Artificial-Intelligence Systems) [31], a knowledge base of adversary tactics and techniques
which includes demonstrations from red teams and security groups, real-world obser-
vations and the state of academic research findings. ATLAS includes some AI/ML case
studies. In the threat landscape report on AI, published in late 2020 [32], the European
Union Agency for Network and Information System security (ENISA) sets a baseline for a
common understanding of security threats to AI, identifying a list of AI-ML assets in the
context of all stages of the ML models life-cycle and mapping threats against them. An-
other recent ENISA’s report [33] presents a detailed analysis of threats targeting ML-based
systems (including data poisoning, adversarial attacks and parameters’ exfiltration) and
provides a list of security controls described in the literature. Further efforts to understand
how ML-based systems may fail and, consequently, how to respond to such failures have
been made by Microsoft through the release of guidelines for the mitigation and triage of
AI-specific security threats [34]. Microsoft’s approach, which is developed, like ours, on
STRIDE threat-modeling [2], does not address the security properties definition. Rather,
it is based on a taxonomy that classifies ML failure modes into two categories, namely
intentional and unintentional failures. Intentional failures are mapped to a list of attacks
reported in the literature [35].

3. ML-Based Application Life-Cycle and Related At-Risk Assets

Although there exist many diverse types of learning tasks [36], the development
process of ML-based systems has an intrinsic iterative multi-stage nature [37]. Figure 1
shows our reference ML life-cycle, starting from requirements analysis and ending with
the ML model’s maintenance in response to changes. While this life-cycle does not cover
all possible developments, we will use it to identify the key data assets produced at each
phase and to analyze their failure modes. We start by outlining the activities carried out at
each stage.
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Figure 1. Our reference ML life-cycle [3].

The initial stage of the ML life-cycle, Data Management, includes a number of steps,
a major one being the ingestion of the data required for the next stages. Ingestion occurs
from multiple sources, and the data collected can either be stored or immediately used.
Pre-processing techniques are used to create a consistent data set suitable for training,
testing and evaluation. The next step, Model Learning, involves developing or selecting an
ML model that can handle the task of interest. Depending on the goals and the amount
and nature of the knowledge available to the model, different ML techniques can be used,
such as supervised, unsupervised and reinforcement learning. In the training process of
a supervised ML-based system, a learning algorithm is provided with predefined inputs
and known outputs. The learning algorithm computes some error metrics to determine
whether the model is learning well, i.e., it delivers the expected output not only on the
inputs it has seen in training, but also on test data it has never seen before. The so-called
hyper-parameters, which control how the training is done (e.g., how the error is used to
modify the ML model’s internal parameters), are fine-tuned during the Model Tuning stage.
While being tuned, the ML model is also validated to determine whether it works properly
on inputs collected independently from the original training and test sets. The transition
from development to production is handled in the Model Deployment stage. In this stage,
the model executes inferences on real inputs, generating the corresponding results. As
the production data landscape may change over time, in-production ML models require
continuous monitoring. The final ML life-cycle stage, Model Maintenance, monitors the ML
model and retrains it when needed.

A number of attack surface and attack vectors can be identified along a typical ML
life-cycle. On one hand, some of the potential vulnerabilities are already known to exist
in conventional IT systems and still remain part of the ML attack surface, though perhaps
they can be seen in a new light when examined through the ML lens. On the other hand,
this traditional attack surface expands along new axes when considering the specific,
multifaceted and dynamic nature of ML processes. The resulting surface is therefore
extremely complex, and mapping it requires going through all the various steps of the ML
life-cycle and explaining the different security threats, a task that is inherently challenging
due to the large amount of vectors that an adversary can target. Regardless of the ML stage
targeted by the adversary, attacks against ML-based systems have negative impacts that
generally result in performance decrease, system misbehavior, and/or privacy breach.

At each stage of the ML life-cycle, multiple digital assets are generated and used. Identi-
fying assets in the context of the diverse ML life-cycle stages (including inter-dependencies
between them) is a key step in pinpointing what needs to be protected and what could go
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wrong in terms of security of the AI ecosystem. Based on the generic ML life-cycle reference
model described above (see Figure 1), at-risk ML assets can be grouped into six different
macro-categories—Data, Models, Actors, Processes, Tools, and Artefacts—as shown in Figure 2.
It should be noted that, given the complex and evolving nature of ML-based systems,
proper identification of asset that are subject to ML-specific threats must be considered an
ongoing task that needs to keep pace with developments in AI/ML solutions.

Figure 2. Assets in the AI ecosystem [3].

4. Failure Mode and Effects Analysis of AI-ML Systems

Failure Mode and Effects Analysis (FMEA) is a well-established, structured approach
to discovering potential failures that may exist in the design of a product or process [38,39].
Failure modes are the ways in which an asset (be it a process, system or component) can
fail. Effects are the ways that these failures can lead to waste or harmful outcomes for the
customer. FMEA techniques are intended to identify, prioritize and limit failure modes of
manufacturing or engineering processes, products, designs or services in a systematic way
by determining their potential occurrence, root causes, implications and impact [40]. In
order to establish the next actions to be made, a quantitative score is calculated to evaluate
failures on the basis of their severity.

4.1. Guide to FMEA Application in the AI-ML Life-Cycle

FMEA first emerged in the military domain and then spread to the aerospace industry
and to other manufacturing domain, with various applications in the nuclear electronics,
and automotive fields as well. Recently, researchers have explored how FMEA or other
safety engineering tools can be used to assess the design of AI-ML systems [41,42]. Ap-
plying FMEA to an AI-ML asset includes the following activities: (i) assigning functions
to the asset, (ii) creating structure, function, networks diagrams for the asset, (iii) define
defects that can cause the asset’s function/function network to fail, (iv) perform threat
modeling actions. Specifically, the above operations can be accomplished by performing
the following steps:

• Step 1: Create one function list per asset. The content of these function lists should be
different for each asset in at least a function;

• Step 2: Specify prerequisites for functions that may refer to functions of other assets.
This is the basis used to create function networks;

• Step 3: Identify one or more asset defects that can impair a function (Failure Mode—
FM). Add one or more causes or effects for each defect;

• Step 4: Use a threat-modeling methodology to map FMs to threats.

The steps of FMEA involve different roles, including the asset category owners (Step 1),
the action managers (Steps 2 and 3) and the security analysts (Step 4). A severity score can be
assigned to FMs based on the failure effects. This assignment is done independently from
the severity assessment of the threats (see Section 6.3). However, to ensure that the two
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evaluations are consistent, FM severity should be passed on from the FMs to the threats
associated to them, e.g., as a lower bound to DREAD-estimated threat severity.

4.2. Question Facilitator

In order to support practitioners in performing an effective FMEA [43] analysis, we
identified some key questions to ask as part of the FMEA procedure.

Functions. When identifying functions for System or Design FMEAs, refer to the AI-ML
life-cycle and to the asset list of your application

• What is the primary purpose of this asset?
• What is the asset supposed to do? What must the asset not do?
• What functions occur at the interfaces?
• What is the standard of performance?

Failure Modes. When identifying FMs refer to the architecture diagram of your AI-ML
application

• In what way could the asset fail to perform its intended function?
• In what way could the asset perform an unintended function?
• What could go wrong with this asset?
• What could go wrong at the asset’s interfaces?
• What has gone wrong with this asset in the past?
• How could the asset be abused or misused?
• What concerns do you have with this asset?

Effects. When identifying effects for FMs, refer to the FM list identified in the previous step

• What is the consequence of the failure?
• If the asset fails, what will be the consequences at the local level? At the next higher level? At

the overall system level? At the end user?
• If the asset fails, what will the customer see, feel or experience?
• Will the asset failure cause potential harm to the end users?
• Will the asset failure cause potential violation of regulations?

4.3. ML Assets and Their Failure Modes

Following the FMEA procedure, once assets have been identified and their intended
role within the ML life-cycle is fully understood, failure mode analysis involves pinpointing
defects and errors, potential or actual, that may exist. For illustrative purposes, we select
three of the identified ML asset categories shown in Figure 2, namely data, models and
artefacts—of which certainly the former is the most imperiled asset, as its compromise
can lead to potentially catastrophic consequences for the trained model. For each of the
at-risk assets comprised therein we show how the use of failure conditions may aid in
identifying their relevant failure modes. To be precise, here we care about illustrating
the procedure that guides ML practitioners to identify possible failure modes (useful for
subsequent threat analysis), temporarily neglecting the study of the consequences of the
identified FMs. Specifically, in Tables 1–3 we provide the asset description, answers to
the corresponding FMEA asset questions (see Section 4.2), as well as a set of possible FMs
for the data, model, and artefact assets, respectively. Of course, the manner in which
the asset does not accomplish its intended function, that is, how the specific asset may
fail to hold the properties needed for the correct execution of a stage of the ML model’s
life-cycle, is impacted by the nature of the cause of the failure itself. As shown in the third
column of each of Tables 1–3, FMs can result from the innate design of the system or by the
presence of adversarial intention. Thus, FMs may include improper or poor performance
of functions as well as execution of unintended or undesired functions that ultimately also
reflect assumptions made about the attacker’s capabilities and strategies.
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Table 1. ML data assets and the corresponding answers to FMEA asset and failure modes questions.

ML Data Asset Answers to FMEA Asset Questions Answers to FMEA Failure Modes Questions

Functional requirements model the domain of
interest, the problem to be solved, and the task
to be performed by the ML model.
Non-functional requirements identify
architectural (hardware) and code
(software) needs.

- Requirements support a clear understanding
of the ML model’s business context and goals.
- Requirements must provide a definition of
the business goals to be achieved by the ML
system, along with the data required to
achieve them.
- Requirements must not identify a specific
model type to be used in the AI system.

- Unclear requirements may lead to inaccurate
AI-ML models.
- Requirements may not take into account the
adverse effect of non-functional properties
mandated by regulations.
- Requirements may underestimate the severity
of information leaks.

Raw Data refers to any type of information
gathered at the Data Management stage, before
it is transformed or analyzed in any way.

- Raw data constitute the primary source of
information needed to achieve the model’s
business goals.
- Raw data provide an initial data pool (not
ready for analysis) for use in the subsequent
stages of the AI life-cycle.

- Raw data may not be sufficiently
representative of the domain or unfit the
AI-ML model business goal (e.g., due to
sample size and population characteristics).
- Raw data volume does not always imply
representativeness: if data selection is biased
towards elements that have similar
characteristics (selection bias) even a large set of
raw data will not be representative enough.

Pre-processed data refers to raw data
transformed (cleaned, organized) to feed an
AI-ML model.

- Pre-processed data create a data set suitable
for ML-based analysis.

- Pre-processed data may cause incorrect
estimates of the ML model’s performance if
data preparation is applied before splitting the
data for model evaluation.
- Performing pre-processing on the entire data
set may result in data leakage, where the ML
model is unknowingly exposed to information
about test or validation data as part of the
training set.

Labeled Data refers to sets of multi-dimensional
data items used at the Model Learning stage.
This data is tagged with informative labels, for
the purpose of training supervised ML models.

- Labels make data useful in supervised ML
setups.
- ML algorithms may use initial labeled data to
work with additional unlabeled data.

- Labeled data fail when enough items are
deleted or omitted, a sufficient number of
spurious labelled data is included into the data
set, or enough labels are flipped.
- Labeled data may be tampered with to
deviate a classifier from its expected behavior.

Validation Data is also used at the model
learning stage, but differs from ordinary
labeled data in usage and, usually, in the
circumstances of its collection. Validation data
sets are mostly used to perform an evaluation
of the ML model in-training, e.g., by stopping
training (early stopping) when the error on the
validation set increases too much, as this is
considered a sign of over-fitting.

- Validation data provides an unbiased
evaluation of a model’s fitness on the training
data set, while tuning the hyper-parameters.
- Validation data helps to deal with over-fitting.

- Validation data may fail when labelled data
items are manipulated.
- If tampered with, validation data items can
affect how the error computed on the
validation data set fluctuates during training.
- Even a single modification on the validation
set may be enough for introducing a spurious
error increase that could cut the training short.

Augmented Data is labeled data that is
complemented at the model tuning stage by
additional data produced by transformations
or by generative ML models. Augmentation
increases labeled data sets’ diversity to prevent
over-fitting.

- Augmented data helps to solve the problem
of data deficiency by increasing the amount of
data available in the training data set.
- Data augmentation can be performed in
data-space or feature-space.
- Augmented data are supposed to prevent
over-fitting.

- Augmented data sets may fail due to
inconsistency with the training set they are
derived from.
- Heuristic data augmentation schemes are
often tuned manually by humans, and
defective augmentation policies may cause ML
models to lose rather than gain accuracy from
the augmented data.

Held-out Test Cases (HTCs) are inputs used to
test ML models in production, i.e., in the
Model Maintenance stage. HTCs include
special inputs of high interest for the
application.

- The rationale for HTCs is that even if an ML
model keeps showing good accuracy, its
performance on specific inputs may become
unacceptable.

- HTCs fail when the ML model’s accuracy
metrics computed on them does not
correspond to the business goals of the
application.
- Careless selection of HTCs can trigger
unneeded model retraining.

Inferences are results computed by ML models
based on real inputs, according to the task of
interest in the Model Deployment and Model
Maintenance stages.

- Inferences serve to produce actionable
outputs when live data run into ML models.

- Inferences may fail by showing high entropy,
i.e., conveying little information useful for the
ML task at hand.
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Table 2. ML model assets and possible answers to FMEA asset and failure modes questions.

ML Model Asset Answers to FMEA Asset Questions Answers to FMEA Failure Modes Questions

Data pre-processing algorithms are techniques
employed to improve information quality by
cleaning, integrating and transforming data.

- Data pre-processing has the purpose to
convert incomplete or defective raw data into
improved training data to provide improved
AI-ML model’s performance.
- Data pre-processing algorithms should not
degrade raw data value.
- Data pre-processing should not harvest
information about the data.

- Data pre-processing algorithms fail when
errors in the definition of the data conversion
generate flawed or defective training data.
- Data pre-processing may be used to achieve
other data properties (e.g., anonymity).

Hyper-parameters (HPs) are parameters
associated with a AI-ML model that do not
depend on the input data, and whose value is
set before the learning process begins. They
are defined by trial-and-error, using model
space search techniques.

- HPs are used for model-space search and
identification of the best AI-ML model.
- Their value defines the training and structure
of the AI-ML model.
- HPs should not change during training.

- HPs may fail to deliver the size and
configuration for the model that makes its
training and operation feasible.
- HPs may be used as fitting knobs, e.g.,
tampering with them to make the model
over-fitted to specific training data.

Learning algorithms are procedures for
adjusting the parameters of ML models, and
come in two flavors: offline algorithms do not
continue to train after deployment (the trained
system is frozen), while online learning
algorithms operate in a continuous learning
mode after deployment.

- Learning algorithms should estimate a target
function that best maps input variables to an
output variable.
- Learning algorithms should not impair data
representational integrity.

- An improper choice of the learning algorithm
may adversely affect the desired accuracy.
- Online settings may increase vulnerability
exposure because attackers have more chances
to drift the AI system from the intended
operational use case.

Model parameters are variables that are internal
to the model (e.g., the weights in a NN, or the
centroids in a clustering algorithms) and
whose value can be computed by fitting the
given input data to the model.

- Parameters determine the inferences (i.e., the
actual outputs) computed by the AI-ML
model.
- Parameters should not reveal information
about the training data or the HPs.

- Parameters fail when the AI-ML model’s
output computed according to them is such
that the model’s performance in executing the
task (classification, prediction, anomaly
detection) is poor.
- Parameters can be used as covert channels to
encode hidden information in the inferences.

Trained models are AI-ML super-visioned
models whose internal parameters have been
adjusted by training to achieve a minimum of
the error function that defines the distance
between actual and expected outputs.

- Trained models perform a ML task (like
regression, prediction or anomaly detection)
on test input data.

- Trained models fail when the discrepancy
between the training data seen during the
learning process and inference is so high to
cause a drop in performance in production.

Deployed models are AI-ML supervisioned
models whose parameters are assumed to be
stable, and to which users can submit inputs
and receive inference outputs.

- Deployed models perform a task (like
regression, prediction or anomaly detection)
computing inferences in production.

- Deployed models fail when the AI-ML task is
not performed at the desired performance (e.g.,
accuracy) level.
- Deployed models can be doctored to compute
inferences aimed to benefit malicious third
parties.

Table 3. ML artefact assets and possible answers to FMEA asset and failure modes questions.

ML Artefact Asset Answers to FMEA Asset Questions Answers to FMEA Failure Modes Questions

The ML model architecture provides instances of
the ML life-cycle components and combines
them to a specific multi-stage AI pipeline.

- The model architecture provides guidance
toward the software/hardware
implementation of the AI pipeline.
- The architecture must not allow inferring
details of the training or inference algorithms
used in the AI pipeline.

- The architecture may be too vague or
incomplete to guide pipeline implementation.
- The architecture may disclose details on the
interfaces between the pipeline stages.
- The architecture may disclose details of the
training or inference algorithm, facilitating
design of vandalism or attacks.

The ML model’s hardware design translates the
ML models parameters and hyper-parameters
into a microprogram, FPGA or neuromorphic
circuit design.

- The hardware design includes all design and
optimization choices for building the
hardware implementation of a ML model.
- The hardware design must not allow
inferring details of the training or inference
algorithms by physical inspection.

- The hardware design choices may support
physical side-channels disclosing the model
parameters as well as the details of the training
or inference algorithm.
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Table 3. Cont.

ML Artefact Asset Answers to FMEA Asset Questions Answers to FMEA Failure Modes Questions

Data and metadata schemata are definitions of
the semantics of the data artefacts fed to (or
generated by) specific ML applications. They
may be built by specializing a top-level
standard concept-base (like ML-Schema,
proposed by the W3C Machine Learning
Schema Community Group).

- Data and metadata schemata support the
interpretability and interoperability of data
among ML models as well as back-to-back,
seamless connection between the stages of a AI
pipeline.
- Data and metadata schemata must not expose
the nature and purpose of the ML models used
in the application.

- Metadata may not deliver human
interpretability or interoperability of ML
models result.
- Metadata may facilitate the extraction of the
original training set data from the model.

Learned data indexes are ML models to map a
key to the position of a data point within a
sorted or unsorted array.

- A learned index can learn the sort order or
structure of lookup data points and use this
information to predict the position or existence
of records.
- The learned index should not disclose
information on the data distribution.

- Learned indexes can disclose information to
the data distribution.
- Learned indexes can degrade to low
performance.

5. Modeling Threats to ML Assets

We now discuss how the ML assets’ failure modes can be used to identify threats.
Classically, Threat Modeling (TM) is the process of reviewing the security of a system,
identifying critical areas, and assessing the risk associated with them. TM is a fundamental
phase in the design of information systems because it allows profiling and prioritizing
problems as well as assessing the value of potential mitigation in alleviating threats. A
typical TM process [44] consisting of five steps is shown in Table 4.

Table 4. A 5-step TM process.

Step Description

1 Objectives Identification States the security properties the system
should have.

2 Survey
Determines the system’s assets, their
interconnections and connections to
outside systems.

3 Decomposition Selects the assets that are relevant for the
security analysis.

4 Threat Identification
Enumerates threats to the system’s components
and assets that may cause it to fail to achieve
the security objectives.

5 Vulnerabilities Identifications
Examines identified threats and determines if
known attacks show that the overall system is
vulnerable to them.

Several TM methods are available. Popular approaches include PASTA [45], a risk-
centered TM framework consisting of seven stages within which different elicitation
tools are used, and OCTAVE [46], which is a three-phase method focusing on the as-
sessment of the organizational risks rather than the technological ones. Originally defined
by Loren Kohnfelder and Praerit Garg [47,48], STRIDE is the most mature one. It has
been applied to many vertical domains, including cyber-physical systems and healthcare
applications [49–53]. STRIDE uses a set of six threats based on its acronym, which stands
for Spoofing, Tampering, Repudiation, Information Disclosure, Denial of service, and Elevation
of privilege; Table 5 shows their definitions. Our discussion of the ML life-cycle and its
key assets (Section 3) has covered steps 2 and 3 of the TM process. We need to set the
security objectives (step 1), and then proceed with the threat identification step (step 4)
and the vulnerability identification one (step 5). We start by proposing our ML-specific
definitions of the classic CIA3 − R security properties (step 1). Then, we will discuss how
assets’ failure modes can jeopardize these properties. Finally, we will use the results of our
analysis for identifying threats to the ML life-cycle (step 4).
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Table 5. STRIDE threats in a nutshell.

Threat Description

Spoofing Identity A user takes on the identity of another. For example, an attacker takes on the
identity of a system administrator.

Tampering with Data Information in the system is modified by an attacker. For example, an attacker
changes a data item.

Repudiation Information about a transaction is deleted in order to deny it ever took place. For
example, an attacker deletes a login transaction to deny he ever accessed an asset.

Information Disclosure Sensitive information is stolen and sold for profit. For example, information on
user behavior is stolen and sold to a competitor.

Denial of Service (DoS) This involves exhausting resources required to offer services. For example, in a
DoS against a data flow the attacker consumes network resources.

Elevation of Privilege (EoP) This is a threat similar to spoofing, but instead of taking on the ID of another, the
attacker elevates his own security level to an administrator.

5.1. Extending STRIDE to ML-Based Systems

The CIA3 − R hexagon [54] includes the six main components of security. Each
STRIDE threat corresponds to the violation of a CIA3 − R security property, as shown in
Table 6.

Table 6. Threats vs. CIA3 − R properties in STRIDE-AI.

Property Threat

Authenticity Spoofing

Integrity Tampering

Non-repudiability Repudiation

Confidentiality Information Disclosure

Availability Denial-of-Service (DoS)

Authorization Elevation-of-Privilege (EoP)

While STRIDE can be directly applied to vertical domains, applying it to AI-ML
requires customization of the desired set of properties in order to match the domain assets’
specific failure modes [55]. Below, we propose our ML-specific definition of CIA3 − R
security properties. Then, we map the failure modes of the assets under consideration—
data, model, artefact—generated in our ML life-cycle (Section 3) to the violation of one or
more of these properties. For each mapping, we associate (the effects of) the corresponding
failure to one or more STRIDE threats to ML-based systems. Table 7 shows our proposed
definition of an ML-specific CIA3 − R hexagon.

For clarity, in the context of authenticity, we assume the ML model output is verifiable
in the sense that results come with certain genuineness and have the property of being able
to be trusted. This implies a degree of confidence in the validity of predictions, though
this may be affected when integrity is compromised. As for availability, our definition
is tied to the usage scenarios, and implies that output values should reflect the intended
purpose of the model, and thus the learnt boundary is essentially correct. The rest of
the above definitions are hopefully self-explanatory; for the sake of conciseness, we will
only elaborate on our definition of the confidentiality property [56]. Let us consider a
classification problem: mapping the items of a data space DS to categories of interest
belonging to a set C = (C1, . . . Cn). A representative sample S ( DS is used to tabulate a
partial classification function f : S→ C, obtaining a labeled training set, which by abuse of
notation we shall also call f . We use the training set f to train an ML model that will be able
to compute another function F : DS→ C. Finally, we deploy F into production, using it to
classify individuals from DS as needed. This standard procedure may disclose ML data,
for example if the entries in f can be inferred from F. (For instance, if F is computed using
the Nearest-Neighbor technique (i.e., ∀x ∈ DS, F(x) = f (px) where px is the point in S
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closest to x according to some domain distance), f is integral part of the definition of F and
is therefore fully disclosed to the external service whenever F is deployed.) Our definition
expresses the confidentiality property of a training set asset [57] as follows: a training set f
is confidential if, observing the execution of a ML model F trained on f , one is able to infer
the same information about any entry e ∈ f as by observing F′, obtained using the training
set f − {e}+ {r}, where r is a random entry. The same definition of confidentiality holds
for validation and augmented data assets. The resulting threat identification is summarized
in Tables 8–10, where we also report some known attacks exploiting vulnerabilities to
STRIDE-AI threats.

Table 7. ML-specific CIA3 − R hexagon.

Property ML-Specific Definition

Authenticity The output value delivered by a model has been verifiably generated by it.

Integrity Information used or generated throughout a model’s life-cycle cannot be changed or added to
by unauthorized third parties.

Non-repudiation There is no way to deny that a model’s output has been generated by it.

Confidentiality Using a model to perform an inference exposes no information but the model’s input
and output.

Availability When presented with inputs, the model computes useful outputs, clearly distinguishable
from random noise.

Authorization Only authorized parties can present inputs to the model and receive the
corresponding outputs.

Table 8. Mapping data assets’ failure modes to CIA3 − R hexagon.

Data Asset Properties Threats Known Attacks

Requirements Availability DoS
While no direct attacks to requirements have been reported, unexpected legal liabilities
deriving from defective requirements have been described in a number of cases [58],
including ML models for medical diagnostics.

Raw Data

Authenticity,
Confidentiality,

Availability,
Authorization

Spoofing,
Disclosure,
DoS, EoP

Attacks by data owners introduce selection bias on purpose when publishing raw data
in order to affect inference to be drawn on the data. Reported examples [59] include
companies who release biased raw data with the hope competitors would use it to train
ML models, causing competitors to diminish the quality of their own products and
consumer confidence in them. In perturbation-style attacks, the attacker stealthily
modifies raw data to get a desired response from a production-deployed model [35].
This compromises the model’s classification accuracy.

Pre-processed data Integrity,
Availability

Tampering,
DoS

Attacks that occur in the pre-processing stage (especially in the context of applications
processing images) may mislead all subsequent steps in an AI-ML life-cycle. As an
example, image-scaling attacks allow attackers to manipulate images so that their
appearance changes when scaled to a specific size.

Labeled Data Authenticity,
Integrity

Spoofing,
Tampering

Append attacks target availability by adding random samples to the training set to the
point of preventing any model trained on that data set from computing any
meaningful inference. Other modifications to the training data set (backdoor or insert
attacks) jeopardize the ML model’s integrity by trying to introduce spurious
inferences [60]. Attackers randomly draw new labels for a part of the training pool to
add an invisible watermark that can later be used to “backdoor” into the model.

Augmented Data Integrity,
Availability

Tampering,
DoS

Adversarial data items tailored to compromise ML model inference can be inserted
during data augmentation [61] in order to make them difficult to detect.

Validation Data Integrity,
Availability

Tampering,
DoS

Attacks can shorten the training of the ML model by compromising just a small
fraction of the validation data set. “Adversarial” training data generated by these
attacks are quite different from genuine training set data [62].

Held-Out Test Cases
Integrity,

Confidentiality,
Availability

Tampering,
Disclosure,

DoS

Evaluating an ML model’s performance on HTCs involves reducing all of the
information contained in the HTCs outputs to a single number expressing accuracy.
The literature reports slicing attacks [63], which poison the held-out data set to
produce misleading results. Slicing attacks introduce specific slices of data that doctor
the model’s accuracy, making it very different from how it performs on the
in-production data set.

Inferences

Authenticity,
Integrity,

Availability,
Authorization

Spoofing,
Tampering,
DoS, EoP

Inferences need to carry informative content. The literature reports “eavesdropping
attacks” (a survey can be found in [64]) to distributed ML models involving
eavesdropping on inferences.
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Table 9. Mapping model assets’ failure modes to CIA3 − R hexagon.

Model Asset Properties Threats Known Attacks

Data pre-processing
algorithms

Integrity,
Availability

Tampering,
DoS

Flawed schemata negatively impact on the quality of the ingested information used by
applications. An adversary can both compromise the program that pre-process data and
mount a schema-based denial of service attack which causes the information necessary for
pre-processing to be missing.

Hyper-parameters
Confidentiality,

Availability,
Authorization

Disclosure,
DoS, EoP

Nefarious abuse of optimization algorithms by adversaries may lead to erroneous tuning of
ML models. Due to their influence over ML models’ predictive capabilities (and, in turn,
their commercial value), hyper-parameters are subject to stealing attacks. The
literature [65] reports hyper-parameters stealing attacks that target hyper-parameters
used to balance between the loss function and the regularization terms in an
objective function.

Learning algorithms
Integrity,

Confidentiality,
Availability

Tampering,
Disclosure,

DoS

Several deliberate attack techniques, including adversarial examples, aim to subvert ML
learning algorithms. Algorithmic leakage due to poor choice of learning algorithms [66] is
known to cause extraction of sensitive information.

Model parameters
Confidentiality,

Availability,
Authorization

Disclosure,
DoS, EoP

In a model extraction attack [67], an attacker can extract model parameters via querying
the ML model. This way, the attacker can build a near-equivalent shadow model that has
the same fidelity as the original one.

Trained models Integrity,
Availability

Tampering,
DoS

In a model poisoning attack [68], an attacker can replace a functional and legitimate model
file with a poisoned one. This type of attack is more likely to occur in cloud-based ML
models by exploiting potential weaknesses of cloud providers.

Deployed models

Authenticity,
Integrity,

Non-repudiation,
Confidentiality,

Availability,
Authorization

Spoofing,
Tampering,

Repudiation,
Disclosure,
DoS, EoP

A wide variety of attacks at inference time try to compromise ML deployed models. These
include model inversion, model evasion, membership inference, model reuse and
exploration attacks, among others.

Table 10. Mapping artefact assets’ failure modes to CIA3 − R hexagon.

Artefact Asset Properties Threats Known Attacks

Model architecture Authenticity,
Confidentiality

Spoofing,
Disclosure

Man-in-the-Middle attacks use
knowledge of the pipeline structure and
interfaces to inject malicious data
tailored to maximise damage.

Model hardware design Confidentiality Disclosure

Side-Channel attacks to ML hardware
implementations attacks use physical
observation of the hardware operation to
estimate parameters of the ML model
implemented by the circuit.

Data and metadata
schemata Confidentiality Disclosure

Model inversion attacks exploit
knowledge about a model’s input features
(e.g., representation interval, types) for
carry out extraction of the original
training set data from the model.

Learned data indexes Integrity Tampering

Index poisoning attacks target the
learned index’s data probability
distributions to imperceptibly degrade
the index performance.

5.2. Threats Prioritization

Threat-ranking techniques are used to associate a security risk level to each threat. A
popular technique is represented by the so-called bug bars, which come in the form of tables
listing the criteria used to classify bugs. Recently, Microsoft has released a bug bar [25] to
rank ML threats, focusing on intentional malicious behavior against ML-based systems.
However, threat prioritisation bug bars are not always easy to explain to users without
security expertise. One of the first developed methods to assess the severity of threats
is DREAD, an acronym referring to five categories (Damage Potential, Reproducibility, Ex-
ploitability, Affected Users and Discoverability). DREAD, which was designed to complement
STRIDE, assigns to each threat a value from 1 to 10. As it turned out that it can lead to



Sensors 2022, 22, 6662 13 of 21

inconsistent results due to the intrinsic subjectivity of the rating process [69], the DREAD
scaled rating system is no longer recommended for exclusive use; yet, it is still used for
quick preliminary threat assessments, as we will do for the case study described in the
next section.

6. Use Case

We will now apply STRIDE-AI to a real-world use case selected from the AI-ML appli-
cations developed in TOREADOR (https://cordis.europa.eu/project/id/688797 (accessed
on 26 July 2022)) H2020 project. The cyber-security of such applications is a goal of another
H2020 project: THREAT-ARREST (https://cordis.europa.eu/project/id/786890 (accessed
on 26 July 2022)). Our focus is on a scenario contributed by the Light-source company
(henceforth LIGHT), one of the major European renewable energy providers, who is a
partner in both the above projects. Specifically, the energy pilot use case we consider
is a system aimed at maximizing the efficiency of solar energy, where AI-ML technolo-
gies are employed for hardware failure prediction (avoiding power cuts) and power flow
optimization (avoiding waste and minimizing costs) on the energy grid.

6.1. Architecture Specification

In the following, we provide a brief description of the LIGHT’s architecture together
with its interface with the TOREADOR one. The use case deals with a predictive main-
tenance scenario in a large-scale asset example. Figure 3 shows an abstraction of the
LIGHT-TOREADOR predictive maintenance architecture, and its operation is described by
the steps below:

1. Sensors placed at power station sites send data about power and other variables to a
local Data Logger card equipped for network communication. The Data Logger has a
local root-of-trust.

2. The Data Logger card forwards the data to a Receiver within the LIGHT ICT
infrastructure.

3. The Anonymity (Anon) agent retrieves the data and applies some pre-processing,
including metadata removal. Removal is not performed for training data, whose
metadata are dummy.

4. Pre-processed input data is streamed to a Connector on the TOREADOR platform.
5. Input data is stored in the TOREADOR platform, then fed to an ML model for

training/validation or failure prediction.
6. In production, inference (Raw Prediction Data) is returned to the LIGHT platform

(predictions are not returned during training).
7. LIGHT employees log into a Dashboard on the LIGHT platform and drill into the

inferences.
8. Raw Prediction data is used for further action (including pro-actively maintaining

components at the power station).

Figure 3. The LIGHT-TOREADOR predictive maintenance architecture.

LIGHT’s monitoring system, whose goal is to provide information to its user on the
operation of the solar farms in a timely and concise manner, collects two main categories
of measurements (primary measurements and derived ones) through several equipment

https://cordis.europa.eu/project/id/688797
https://cordis.europa.eu/project/id/786890
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devices’ monitoring: G59 relay, inverters, and PV string combiners. For the purposes of
this use case, we assume only the G59 monitoring device as significant, which has data
logging capabilities and is able to keep a registry list with the event codes. The monitor
delivers the following categories of data:

• Active energy
• Reactive energy
• Active Power
• Reactive power
• Voltage levels
• Current levels
• Frequency levels
• Power factor
• G59/Alarms

The monitoring data are summarized in a production table which records hourly
snapshots of the plant activity. The attributes in this table are:

• report date and time—Store the snapshot date and time.
• production unit id—References the units used to measure the electrical power pro-

duced (the unit used to measure energy production are usually KWh (kilowatt hours)
or MWh (megawatt hours)).

• quantity—The total energy produced during the report date until the report time.

6.2. Metadata

Besides the monitor logs and production table, the plant’s data assets include meta-
data that describe the facility. They include:

• power plant code—A unique internal code used to designate each plant.
• description—Information related to that power plant, stored in unstructured format.
• location—The power plant’s location, stored as GPS coordinates.
• active—If the power plant is currently active or not.
• date active from—The date when the power plant became active.
• date active to—The date when the power plant stopped being active.

Additional metadata are related to the organization (or the individual) owning and
running the plant.

6.3. Applying STRIDE-AI

With reference to the TM process in Table 4, a security expert applying the STRIDE-AI
methodology to the power plant has a ready-made set of objectives (the CIA3− R hexagon)
and assets categories (the ones on Figure 2). The expert starts by performing architecture
decomposition and identifying the relevant assets. For example, the annotations pro-
vided in Figure 4 correspond to the data and model assets identified within the predictive
maintenance architecture.

For each asset, the expert chooses a set of properties of interest within CIA3 − R.
To limit the scope of our discussion, let us consider only two assets—training data stream
(Asset #4a) and trained model (Asset #3b)—belonging to the macro-category Data and
Model, respectively (The complete mapping of all identified assets, properties and threats is
provided in the Appendix A (Table A1). The training data stream asset belongs to the Labeled
Data asset category; therefore, it should exhibit the Integrity and Authenticity properties to
prevent known failures (see Table 8). (Other asset categories will have different property
profiles. For example, the library used for training the ML model will need Integrity and
Authenticity (to ensure its code has not been tampered with) and Availability (to make
sure it will be capable of performing the training or inference task within the deadline).)
With regard to the trained model asset, it should exhibit the Integrity and Availability
properties (see Table 9). The third step is threat identification. Again from Tables 8 and 9, the
security expert identifies (Tampering and Spoofing) and (Tampering and DoS) as the threats
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corresponding to the data and model asset’s property profile, respectively. The next step
of the TM process is vulnerabilities identification, where the security expert interacts with
the system developers to describe under which conditions the threats associated to the
assets can materialize. For asset #4a, the Tampering threat corresponds to attackers making
changes or injecting spurious data into the sensor data stream, while the Spoofing threat
corresponds to attackers posing as the TOREADOR ML model to the LIGHT data platform,
and as the LIGHT platform to the TOREADOR model. The expert needs to assess whether
the threats are atomic or composite, i.e., they require one or more conditions to hold for being
exploited. The (simplified) threat trees for the Spoofing and Tampering threats are shown in
Figures 5 and 6, respectively.

Figure 4. The identified data and model assets.

Figure 5. The Spoofing threat tree for the Training Data Stream asset [3].
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Figure 6. The Tampering threat tree for the Training Data Stream asset [3].

The Spoofing threat tree corresponds to a standard failure mode of distributed plat-
forms. The Tampering threat tree is more ML-specific, as it affects the training data stream
by injecting spurious data items (i.e., adding data that do not come from LIGHT, with
random or chosen labels) or by modifying data items that come from LIGHT by flipping
the labels. The difference between the Tampering threat sub-trees (Figure 6) is relevant for
the expert’s assessment, as the leftmost sub-tree can be deleted as the expert knows that
the data items are signed by the Data Logger cards, but not the rightmost one: Loggers’
signature would not prevent label flipping on training data, as labels are added on the
LIGHT platform before streaming the training set to TOREADOR.

As for asset #3b, the Tampering threat corresponds to attackers capable of interfering
with the model remote execution. As the threat tree in Figure 7 shows, the attacker can
mount energy-latency attacks [70]. For instance, someone with remote platform access
might slow down the execution time (e.g., by excluding the GPU and switching from GPU
to CPU execution, resulting in a doubling of latency). The latency that is generated causes
inference values to be out of date.

Figure 7. The Tampering threat tree for the Trained Model asset.

Finally, we compute the threat priorities by utilizing a DREAD scorecard, whose
ratings are shown in Table 11. For the training data stream asset, the potential damage
that could result from a spoofing attack includes backdoor generation and substitution of
data about power emission or consumption, which could alter metrics and reporting. The
expertise required to perform spoofing varies depending on which branch of the Spoofing
threat tree is considered. As the TOREADOR platform supports a two-factor authentication,
in case the LIGHT users’ credentials consist only of a username and password, it may prove
easier to gain access to TOREADOR by password cracking or by stealing the credentials
(e.g., via phishing emails). An attack exploiting the Spoofing threat may result in tampering.
If an attacker is able to tamper with the training data stream, she can perform label flipping
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or other types of data manipulation. The exploitation of this threat depends on the presence
of constraints on data manipulation; as labels are added on the LIGHT platform, while
data points are collected and signed by Data Loggers, adding new data with random labels
requires more effort than flipping labels of existing data to obtain a particular output in the
presence of certain input values.

Table 11. DREAD rating for the Spoofing and Tampering threats.

Threats D R E A D Average
[Rating]

DATA:
Spoofing 5 2 4 2 7 4.0 [Medium

Risk]

DATA:
Tampering 7 2 6 2 5 4.4 [Medium

Risk]

MODEL:
Tampering 6 4 5 5 6 5.2 [Medium

Risk]

7. Discussion

The primary objective of the proposed threat methodology is to reduce the gap between
security practitioners and AI experts via a structured approach to identifying, quantifying,
and addressing threats to ML. Following STRIDE-AI, an AI-ML-based system can be
decomposed into relevant components, and each individual component is analyzed for
its susceptibility to threats. Once the failure modes have been identified, they need to be
mapped to the threats and the properties such threats may endanger. A benefit of our
asset-centered approach is that any threat analyst can easily check which properties are
violated as a result of a determined failure, thereby capturing the corresponding security
risks of the asset under consideration. By contrast, the approach taken by most of the threat
analysis methodologies available in the literature focuses on documenting adversarial
tactics and techniques based on real-world observations and providing a static taxonomy
of adversarial actions [29–31]. One of the sources of difficulty in ML security is the fact
that vulnerabilities cannot be comprehensively identified. To be truly effective, the threat
analysis should not be accomplished only once because fully enumerating all the failure
phenomena of the entire ML-based system at the first attempt, taking into account all
possible input-output data, is an infeasible task. As a result, failure modes need to be
continuously updated based on additional information about the system itself and the
latest research trends on weaknesses and vulnerabilities. In a sense, this corresponds to a
collaborative metadata approach. Moreover, in order to evaluate the security risks in each
failure mode, it is also essential to consider the system’s purpose, its operating environment,
and assumption about attackers’ ability. This allows for comprehensive prioritization, also
according to factors such as severity, frequency, and detectability.

8. Conclusions and Future Work

Currently, there is no systematic process or well-established technique for identifying
the vulnerabilities and threats targeting ML components throughout the entire AI pipeline.
This research work builds on the urgent necessity to provide any security practitioner with
a customized threat modeling methodology for the specific AI pipeline and related ML
models. We propose STRIDE-AI as an effective and practical property-driven methodology
for assessing the security of AI-ML-based systems. The application of the STRIDE-based
threat analysis to the AI-ML domain is relatively simple and has its foundation in the
proper identification of critical elements (AI assets) within the ML life-cycle. Such a
methodology has the potential to assist AI cybersecurity experts, ML developers, and
data scientists in collaboratively identifying ML threats to devise secure ML solutions.
However, we are well aware that no threat identification method is effective without
providing guidance in selecting the security controls needed to mitigate the identified
threats. Unfortunately, no security control framework specifically designed for ML models
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is currently available. Conventional security controls need to be complemented by ML-
oriented security controls and mapped to the core functionalities of ML-based systems
they protect and to the weaknesses that threats exploit in these systems. Following [33],
future research may explore how available controls in widely used standards, such as ISO
27001 and NIST Cybersecurity framework, can effectively alleviate the harm of identified
threats, but also how to carefully choose controls designed for and applicable only to the
ML setting. Addressing this issue may also involve the joint use of diverse technologies.
For instance, one promising approach might be to employ a trust-enabling environment for
ML models training and operation, as discussed in [71]. We argue that Distributed Ledger
Technologies (DLTs) can provide a complete security control framework for ML [72], as
DLT usage for CIA3 − R properties may render interference with ML inference results less
attractive for attackers.
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Appendix A

Table A1. Complete mapping for the assets identified in the use case.

Use Case Asset Properties Threats

#1a. Excess Raw Data Authenticity, Integrity Spoofing, Tampering

#2a. Raw Data (Stream) Authenticity, Integrity Spoofing, Tampering

#3a. Raw Data (Batch) Authenticity, Integrity,
Authorization Spoofing, Tampering, EoP

#4a. Training Data (Stream) Authenticity, Integrity Spoofing, Tampering

#5a. Training + Validation Data (Stream)
Authenticity, Integrity,

Non-repudiability,
Authorization

Spoofing, Tampering,
Repudiation, EoP

#6a. Input Data (Stream) Authenticity, Integrity,
Non-repudiability

Spoofing, Tampering,
Repudiation

#7a. Inferences (Stream)
Authenticity, Integrity,

Non-repudiability,
Availability

Spoofing, Tampering,
Repudiation, DoS

#8a. Inferences (Batch) Authenticity, Integrity,
Availability, Authorization

Spoofing, Tampering,
Dos, EoP
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